Lecture 8.2 Structure from Motion

Thomas Opsahl

More-than-two-view geometry

Correspondences (matching)

- More views enables us to reveal and remove more mismatches than we can do in the two-view case
- More views also enables us to predict correspondences that can be tested with or without the use of descriptors

Scene geometry (structure)

- Effect of more views on determining the 3D structure of the scene?

Camera geometry (motion)

- Effect of more views on determining camera poses?

Structure from Motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_{j} and the n points \boldsymbol{X}_{j} from the $m \cdot n$ correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{u}_{k j}$

Structure from Motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_{j} and the n points \boldsymbol{X}_{j} from the $m \cdot n$ correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{u}_{k j}$

- We can solve for structure and motion when

$$
2 m n \geq 11 m+3 n-15
$$

- In the general/uncalibrated case, cameras and points can only be recovered up to a projective ambiguity ($\widetilde{\boldsymbol{u}}_{i j}=P_{i} Q^{-1} Q \widetilde{\boldsymbol{X}}_{j}$)
- In the calibrated case, they can be recovered up to a similarity (scale)
- Known as Euclidean/metric reconstruction

Structure from Motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_{j} and the n points \boldsymbol{X}_{j} from the $m \cdot n$ correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{u}_{k j}$

- We can solve for structure and motion when

$$
2 m n \geq 11 m+3 n-15
$$

- In the general/uncalibrated case, cameras and points can only be recovered up to a projective ambiguity ($\widetilde{\boldsymbol{u}}_{i j}=P_{i} Q^{-1} Q \widetilde{\boldsymbol{X}}_{j}$)
- In the calibrated case, they can be recovered up to a similarity (scale)
- Known as Euclidean/metric reconstruction

Projective reconstruction

Metric reconstruction

Structure from Motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_{j} and the n points \boldsymbol{X}_{j} from the $m \cdot n$ correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{u}_{k j}$

- We can solve for structure and motion when

$$
2 m n \geq 11 m+3 n-15
$$

- In the general/uncalibrated case, cameras and points can only be recovered up to a projective ambiguity ($\widetilde{\boldsymbol{u}}_{i j}=P_{i} Q^{-1} Q \widetilde{\boldsymbol{X}}_{j}$)
- In the calibrated case, they can be recovered up to a similarity (scale)
- Known as Euclidean/metric reconstruction
- This problem has been studied extensively and several different approaches have been suggested
- We will take a look at a couple of these
- Sequential structure from motion
- Bundle adjustment

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
$-E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}K_{1}\left[\begin{array}{ll}I & \mathbf{0}\end{array}\right], K_{2}\left[{ }^{1} R_{2}\right. & \left.{ }^{1} \boldsymbol{t}_{2}\right]\end{array}\right)$
- Initialize the 3D structure by triangulation

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
$\left.-E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}K_{1}\left[\begin{array}{ll}I & \mathbf{0}\end{array}\right], K_{2}\left[{ }^{1} R_{2}\right. & { }^{1} \boldsymbol{t}_{2}\end{array}\right]\right)$
- Initialize the 3D structure by triangulation
- For each additional view
- Determine the projection matrix P_{i}, e.g. from 2D-

3D correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{X}_{j}$

- Refine and extend the 3D structure by triangulation

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
$\left.-E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}K_{1}\left[\begin{array}{ll}I & \mathbf{0}\end{array}\right], K_{2}\left[{ }^{1} R_{2}\right. & { }^{1} \boldsymbol{t}_{2}\end{array}\right]\right)$
- Initialize the 3D structure by triangulation
- For each additional view
- Determine the projection matrix P_{i}, e.g. from 2D3D correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{X}_{j}$
- Refine and extend the 3D structure by triangulation

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
$-E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}K_{1}\left[\begin{array}{ll}I & 0\end{array}\right], K_{2}\left[{ }^{1} R_{2}\right. & \left.{ }^{1} \boldsymbol{t}_{2}\right]\end{array}\right)$
- Initialize the 3D structure by triangulation
- For each additional view
- Determine the projection matrix P_{i}, e.g. from 2D3D correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{X}_{j}$
- Refine and extend the 3D structure by triangulation

