The perspective camera model

Thomas Opsahl

2023

The perspective camera model

A mathematical model that with some adaptations can be used to accurately describe the viewing geometry of most cameras

It describes how a perspective camera, i.e. a camera with pinhole geometry, maps 3D points in the world to 2D points in the image

A key characteristic of perspective cameras is that they preserve straight lines

The perspective camera model

The camera is represented by a 3D frame \mathcal{F}_{c} with its origin in the camera's projective center (pinhole), z-axis pointing forwards, x-axis to the right and y-axis pointing downwards

The z-axis is commonly referred to as the cameras optical axis

The perspective camera model

According to the pinhole geometry, the imaging process is a central projection onto the image plane a distance f (focal length) behind the pinhole

The perspective camera model

The normalized image plane is more convenient to work with than the image plane

The normalized image plane has a fixed position in \mathcal{F}_{c} defined by $z=1$

- The image plane is camera specific (not necessarily $z=-f$)

The perspective camera model

The image is represented by a 2 D frame \mathcal{F}_{i} that spans the normalized image plane

The perspective camera model

Points in the normalized image plane can be described both as 2D and 3D points

- 3D points \mathbf{x}_{n} in \mathcal{F}_{c}
- 2D points \mathbf{u} in \mathcal{F}_{i}

The perspective camera model

The perspective camera model is composed by two transformations:

- A perspective projection that maps \mathbf{x} to \mathbf{x}_{n}
- A transformation of the normalized image plane, that maps \mathbf{x}_{n} to \mathbf{u}

Projective geometry

- Projective geometry is an alternative to Euclidean geometry
- Points
- Point transformations
- +++
- The perspective camera model is most conveniently expressed using some of the basic notions from projective geometry
- In computer vision many results and expressions are easiest described in the projective framework

Projective geometry

A more thorough introduction
is given in another lecture

Points in the plane

Euclidean geometry

- Unique representation
- Each point corresponds to a coordinate pair

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}
$$

Projective geometry

- Unique representation up to scale
- Each point corresponds to a triple of homogeneous coordinates

$$
\tilde{\mathbf{x}}=\left[\begin{array}{l}
\tilde{x} \\
\tilde{y} \\
\widetilde{w}
\end{array}\right] \in \mathbb{P}^{2}
$$

where

$$
\tilde{\mathbf{x}}=\lambda \tilde{\mathbf{x}} \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

Projective geometry

Points in the plane

Euclidean geometry

- Unique representation
- Each point corresponds to a coordinate pair

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}
$$

Projective geometry

- Unique representation up to scale
- Each point corresponds to a triple of homogeneous coordinates

$$
\widetilde{\mathbf{x}}=\left[\begin{array}{l}
\tilde{x} \\
\tilde{y} \\
\widetilde{w}
\end{array}\right] \in \mathbb{P}^{2}
$$

where

$$
\tilde{\mathbf{x}}=\lambda \tilde{\mathbf{x}} \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

Projective geometry

Points in space

Euclidean geometry

- Unique representation

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3}
$$

Projective geometry

- Unique representation up to scale

$$
\widetilde{\mathbf{x}}=\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\widetilde{W}
\end{array}\right] \in \mathbb{P}^{3}
$$

where

$$
\tilde{\mathbf{x}}=\lambda \tilde{\mathbf{x}} \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

Projective geometry

Linear transformations

Euclidean geometry

- Linear transformations can be represented as a unique matrix

$$
\begin{array}{rlll}
T: & \mathbb{R}^{2} & \rightarrow & \mathbb{R}^{2} \\
& \mathbf{x} & \mapsto & \mathbf{y}=\mathbf{T x}
\end{array}
$$

