Basic projective geometry

Thomas Opsahl

2023

Motivation

- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
- The perspective camera model

Projective representation versus Euclidean

$$
\tilde{\mathbf{u}}=\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\mathbf{x}}
$$

Motivation

- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
- The perspective camera model

Projective representation versus Euclidean

$$
\begin{aligned}
& \mathbf{u}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right] \frac{1}{z} \mathbf{x} \\
& \mathbf{u}=\left[\begin{array}{c}
f_{u} \frac{x}{z}+s \frac{y}{z}+c_{u} \\
f_{v} \frac{y}{z}+c_{v}
\end{array}\right]
\end{aligned}
$$

Motivation

- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
- The perspective camera model
- Transformations

$$
\tilde{\mathbf{y}}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
0 & 1
\end{array}\right] \tilde{\mathbf{x}}
$$

Projective representation versus Euclidean

Motivation

- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
- The perspective camera model
- Transformations

Projective representation versus Euclidean

Points in the projective plane \mathbb{P}^{2}

How to describe points in the plane?

Points in the projective plane \mathbb{P}^{2}

How to describe points in the plane?
Euclidean plane \mathbb{R}^{2}

- Choose a 2D coordinate frame
- Points have 2 unique coordinates

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}
$$

Points in the projective plane \mathbb{P}^{2}

How to describe points in the plane?
Euclidean plane \mathbb{R}^{2}

- Choose a 2D coordinate frame
- Points have 2 unique coordinates

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}
$$

Projective plane \mathbb{P}^{2}

- Expand coordinate frame to 3D
- Points have 3 homogeneous coordinates

$$
\tilde{\mathbf{x}}=\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\widetilde{w}
\end{array}\right] \in \mathbb{P}^{2}
$$

where

$$
\tilde{\mathbf{x}}=\lambda \tilde{\mathbf{x}} \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

Points in the projective plane \mathbb{P}^{2}

Observations

1. Any point $\mathbf{x}=[x, y]^{T}$ in the Euclidean plane has a corresponding homogeneous point $\tilde{\mathbf{x}}=[x, y, 1]^{T}$ in the projective plane
2. Homogeneous points of the form $[\tilde{x}, \tilde{y}, 0]^{T}$ does not have counterparts in the Euclidean plane

They correspond to points at infinity

Points in the projective plane \mathbb{P}^{2}

Observations

3. When we work with geometrical problems in the plane, we can switch between the Euclidean representation and the projective representation

$$
\begin{array}{lll}
\mathbb{R}^{2} & \rightarrow & \mathbb{P}^{2} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]} & \mapsto & {\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\mathbb{P}^{2} & \rightarrow & \mathbb{R}^{2} \\
{\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\widetilde{w}
\end{array}\right]} & \mapsto & {\left[\begin{array}{c}
\tilde{x} \\
\widetilde{\widetilde{w}} \\
\frac{\tilde{y}}{\widetilde{w}}
\end{array}\right]}
\end{array}
$$

Lines in the projective plane \mathbb{P}^{2}

How to describe lines in the plane?

Lines in the projective plane \mathbb{P}^{2}

How to describe lines in the plane?
Euclidean plane \mathbb{R}^{2}

- 3 parameters $a, b, c \in \mathbb{R}$

$$
l=\{(x, y) \mid a x+b y+c=0\}
$$

Lines in the projective plane \mathbb{P}^{2}

How to describe lines in the plane?
Euclidean plane \mathbb{R}^{2}

- 3 parameters $a, b, c \in \mathbb{R}$

$$
l=\{(x, y) \mid a x+b y+c=0\}
$$

Projective plane \mathbb{P}^{2}

- Homogeneous vector $\tilde{\mathbf{l}}=[a, b, c]^{T}$

$$
l=\left\{\tilde{\mathbf{x}} \in \mathbb{P}^{2} \mid \tilde{\mathbf{I}}^{T} \tilde{\mathbf{x}}=0\right\}
$$

Lines in the projective plane \mathbb{P}^{2}

Observations

1. Points and lines in the projective plane have the same representation, we say that points and lines are dual objects in \mathbb{P}^{2}
2. All lines in the Euclidean plane have a corresponding line in the projective plane
3. The line $\tilde{\mathbf{I}}=[0,0,1]^{T}$ in the projective plane does not have an Euclidean counterpart

This line consists entirely of ideal points, and is know as the line at infinity

Lines in the projective plane \mathbb{P}^{2}

Properties of lines in the projective plane

1. In the projective plane, all lines intersect, parallel lines intersect at infinity

Two lines $\tilde{\mathbf{I}}_{1}$ and $\tilde{\mathbf{I}}_{2}$ intersect in the point

$$
\tilde{\mathbf{x}}=\tilde{\mathbf{I}}_{1} \times \tilde{I}_{2}
$$

2. The line passing through points $\tilde{\mathbf{x}}_{1}$ and $\tilde{\mathbf{x}}_{2}$ is given by

$$
\tilde{\mathbf{I}}=\tilde{\mathbf{x}}_{1} \times \tilde{\mathbf{x}}_{2}
$$

Example 1

$$
\begin{aligned}
& \mathbf{x}_{1}=(2,4) \\
& \mathbf{x}_{2}=(5,13)
\end{aligned}
$$