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
$-E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}K_{1}\left[\begin{array}{ll}I & 0\end{array}\right], K_{2}\left[{ }^{1} R_{2}\right. & \left.{ }^{1} \boldsymbol{t}_{2}\right]\end{array}\right)$
- Initialize the 3D structure by triangulation
- For each additional view
- Determine the projection matrix P_{i}, e.g. from 2D-
 3D correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{X}_{j}$
- Refine and extend the 3D structure by triangulation

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
$-E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}K_{1}\left[\begin{array}{ll}I & 0\end{array}\right], K_{2}\left[{ }^{1} R_{2}\right. & \left.{ }^{1} \boldsymbol{t}_{2}\right]\end{array}\right)$
- Initialize the 3D structure by triangulation
- For each additional view

- Determine the projection matrix P_{i}, e.g. from 2D3D correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{X}_{j}$
- Refine and extend the 3D structure by triangulation

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
$\left.-E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}K_{1}\left[\begin{array}{ll}I & 0\end{array}\right], K_{2}\left[{ }^{1} R_{2}\right. & { }^{1} \boldsymbol{t}_{2}\end{array}\right]\right)$
- Initialize the 3D structure by triangulation
- For each additional view
- Determine the projection matrix P_{i}, e.g. from 2D-
 3D correspondences $\boldsymbol{u}_{i j} \leftrightarrow \boldsymbol{X}_{j}$
- Refine and extend the 3D structure by triangulation

Sequential SfM

- Initialize motion from two images
$-F \rightarrow\left(P_{1}, P_{2}\right)$
- $E \rightarrow\left(P_{1}, P_{2}\right)=\left(\begin{array}{ll}\left.K_{1}\left[\begin{array}{ll}I & \mathbf{0}\end{array}\right], K_{2}\left[\begin{array}{ll}{ }^{1} R_{2} & { }^{1} \boldsymbol{t}_{2}\end{array}\right]\right)\end{array}\right.$
- Initialize the 3D structure by triangulation
- For each additional view
- Determine the projection matrix P_{i}, e.g. from 2D-

- Refine and extend the 3D structure by triangulation
- The resulting structure and motion can be refined in a process known as bundle adjustment

Bundle adjustment

- Non-linear method that refines structure and motion by minimizing the sum of squared reprojection errors

$$
\epsilon=\sum_{i=1}^{m} \sum_{j=1}^{n} d\left(\widetilde{\boldsymbol{u}}_{i j}, P_{i} \widetilde{\boldsymbol{X}}_{j}\right)^{2}
$$

- Camera calibration can be solved as part of bundle adjustment by including intrinsic parameters and skew parameters in the cost function

- Need initial estimates for all parameters!
- 3 per 3D point
- ~12 per camera depending on parameterization
- Some intrinsic parameters, like the focal length, can be initialized from image EXIF data

Bundle adjustment

- There are several strategies that deals with the potentially extreme number of parameters
- Reduce the number of parameters by not including all the views and/or all the points
- Perform bundle adjustment only on a subset and compute missing views/points based on the result
- Divide views/points into several subsets which are bundle adjusted independently and merge the results
- Interleaved bundle adjustment
- Alternate minimizing the reprojection error by varying only the cameras or only the points
- This is viable since each point is estimated independently given fixed cameras, and similarly each camera is estimated independently from fixed points

Bundle adjustment

- Sparse bundle adjustment
- For each iteration, iterative minimization methods need to determine a vector Δ of changes to be made in the parameter vector
- In Levenberg-Marquardt each such step is determined from the equation

$$
\left(J^{T} J+\lambda I\right) \Delta=-J^{T} \boldsymbol{\epsilon}
$$

where J is the Jacobian matrix of the cost function and $\boldsymbol{\epsilon}$ is the vector of errors

- For the bundle adjustment problem the Jacobian matrix has a sparse structure that can be exploited in computations

The sparse structure of the Jacobian matrix for a bundle adjustment problem with 3 cameras and 43D points