Projective geometry

- Linear transformations can be represented as a homogeneous matrix (unique up to scale)

$$
\begin{array}{rlll}
H: & \mathbb{P}^{2} & \rightarrow & \mathbb{P}^{2} \\
& \tilde{\mathbf{x}} & \mapsto & \tilde{\mathbf{y}}=\mathbf{H} \tilde{\mathbf{x}}
\end{array} \quad 3 \times 3 \text { matrix }
$$

where

$$
\mathbf{H}=\lambda \mathbf{H} \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

Projective geometry

Some transformations are linear in projective geometry and nonlinear in Euclidean geometry

Linear transformations

Euclidean geometry

- Linear transformations can be represented as a unique matrix

$$
\begin{array}{rccc}
T: & \mathbb{R}^{2} & \rightarrow & \mathbb{R}^{2} \\
& \mathbf{x} & \mapsto & \mathbf{y}=\mathbf{T x}
\end{array}
$$

2x2 matrix

Projective geometry

- Linear transformations can be represented as a homogeneous matrix (unique up to scale)

$$
\begin{array}{rccc}
H: & \mathbb{P}^{2} & \rightarrow & \mathbb{P}^{2} \\
& \tilde{\mathbf{x}} & \mapsto & \mathfrak{\mathbf { y }}=\mathbf{H} \tilde{\mathbf{x}}
\end{array}
$$

where

$$
\mathbf{H}=\lambda \mathbf{H} \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

The perspective camera model

The perspective camera model

The perspective camera model is composed by two transformations: $\quad \widetilde{\mathbf{u}}=\left[\begin{array}{ccc}f_{u} & s & c_{u} \\ 0 & f_{v} & c_{v} \\ 0 & 0 & 1\end{array}\right] \tilde{\mathbf{x}}_{n}$
$\quad-\mathrm{A}$ perspective projection Π_{0} that maps \mathbf{x} to \mathbf{x}_{n}

- An affine transformation K that maps \mathbf{x}_{n} to \mathbf{u}

Remark on computations

Computing the image point $[u, v]^{T}$ for a world point $[x, y, z]^{T}$ is done in three steps

$$
\begin{gathered}
\mathbf{x} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \stackrel{\tilde{\mathbf{x}}}{\substack{\mathbf{K п} \mathbf{O}_{0}}} \stackrel{\tilde{\mathbf{u}}}{\mapsto} \mapsto \mathbf{u}} \\
{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\end{gathered}
$$

The perspective camera model

The affine transformation matrix \mathbf{K} is the intrinsic part of the camera model, and it is often called the camera calibration matrix

The parameters are usually given in pixels

The camera calibration matrix

- The optical center, or principal point, $\left(c_{u}, c_{v}\right)$ is where the optical axis intersects the image plane
- Often approximated by the center of the image, but the true value depends on how the detector array is aligned with the optical axis

The camera calibration matrix

- The focal length f is the distance between the projective center and the image plane
- The parameters f_{u} and f_{v} are scaled versions of f reflecting that the density of detector elements can be different in the u - and v direction of the image plane

The camera calibration matrix

- The skew parameter s is required to describe cases when the detector array is not orthogonal to the optical axis
- For modern cameras this effect can typically be ignored, so it is common to set $s=0$

The camera calibration matrix

FOR THIS COURSE

$$
\begin{gathered}
\mathrm{SKEW}=0 \\
\mathbf{K}=\left[\begin{array}{ccc}
f_{u} & 0 & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

FOR THIS COURSE

Non-ideal cameras

- The perspective camera model describes a 3D to 2D transformation consistent with the pinhole geometry
- Key characteristic: Preserves straight lines
- No cameras fit this model perfectly - All cameras suffer from some kind of distortion
- If we want to use images for geometrical computations we need to take this distortion into account

Non-ideal cameras

- Image from a camera with a large field of view
- Distorted - Lines are not preserved
- The perspective camera model does not apply!

Non-ideal cameras

- Image from a camera with a large field of view
- Distorted - Lines are not preserved
- The perspective camera model does not apply!

- Undistorted version of the same image
- Undistortion is an image transformation that removes distortion effects
- The perspective camera model applies!