Determine the line passing through the two points x_{1} and x_{2}

Example 1

$$
\begin{aligned}
& \mathbf{x}_{1}=(2,4) \\
& \mathbf{x}_{2}=(5,13)
\end{aligned}
$$

Determine the line passing through the two points x_{1} and x_{2}
Homogeneous representation of the points

Matrix representation of the cross product

$$
\mathbf{u} \times \mathbf{v} \mapsto[\mathbf{u}]_{\times} \mathbf{v}
$$

where
$[\mathbf{u}]_{\times} \stackrel{\text { def }}{=}\left[\begin{array}{ccc}0 & -u_{3} & u_{2} \\ u_{3} & 0 & -u_{1} \\ -u_{2} & u_{1} & 0\end{array}\right]$

$$
\tilde{\mathbf{x}}_{1}=\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right] \in \mathbb{P}^{2} \quad \tilde{\mathbf{x}}_{2}=\left[\begin{array}{c}
5 \\
13 \\
1
\end{array}\right] \in \mathbb{P}^{2}
$$

Homogeneous representation of line

$$
\tilde{\mathbf{I}}=\tilde{\mathbf{x}}_{1} \times \tilde{\mathbf{x}}_{2}=\left[\tilde{\mathbf{x}}_{1}\right]_{\times} \tilde{\mathbf{x}}_{2}=\left[\begin{array}{ccc}
0 & -1 & 4 \\
1 & 0 & -2 \\
-4 & 2 & 0
\end{array}\right]\left[\begin{array}{c}
5 \\
13 \\
1
\end{array}\right]=\left[\begin{array}{c}
-9 \\
3 \\
6
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right]
$$

Equation of the line

$$
-3 x+y+2=0 \Leftrightarrow y=3 x-2
$$

Example 2

$$
\begin{aligned}
& y=x-2 \\
& y=-2 x+3
\end{aligned}
$$

At which point does these two lines intersect?

Example 2

$$
\begin{aligned}
& y=x-2 \\
& y=-2 x+3
\end{aligned}
$$

At which point does these two lines intersect?

$$
y=x-2 \mapsto \quad \tilde{\mathbf{l}}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right] \in \mathbb{P}^{2} \quad y=-2 x+3 \quad \mapsto \quad \tilde{\mathbf{l}}_{2}=\left[\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right] \in \mathbb{P}^{2}
$$

Point of intersection

$$
\tilde{\mathbf{x}}=\tilde{\mathbf{l}}_{1} \times \tilde{\mathbf{I}}_{2}=\left[\tilde{\mathbf{r}}_{1}\right]_{\times} \tilde{\mathbf{I}}_{2}=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-5 \\
1 \\
-3
\end{array}\right] \Rightarrow \quad \mathbf{x}=\left[\begin{array}{c}
-5 /-3 \\
1 /-3
\end{array}\right] \approx\left[\begin{array}{c}
1.67 \\
-0.33
\end{array}\right]
$$

Example 3
 $$
y=x-2
$$
 $$
y=x+3
$$

At which point does these two lines intersect?

Example 3

$$
\begin{aligned}
& y=x-2 \\
& y=x+3
\end{aligned}
$$

Euclidean geometry
Parallel lines never intersect!

At which point does these two lines intersect?

Example 3

$$
\begin{aligned}
& y=x-2 \\
& y=x+3
\end{aligned}
$$

Euclidean geometry Parallel lines never intersect!

At which point does these two lines intersect?

$$
y=x-2 \mapsto \tilde{\mathbf{I}}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right] \in \mathbb{P}^{2} \quad y=x+3 \mapsto \tilde{\mathbf{I}}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right] \in \mathbb{P}^{2}
$$

Point of intersection

$$
\tilde{\mathbf{x}}=\tilde{\mathbf{l}}_{1} \times \tilde{\mathbf{l}}_{2}=\left[\tilde{\mathbf{l}}_{1}\right]_{\times} \tilde{\mathbf{I}}_{2}=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-5 \\
0
\end{array}\right]
$$

Projective geometry
All lines intersect!
Parallel lines intersect at infinity

Example 4

Cameras can observe points that are "infinitely" far away

$$
\tilde{\mathbf{u}}=\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
0
\end{array}\right]
$$

In images of planar surfaces we can see how the surface converges towards a line

Any two parallel lines in the plane will appear to intersect on this line

Image: Flicker.com (Melita)

Example 4

Cameras can observe points that are "infinitely" far away

$$
\tilde{\mathbf{u}}=\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
0
\end{array}\right]
$$

In images of planar surfaces we can see how the surface converges towards a line

Any two parallel lines in the plane will appear to intersect on this line

Image: Flicker.com (Melita)

