
TEK5030

The perspective camera model

Thomas Opsahl

2023



TEK5030

The perspective camera model

A mathematical model that with some 

adaptations can be used to accurately 

describe the viewing geometry of most 

cameras

It describes how a perspective camera, i.e. a 

camera with pinhole geometry, maps 3D 

points in the world to 2D points in the image

A key characteristic of perspective cameras is 

that they preserve straight lines
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The perspective camera model
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The camera is represented by a 3D frame ℱ𝑐 with its origin in the camera’s projective center 

(pinhole), 𝑧-axis pointing forwards, 𝑥-axis to the right and 𝑦-axis pointing downwards

The 𝑧-axis is commonly referred to as the cameras optical axis

Optical axisℱ𝑐
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The perspective camera model
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According to the pinhole geometry, the imaging process is a central projection onto the image 

plane a distance 𝑓 (focal length) behind the pinhole

Image plane
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The perspective camera model
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𝑧

𝑧 = 1

Normalized image plane

The normalized image plane is more convenient to work with than the image plane

The normalized image plane has a fixed position in ℱ𝑐 defined by 𝑧 = 1

– The image plane is camera specific (not necessarily 𝑧 = −𝑓)

ℱ𝑐
𝐱
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The perspective camera model

The image is represented by a 2D frame ℱ𝑖 that spans the normalized image plane
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Normalized image plane
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The perspective camera model

Points in the normalized image plane can be described both as 2D and 3D points

– 3D points 𝐱𝑛 in ℱ𝑐
– 2D points 𝐮 in ℱ𝑖
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Normalized image plane

ℱ𝑐
𝐱𝐱𝑛
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The perspective camera model

The perspective camera model is composed by two transformations:

– A perspective projection that maps 𝐱 to 𝐱𝑛
– A transformation of the normalized image plane, that maps 𝐱𝑛 to 𝐮
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Normalized image plane
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Projective geometry

• Projective geometry is an alternative to Euclidean geometry

– Points

– Point transformations

– +++

• The perspective camera model is most conveniently expressed using some of the basic 

notions from projective geometry

• In computer vision many results and expressions are easiest described in the projective 

framework

9

A more thorough introduction 

is given in another lecture
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Projective geometry
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A more thorough introduction 

is given in another lecture
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Points in the plane

Euclidean geometry
• Unique representation

• Each point corresponds to a coordinate pair 

Projective geometry
• Unique representation up to scale

• Each point corresponds to a triple of 

homogeneous coordinates

where

𝐱 =
𝑥
𝑦 ∈ ℝ2

෤𝐱 =
෤𝑥
෤𝑦
෥𝑤

∈ ℙ2

෤𝐱 = 𝜆෤𝐱 ∀ 𝜆 ∈ ℝ\ 0

ℙ2

ℝ2
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Projective geometry

11

A more thorough introduction 

is given in another lecture
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Points in the plane

Euclidean geometry
• Unique representation

• Each point corresponds to a coordinate pair 

Projective geometry
• Unique representation up to scale

• Each point corresponds to a triple of 

homogeneous coordinates

where

𝐱 =
𝑥
𝑦 ∈ ℝ2

෤𝐱 =
෤𝑥
෤𝑦
෥𝑤

∈ ℙ2

෤𝐱 = 𝜆෤𝐱 ∀ 𝜆 ∈ ℝ\ 0

ℙ2

ℝ2

So 𝐱 ∈ ℝ2 and ෤𝐱 ∈ ℙ2 represent 

the same point in the plane!

Euclidean ↔ Projective

෥𝑤 = 1 ⇒ ෤𝑥 = 𝑥, ෤𝑦 = 𝑦
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Projective geometry
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A more thorough introduction 

is given in another lecture
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Points in space

Euclidean geometry
• Unique representation

Projective geometry
• Unique representation up to scale

where

𝐱 =
𝑥
𝑦
𝑧
∈ ℝ3

෤𝐱 =

෤𝑥
෤𝑦
ǁ𝑧
෥𝑤

∈ ℙ3

෤𝐱 = 𝜆෤𝐱 ∀ 𝜆 ∈ ℝ\ 0

ℙ2

ℝ2
+ 1 dimension…

So 𝐱 ∈ ℝ3 and ෤𝐱 ∈ ℙ3 represent 

the same point in the plane!

Euclidean ↔ Projective

෥𝑤 = 1 ⇒ ෤𝑥 = 𝑥, ෤𝑦 = 𝑦 , ǁ𝑧 = 𝑧
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Projective geometry

Linear transformations

Euclidean geometry

• Linear transformations can be represented as a 

unique matrix

Projective geometry

• Linear transformations can be represented as a 

homogeneous matrix (unique up to scale)

where
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A more thorough introduction 

is given in another lecture

2x2 matrix

3x3 matrix

𝑇: ℝ2

𝐱

→ ℝ2

↦ 𝐲 = 𝐓𝐱

𝐻: ℙ2

෤𝐱

→ ℙ2

↦ ෤𝐲 = 𝐇෤𝐱

𝐇 = 𝜆𝐇 ∀ 𝜆 ∈ ℝ\ 0
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Projective geometry

