Lecture 8.1
 Multiple-View Geometry

Thomas Opsahl

Weekly overview

- Multiple-view geometry
- Correspondences
- Structure from Motion (SfM)
- Sparse 3D reconstruction
- Multiple-view stereo
- Dense 3D reconstruction

Recap on two-view geometry

- Epipolar geometry
- The essential matrix $E=[t]_{\times} R$

$$
\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0
$$

- The fundamental matrix $F=K^{\prime-T} E K^{-1}$

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0
$$

- Estimating F from 7 or 8 correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}{ }^{\prime}$
- Estimating E from 5 correspondences $\boldsymbol{x}_{i} \leftrightarrow \boldsymbol{x}_{i}{ }^{\prime}$

Recap on two-view geometry

- Epipolar geometry
- The essential matrix $E=[t]_{\times} R$

$$
\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0
$$

- The fundamental matrix $F=K^{\prime-T} E K^{-1}$

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0
$$

- Estimating F from 7 or 8 correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}{ }^{\prime}$
- Estimating E from 5 correspondences $\boldsymbol{x}_{i} \leftrightarrow \boldsymbol{x}_{i}{ }^{\prime}$
- Pose from epipolar geometry
- Decomposing E into R and \boldsymbol{t} (up to scale)

Recap on two-view geometry

- Epipolar geometry
- The essential matrix $E=[t]_{\times} R$

$$
\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0
$$

- The fundamental matrix $F=K^{\prime-T} E K^{-1}$

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0
$$

- Estimating F from 7 or 8 correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}{ }^{\prime}$
- Estimating E from 5 correspondences $\boldsymbol{x}_{i} \leftrightarrow \boldsymbol{x}_{i}{ }^{\prime}$
- Pose from epipolar geometry
- Decomposing E into R and \boldsymbol{t} (up to scale)
- 3D structure from epipolar geometry
- Triangulation based on known camera matrices

Recap on two-view geometry

- Epipolar geometry
- The essential matrix $E=[t]_{\times} R$

$$
\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0
$$

- The fundamental matrix $F=K^{\prime-T} E K^{-1}$

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0
$$

- Estimating F from 7 or 8 correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}{ }^{\prime}$
- Estimating E from 5 correspondences $\boldsymbol{x}_{i} \leftrightarrow \boldsymbol{x}_{i}{ }^{\prime}$
- Pose from epipolar geometry

- Decomposing E into R and \boldsymbol{t} (up to scale)
- 3D structure from epipolar geometry
- Triangulation based on known camera matrices
- Sequential visual odometry
$-\boldsymbol{x}_{i}{ }^{(k)} \leftrightarrow \boldsymbol{x}_{i}{ }^{(k+1)} \rightarrow E_{k, k+1} \rightarrow{ }^{k} \xi_{k+1}$
$-{ }^{0} \xi_{k+1}={ }^{0} \xi_{k}{ }^{k} \xi_{k+1}$

Recap on two-view geometry

Correspondences (matching)

- Correspondences must satisfy the epipolar constraint represented by the fundamental matrix

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0
$$

- Useful for reducing the number of mismatches

Scene geometry (structure)

- Sparse 3D from triangulating correspondences
- Dense 3D from stereo processing

Camera geometry (motion)

- In the uncalibrated case, the camera matrices P and P^{\prime} can be estimated from the fundamental matrix F up to a projective ambiguity
- In the calibrated case, the relative pose between cameras can be estimated up to scale by decomposing the essential matrix

$$
\left(\boldsymbol{x}_{j} \leftrightarrow \boldsymbol{x}_{j}^{\prime}\right) \xrightarrow{E=[t]_{\times} R}(R, \lambda \boldsymbol{t})
$$

$$
\widetilde{\boldsymbol{u}}_{2 j}=P_{2} \widetilde{\boldsymbol{X}}_{j}
$$

More-than-two-view geometry

Correspondences (matching)

- How does "more-than-two-view geometry" constrain our 2D matches?
- Algebraic description?

Scene geometry (structure)

- Effect of more views on determining the 3D structure of the scene?
- Next lecture

Camera geometry (motion)

- Effect of more views on determining camera poses?
- Next lecture

Correspondences

Two views

- Points \boldsymbol{u}_{1} and \boldsymbol{u}_{2} must satisfy the epipolar constraint
- The fundamental matrix F represents this constraint

$$
\widetilde{\boldsymbol{u}}_{2}{ }^{T} F \widetilde{\boldsymbol{u}}_{1}=0
$$

A point \boldsymbol{u}_{2} in img2 correspond to a line in img1

A point \boldsymbol{u}_{1} in img1 correspond to a line in img2

img2

- F also describes the correspondence between points and epipolar lines

$$
\begin{aligned}
& \tilde{\boldsymbol{l}}_{2}=F \widetilde{\boldsymbol{u}}_{1} \\
& \tilde{\boldsymbol{l}}_{1}=F^{T} \widetilde{\boldsymbol{u}}_{2}
\end{aligned}
$$

Correspondences

Three views

Correspondences
Three views

Correspondences
Three views

A point \boldsymbol{u}_{1} in img1 correspond to lines in img2 and img3

Correspondences
Epipoles

Three views

Correspondences
Epipoles

Three views

Correspondences

Three views

- This construction shows that the three points $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ and \boldsymbol{u}_{3} are connected by some geometric constraint
- Any one of them can be computed from the two others
- But it is not clear if this three-view constraint governs more than the three epipolar constraints put together

Correspondences

Three views

- The difference between two-view geometry and three-view geometry becomes evident if we consider lines instead of points
- In two-view geometry no constraints are available for lines
- In three-view geometry, lines \boldsymbol{l}_{1} and \boldsymbol{l}_{2} in two views will in general generate a line \boldsymbol{l}_{3} in a third view

Correspondences

Three views

- The three view geometry has an algebraic representation known as the trifocal tensor T
- A $3 \times 3 \times 3$ array with 18 dof
- This tensor governs the relationship between points and lines in three views
- Point-point-point
- Point-point-line
- Point-line-line
- Point-line-point
- Line-line-line
- It may be used to transfer a two-view point/line correspondence into a point/line in a third view

Correspondences

Three views

- As we just saw, point transfer can be done directly from the epipolar constraints

$$
\widetilde{\boldsymbol{u}}_{3}=\left(F_{31} \widetilde{\boldsymbol{u}}_{1}\right) \times\left(F_{32} \widetilde{\boldsymbol{u}}_{2}\right)
$$

- However, this fails for points in the plane defined by the three camera centers - the trifocal plane - since the epipolar lines then will coincide
- The trifocal tensor allows point transfer also for points in the trifocal plane

$$
\tilde{\boldsymbol{u}}_{3}=\left(F_{31} \widetilde{\boldsymbol{u}}_{1}\right) \times\left(F_{32} \widetilde{\boldsymbol{u}}_{2}\right)
$$

Example

Point transfer based on epipolar constraints

Example

Point transfer based on epipolar constraints

More-than-two-view geometry

Correspondences (matching)

- More views enables us to reveal and remove more mismatches than we can do in the two-view case
- More views also enables us to predict correspondences that can be tested with or without the use of descriptors
- Uncertainties in these predictions will in general decrease with the number of views

Summary

- Multiple-view geometry
- Correspondences
- Two-view vs Three-view
- Fundamental matrix vs Trifocal tensor