Non-ideal cameras

UNDISTORTED
FULL COVERAGE
http://www.robots.ox.ac.uk/~vgg/hzbook/

ORIGINAL

UNDISTORTED
LIMITED COVERAGE

- The undistorted image has a different "footprint" than the original image
- Images are rectangular \rightarrow empty pixels
- It is common to restrict the visible part of the undistorted image to avoid empty pixels

Radial distortion

Distortion model

A distortion model describes how a camera deviates from the pinhole camera geometry

The deviation is most conveniently described in the normalized image plane as a relationship between the corrected (undistorted) points \mathbf{x}_{n} and the true (distorted) points $\mathbf{x}_{n}^{\prime}{ }_{n}$

Distortion model

distorted: $\mathbf{x}_{n}^{\prime}=\left[\begin{array}{c}x^{\prime}{ }_{n} \\ y_{n}^{\prime} \\ 1\end{array}\right]$
 undistorted: $\mathbf{x}_{n}=\left[\begin{array}{c}x_{n} \\ y_{n} \\ 1\end{array}\right]$

Example 2-parameter distortion model for radial distortion only

$$
\begin{aligned}
& x_{n}^{\prime}=x_{n}\left(1+k_{1} r_{n}^{2}+k_{2} r_{n}^{4}\right) \\
& y_{n}^{\prime}=y_{n}\left(1+k_{1} r_{n}^{2}+k_{2} r_{n}^{4}\right)
\end{aligned}
$$

$$
\text { where } r_{n}^{2}=x_{n}^{2}+y_{n}^{2}
$$

Working with images from non-ideal cameras

https://www.youtube.com/watch? $\mathrm{v}=\mathrm{F} 3 \mathrm{~s} 3 \mathrm{MOMOkNc}$

- Geometrical computations requires knowledge about the camera's geometrical model
- For many cameras this can accurately be described by the perspective camera model combined with a distortion model

Working with images from non-ideal cameras

https://www.youtube.com/watch? $\mathrm{v}=\mathrm{F} 3 \mathrm{~s} 3 \mathrm{MOMONNc}$

For geometrical computations, there are two common approaches

1. Work with undistorted images
2. Work with original images but undistort image points that are relevant for the computations

Camera calibration

- Estimates the intrinsic parameters $f_{u}, f_{v}, s, c_{u}, c_{v}$ and the distortion parameters for a camera
- Calibration software
- OpenCV
- Kalibr (https://github.com/ethz-asl/kalibr)

Remark on computations with a distortion model

Computing the image point $[u, v]^{T}$ for a world point $[x, y, z]^{T}$ is done in five steps

$$
\begin{aligned}
& \mathbf{x} \quad \mapsto \quad \tilde{\mathbf{x}} \quad \stackrel{\boldsymbol{\Pi}_{0}}{\mapsto} \quad \tilde{\mathbf{x}}_{n} \quad \stackrel{\text { distort }}{\mapsto} \quad \tilde{\mathbf{x}}_{n}^{\prime} \quad \stackrel{\text { K }}{\mapsto} \quad \tilde{\mathbf{u}} \quad \mapsto \quad \mathbf{u} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \quad\left[\begin{array}{c}
x_{n} \\
y_{n} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
x_{n}^{\prime} \\
y_{n}^{\prime} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
\tilde{u} \\
\tilde{v} \\
\tilde{w}
\end{array}\right] \quad\left[\begin{array}{c}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
\tilde{u} \\
\tilde{w} \\
\tilde{v} \\
\tilde{w}
\end{array}\right]}
\end{aligned}
$$

Note that not all distortion models are easily invertible, so back projection of a pixel and undistortion of an image might be non-trivial

Geometric camera models

In general, we can represent a geometric camera model as a function

$$
\pi: \mathbb{R}^{3} \rightarrow \Omega
$$

that projects 3 D points \mathbf{x} in the world to 2 D points \mathbf{u} in the image.