Linear transformations

Euclidean geometry

• Linear transformations can be represented as a 

unique matrix

Projective geometry

• Linear transformations can be represented as a 

homogeneous matrix (unique up to scale)

where

14

A more thorough introduction 

is given in another lecture

2x2 matrix

3x3 matrix

𝑇: ℝ2

𝐱

→ ℝ2

↦ 𝐲 = 𝐓𝐱

𝐻: ℙ2

෤𝐱

→ ℙ2

↦ ෤𝐲 = 𝐇෤𝐱

𝐇 = 𝜆𝐇 ∀ 𝜆 ∈ ℝ\ 0

x

y

x

y

Some transformations are linear 

in projective geometry and non-

linear in Euclidean geometry

LINEAR

NON-LINEAR

ℝ2 ℝ2

ℙ2 ℙ2
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The perspective camera model

The perspective camera model is composed by two transformations:

– A perspective projection 𝛱0 that maps 𝐱 to 𝐱𝑛
– An affine transformation 𝐾 that maps 𝐱𝑛 to 𝐮
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𝑥

𝑦

𝑧

𝑧 = 1

Normalized image plane

x
nx

u
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v

෥𝐮 =
𝑓𝑢 𝑠 𝑐𝑢
0 𝑓𝑣 𝑐𝑣
0 0 1

1 0
0 1
0 0

0 0
0 0
1 0

෤𝐱

𝐊 𝚷0

ℱ𝑐

ℱ𝑖
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The perspective camera model

The perspective camera model is composed by two transformations:

– A perspective projection 𝛱0 that maps 𝐱 to 𝐱𝑛
– An affine transformation 𝐾 that maps 𝐱𝑛 to 𝐮
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𝑧 = 1

Normalized image plane
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u

v

෥𝐮 =
𝑓𝑢 𝑠 𝑐𝑢
0 𝑓𝑣 𝑐𝑣
0 0 1

෤𝐱𝑛

𝐊
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Remark on computations

Computing the image point 𝑢, 𝑣 𝑇 for a world point 𝑥, 𝑦, 𝑧 𝑇 is done in three steps

17

0

1

x
x u

y u
y v

z v
z w

 
    

     
       

       
 

KΠ

x x u u

u

w

v

w

 
 

  
 
  



TEK5030

The perspective camera model

The affine transformation matrix 𝐊 is the intrinsic part of the camera model, and it is often 

called the camera calibration matrix

The parameters are usually given in pixels
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𝑥

𝑦
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𝑧 = 1

Normalized image plane

x
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u

u

v

nu Kx

𝐊 =
𝑓𝑢 𝑠 𝑐𝑢
0 𝑓𝑣 𝑐𝑣
0 0 1

ℱ𝑐

ℱ𝑖
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The camera calibration matrix

• The optical center, or principal point, 𝑐𝑢, 𝑐𝑣 is where the optical axis intersects the image plane

• Often approximated by the center of the image, but the true value depends on how the detector array is 

aligned with the optical axis
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Normalized image plane
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The camera calibration matrix

• The focal length 𝑓 is the distance between the projective center and the image plane

• The parameters 𝑓𝑢 and 𝑓𝑣 are scaled versions of 𝑓 reflecting that the density of detector elements can 

be different in the 𝑢- and 𝑣 direction of the image plane
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Normalized image plane
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The camera calibration matrix

• The skew parameter 𝑠 is required to describe cases when the detector array is not orthogonal to the 

optical axis

• For modern cameras this effect can typically be ignored, so it is common to set 𝑠 = 0
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The camera calibration matrix

• The skew parameter 𝑠 is required to describe cases when the detector array is not orthogonal to the 

optical axis

• For modern cameras this effect can typically be ignored, so it is common to set 𝑠 = 0
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Normalized image plane
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Non-ideal cameras

• The perspective camera model describes a 3D to 2D transformation consistent with the pinhole geometry

– Key characteristic:  Preserves straight lines

• No cameras fit this model perfectly – All cameras suffer from some kind of distortion

• If we want to use images for geometrical computations we need to take this distortion into account

23

By Tamasflex [CC BY-SA 3.0  (https://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], from Wikimedia Commons
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Non-ideal cameras

24

• Image from a camera with a large field of view

• Distorted – Lines are not preserved

• The perspective camera model does not apply!

Helmut Dersch

ORIGINAL
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Non-ideal cameras

25

• Image from a camera with a large field of view

• Distorted – Lines are not preserved

• The perspective camera model does not apply!

• Undistorted version of the same image

• Undistortion is an image transformation that 

removes distortion effects

• The perspective camera model applies!