Example 4

Different directions correspond to different points at infinity

The set of all infinite points constitute the line at infinity

Linear transformations of the projective plane \mathbb{P}^{2}

- A linear transformation of \mathbb{P}^{2} can be represented by a invertible homogeneous 3×3 matrix

$$
\begin{array}{rlll}
H: & \mathbb{P}^{2} & \rightarrow & \mathbb{P}^{2} \\
& \tilde{\mathbf{x}} & \mapsto & \mathbf{H} \tilde{\mathbf{x}}
\end{array}
$$

where

$$
\mathbf{H}=\lambda \mathbf{H} \quad \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

- Important groups of linear projective transformations
- Each group is closed under
- Matrix multiplication
- Matrix inverse

Linear transformations of the projective plane \mathbb{P}^{2}

Transformation	Matrix	\#DoF	Preserves	Visualization
Euclidean	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	3	Lengths + all below	$\uparrow \longrightarrow$

Linear transformations of the projective plane \mathbb{P}^{2}

- Several image operations correspond to a linear projective transformation
- Rotation
- Translation
- Resizing

$$
\begin{gathered}
\mathbf{H}=\left[\begin{array}{cc}
S \mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \\
\begin{array}{c}
s=1 \\
\mathbf{R} \neq \\
\mathbf{t}
\end{array} \mathbf{I} \\
\mathbf{t}
\end{gathered}
$$

Linear transformations of the projective plane \mathbb{P}^{2}

- Several image operations correspond to a linear projective transformation
- Rotation
- Translation
- Resizing

Linear transformations of the projective plane \mathbb{P}^{2}

- Several image operations correspond to a linear projective transformation
- Rotation
- Translation
- Resizing

$$
\begin{gathered}
\mathbf{H}=\left[\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \\
\underset{S}{ }<\mathbf{1} \\
\mathbf{R}=\mathbf{I} \\
\mathbf{t}=\mathbf{0}
\end{gathered}
$$

Linear transformations of the projective plane \mathbb{P}^{2}

- Perspective imaging of a flat surface can be described by a homography

$$
\mathbf{H} \tilde{\mathbf{x}}^{s}=\widetilde{\mathbf{u}}^{i}
$$

Linear transformations of the projective plane \mathbb{P}^{2}

- The central projection between two planes corresponds to a homography

$$
\mathbf{H} \tilde{\mathbf{x}}^{a}=\tilde{\mathbf{y}}^{b}
$$

Linear transformations of the projective plane \mathbb{P}^{2}

- For images of a flat surface, a homography can be used to «change» the camera position

The projective space \mathbb{P}^{3}

- The relationship between the Euclidean space \mathbb{R}^{3} and the projective space \mathbb{P}^{3} is much like the relationship between \mathbb{R}^{2} and \mathbb{P}^{2}
- We represent points in homogeneous coordinates

$$
\widetilde{\mathbf{x}}=\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\widetilde{W}
\end{array}\right]=\lambda\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\widetilde{W}
\end{array}\right] \quad \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

- Points at infinity have $\widetilde{w}=0$

$$
\begin{array}{cccccc}
\mathbb{R}^{3} & \rightarrow & \mathbb{P}^{3} & \mathbb{P}^{3} & \rightarrow & \mathbb{R}^{3} \\
\mathbf{x} & \mapsto & \tilde{\mathbf{x}} & \tilde{\mathbf{x}} & \mapsto & \mathbf{x} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} & \mapsto & {\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} & {\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\widetilde{w}
\end{array}\right]} & & \\
& & {\left[\begin{array}{c}
\tilde{x} / \widetilde{w} \\
\tilde{y} / \widetilde{w} \\
\tilde{z} / \widetilde{w}
\end{array}\right]}
\end{array}
$$

- We can transform between \mathbb{R}^{3} and \mathbb{P}^{3}

Linear transformations of the projective space \mathbb{P}^{3}

Transformation of $\mathbb{P}^{\mathbf{3}}$	Matrix	\#DoF	Preserves
Euclidean	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	6	Volumes, volume ratios, lengths + all below
Similarity	$\left[\begin{array}{cc}s \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right] \quad s \in \mathbb{R}$	7	Angles + all below
Affine	$\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 1\end{array}\right]$	12	Parallelism of planes, The plane at infinity + all below
Homography	$\left[\begin{array}{llll}h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44}\end{array}\right]$	15	Intersection and tangency of surfaces in contact, straight lines

Summary

- Projective plane \mathbb{P}^{2} and space \mathbb{P}^{3}
- Alternative representation of points
- Homogeneous coordinates
- Can swap between \mathbb{R}^{n} and \mathbb{P}^{n}
- Linear projective transformations
- Homogeneous matrices
- Several matrix groups

$$
\begin{array}{cccccc}
\mathbb{R}^{2} & \rightarrow & \mathbb{P}^{2} & \mathbb{P}^{2} & \rightarrow & \mathbb{R}^{2} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]} & \mapsto & {\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & & {\left[\begin{array}{l}
\tilde{x} \\
\tilde{y} \\
\widetilde{w}
\end{array}\right]} & \\
{\left[\begin{array}{c}
\frac{\tilde{x}}{\widetilde{w}} \\
\frac{\tilde{y}}{\widetilde{w}}
\end{array}\right]}
\end{array}
$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Chapter 2 is about "image formation" and covers some projective geometry, focusing on transformations, in section 2.1.1-2.1.4