Here Ω denotes the image domain, so that

$$
\mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right] \in \Omega \subset \mathbb{R}^{2}
$$

Geometric camera models

The perspective camera model is one example - Here in Euclidean form (with zero skew)

$$
\pi_{p}(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \mathbf{K} \frac{1}{z} \mathbf{x}=\left[\begin{array}{c}
f_{u} \frac{x}{z}+c_{u} \\
f_{v} \frac{y}{z}+c_{v}
\end{array}\right] \quad \text { where } \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Geometric camera models

The perspective camera model is one example - Here in Euclidean form (with zero skew)

$$
\begin{array}{cc}
\pi_{p}(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \mathbf{K} \frac{1}{z} \mathbf{x}=\left[\begin{array}{c}
f_{u} \frac{x}{z}+c_{u} \\
f_{v} \frac{y}{z}+c_{v}
\end{array}\right] & \text { where } \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
\tilde{\imath} & =\left[\begin{array}{ccc}
f_{u} & 0 & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\mathbf{x}}
\end{array}
$$

Geometric camera models

But others exist

Array of n perspective cameras

$$
\pi_{m p}(\mathbf{x})=\left\{\pi_{p_{i}}\left(\mathbf{R}_{i} \mathbf{x}\right)\right\}_{i=1 . . . n}
$$

$$
\pi_{u}(\mathbf{x})=\left[\begin{array}{c}
f_{x} \frac{x}{z+\|\mathbf{x}\| \xi} \\
f_{y} \frac{y}{z+\|\mathbf{x}\| \xi}
\end{array}\right]+\left[\begin{array}{l}
c_{x} \\
c_{y}
\end{array}\right]
$$

Inverting the perspective camera model

Sometimes we want to backproject a 2D image point \mathbf{u} to a 3D world point \mathbf{x}

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
f_{u} & 0 & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \\
\text { Not invertible! }
\end{array}
$$

This is impossible unless we impose some restriction upon \mathbf{x}

One natural option is to backproject to a predefined depth z

Inverting the perspective camera model

The inverse model is then the backprojection

$$
\pi_{p}^{-1}: \Omega \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{3}
$$

which maps 2D image points back to 3D world points for a given depth z

$$
\pi_{p}^{-1}(\mathbf{u}, z)=z \mathbf{K}^{-1}\left[\begin{array}{l}
\mathbf{u} \\
1
\end{array}\right]
$$

The depth is sometimes represented as inverse depth $d=z^{-1}$ since this parametrization is better suited when we want to model uncertainty

The backprojection model then becomes

$$
\pi_{p}^{-1}(\mathbf{u}, d)=\frac{1}{d} \mathbf{K}^{-1}\left[\begin{array}{l}
\mathbf{u} \\
1
\end{array}\right]
$$

Inverting the perspective camera model

Summary

$$
\Uparrow
$$

The perspective camera model

- Pinhole geometry
- Preserves straight lines
- "Invertible"

Non-ideal cameras

- Perspective camera model + distortion model
- Undistorted images are consistent with the perspective camera model

$$
\pi_{p}^{-1}(\mathbf{u}, d)=\frac{1}{d} \mathbf{K}^{-1}\left[\begin{array}{l}
\mathbf{u} \\
1
\end{array}\right]
$$

$$
\pi_{p}(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \mathbf{K} \frac{1}{z} \mathbf{x}=\left[\begin{array}{c}
f_{u} \frac{x}{z}+c_{u} \\
f_{v} \frac{y}{z}+c_{v}
\end{array}\right]
$$

$$
\tilde{\mathbf{u}}=\underbrace{\left[\begin{array}{ccc}
f_{u} & 0 & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{K}} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{\Pi}_{0}} \tilde{\mathbf{x}}
$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Chapter 2 "Image formation", in particular sections 2.1.4 "3D to 2D projections" and 2.1.5 "Lens distortions"