Helmut Dersch

ORIGINAL

Helmut Dersch

UNDISTORTED
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Non-ideal cameras

26

• The undistorted image has a different “footprint” than the original image

– Images are rectangular  empty pixels

• It is common to restrict the visible part of the undistorted image to avoid empty pixels

http://www.robots.ox.ac.uk/~vgg/hzbook/

UNDISTORTED

LIMITED COVERAGE

UNDISTORTED

FULL COVERAGE

ORIGINAL

http://www.robots.ox.ac.uk/~vgg/hzbook/
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Radial distortion

27

No radial distortion

Barrel distortion
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Distortion model

28

A distortion model describes how a camera deviates from the pinhole camera geometry

The deviation is most conveniently described in the normalized image plane as a relationship 

between the corrected (undistorted) points 𝐱𝑛 and the true (distorted) points 𝐱′𝑛
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𝑧

𝑧 = 1

Normalized image plane

n
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nx
x

ℱ𝑐
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Distortion model

Example 2-parameter distortion model for radial distortion only
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𝑥

𝑦

𝑧

𝑧 = 1

Normalized image plane

n
x

nx
x

ℱ𝑐

distorted: 𝐱′𝑛 =
𝑥′𝑛
𝑦′𝑛
1

undistorted: 𝐱𝑛 =
𝑥𝑛
𝑦𝑛
1

𝑥′𝑛 = 𝑥𝑛 1 + 𝑘1𝑟𝑛
2 + 𝑘2𝑟𝑛

4

𝑦′𝑛 = 𝑦𝑛 1 + 𝑘1𝑟𝑛
2 + 𝑘2𝑟𝑛

4
where 𝑟𝑛

2 = 𝑥𝑛
2 + 𝑦𝑛

2
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Working with images from non-ideal cameras

• Geometrical computations requires knowledge about the camera’s geometrical model

• For many cameras this can accurately be described by the perspective camera model 

combined with a distortion model

30

https://www.youtube.com/watch?v=F3s3M0mokNc

https://www.youtube.com/watch?v=F3s3M0mokNc


TEK5030

Working with images from non-ideal cameras

For geometrical computations, there are two common approaches

1. Work with undistorted images

2. Work with original images but undistort image points that are relevant for the computations

31

https://www.youtube.com/watch?v=F3s3M0mokNc

https://www.youtube.com/watch?v=F3s3M0mokNc
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Camera calibration

• Estimates the intrinsic parameters 𝑓𝑢, 𝑓𝑣, 𝑠, 𝑐𝑢, 𝑐𝑣 and the distortion parameters for a camera

• Calibration software

– OpenCV

– Kalibr ( https://github.com/ethz-asl/kalibr )

32
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https://github.com/ethz-asl/kalibr
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Remark on computations with a distortion model

Computing the image point 𝑢, 𝑣 𝑇 for a world point 𝑥, 𝑦, 𝑧 𝑇 is done in five steps
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Note that not all distortion models are easily invertible, so back projection of a pixel and 

undistortion of an image might be non-trivial
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Geometric camera models

In general, we can represent a geometric camera model as a function

that projects 3D points 𝐱 in the world to 2D points 𝐮 in the image.

Here Ω denotes the image domain, so that 

34

𝜋: ℝ3 → Ω

𝐮 =
𝑢
𝑣

∈ Ω ⊂ ℝ2
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Geometric camera models

The perspective camera model is one example – Here in Euclidean form (with zero skew)
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Geometric camera models

The perspective camera model is one example – Here in Euclidean form (with zero skew)

36

 
1 0 0 1

0 1 0

u u

p

v v

x
f c

z

yz
f c

z



 
  

    
   

  

x K x

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0 1 0

u u

v v

f c

f c

   
   
   
      

u x

where 𝐱 =
𝑥
𝑦
𝑧

where ෤𝐱 =

𝑥
𝑦
𝑧
1



TEK5030

Geometric camera models

But others exist
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Array of 𝑛 perspective cameras Unified model
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Caruso, D., Engel, J., & Cremers, D. (2015). Large-scale direct SLAM for omnidirectional cameras. In IEEE International Conference on Intelligent Robots and Systems

(Vol. 2015–Decem, pp. 141–148). https://doi.org/10.1109/IROS.2015.7353366
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Inverting the perspective camera model

Sometimes we want to backproject a 2D image point 𝐮 to a 3D world point 𝐱

This is impossible unless we impose some restriction upon 𝐱

One natural option is to backproject to a predefined depth 𝑧

38

Not invertible!

𝑓𝑢 0 𝑐𝑢
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Inverting the perspective camera model

The inverse model is then the backprojection

which maps 2D image points back to 3D world points for a given depth 𝑧

The depth is sometimes represented as inverse depth 𝑑 = 𝑧−1 since this parametrization is 

better suited when we want to model uncertainty

The backprojection model then becomes

39

𝜋𝑝
−1: Ω × ℝ+ → ℝ3

𝜋𝑝
−1 𝐮, 𝑧 = 𝑧𝐊−1 𝐮

1
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Inverting the perspective camera model

40
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Summary

The perspective camera model

– Pinhole geometry

– Preserves straight lines

– “Invertible”

Non-ideal cameras

– Perspective camera model + distortion model

– Undistorted images are consistent with 

the perspective camera model
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Supplementary material

Recommended

• Richard Szeliski:  Computer Vision: Algorithms and Applications 2nd ed

– Chapter 2 “Image formation”, in particular sections 2.1.4 “3D to 2D projections” and 2.1.5 “Lens 

distortions”
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