Bundle adjustment

- Sparse bundle adjustment
- For each iteration, iterative minimization methods need to determine a vector Δ of changes to be made in the parameter vector
- In Levenberg-Marquardt each such step is determined from the equation

$$
\left(J^{T} J+\lambda I\right) \Delta=-J^{T} \boldsymbol{\epsilon}
$$

where J is the Jacobian matrix of the cost function and $\boldsymbol{\epsilon}$ is the vector of errors

- For the bundle adjustment problem the Jacobian matrix has a sparse structure that can be exploited in computations
- Combined with parallel processing the before mentioned strategies has made it possible to solve extremely large SfM problems

Bundle adjustment

- Sparse bundle adjustment
- For each iteration, iterative minimization methods need to determine a vector Δ of changes to be made in the parameter vector
- In Levenberg-Marquardt each such step is determined from the equation

$$
\left(J^{T} J+\lambda I\right) \Delta=-J^{T} \boldsymbol{\epsilon}
$$

where J is the Jacobian matrix of the cost function and $\boldsymbol{\epsilon}$ is the vector of errors

- For the bundle adjustment problem the Jacobian matrix has a sparse structure that can be exploited in computations
- Combined with parallel processing the before mentioned strategies has made it possible to solve extremely large SfM problems
- S. Agarwal et al, Building Rome in a Day, 2011
- Cluster of 62-computers
- 150000 unorganized images from Rome
- ~37 000 image registered
- Total processing time ~ 21 hours
- SfM time ~7 hours
- J. Heinly et al, Reconstructing the World in Six Days, 2015
- 1 dual processor PC with 5 GPU's (CUDA)
- ~96 000000 unordered images spanning the globe
- ~1.5 000000 images registered
- Total processing time ~ 5 days
- SfM time ~17 hours

Bundle adjustment

- SBA - Sparse Bundle Adjustment
- A generic sparse bundle adjustment C/C++ package based on the Levenberg-Marquardt algorithm
- Code (C and Matlab mex) available at http://www.ics.forth.gr/-lourakis/sbal
- CVSBA is an OpenCV wrapper for SBA www.uco.es/investiga/grupos/ava/node/39/
- Ceres
- By Google (used in production since 2010)
- A C++ library for modeling and solving large, complicated optimization problems like SfM
- Homepage: www.ceres-solver.org
- Code available on GitHub https://github.com/ceres-solver/ceres-solver
- GTSAM - Georgia Tech Smoothing and Mapping
- A C++ library based on factor graphs that is well suited for SfM ++
- Code (C++ library and Matlab toolbox) available at https://borg.cc.gatech.edu/borg/download
- $g^{2} o$ - General Graph Optimization
- Open source C++ framework for optimizing graphbased nonlinear error functions
- Homepage: https://openslam.org/g2o.html
- Code available on GitHub https://github.com/RainerKuemmerle/g2o

Bundle adjustment

- Bundler
- A structure from motion system for unordered image collections written in C and C++
- SfM based on a modified version SBA (default) or Ceres
- Homepage:
http://www.cs.cornell.edu/~snavely/bundler/
- Code available on GitHub
https://github.com/snavely/bundler sfm
- VisualSfM
- A GUI application for 3D reconstruction using structure from motion
- Output works with other tools that performs dense 3D reconstruction
- Homepage: http://ccwu.me/vsfm/
- RealityCapture
- A state-of-the-art photogrammetry software that automatically extracts accurate 3D models from images, laser-scans and other input
- Homepage: https://www.capturingreality.com/

Example

Holmenkollen 2-view SfM

Example

Holmenkollen 2-view SfM

Example

Holmenkollen 2-view SfM

Example

Holmenkollen 3-view SfM

Example

Holmenkollen 4-view SfM

Example

Holmenkollen 110-view SfM

Example

Holmenkollen 110-view SfM

Summary

- Structure from motion
- Sequential SfM
- Bundle adjustment
- Additional reading:

- Szeliski: 7.3-7.5
- Optional reading:
- Snavely N. Seitz S. M., Szeliski R., Modeling the World from Internet Photo Collections, 2007
- S. Agarwal et al, Building Rome in a Day, 2011
- J. Heinly et al, Reconstructing the World in Six Days, 2015

