UiO Separtment of Technology Systems

University of Oslo

# **Image Pyramids**

Idar Dyrdal





# **Image Pyramids**

- Downsampling (decimation)
- Upsampling (interpolation)
- Pyramids
  - Gaussan Pyramids
  - Laplacian Pyramids (next lecture)
- Applications
  - Template matching (object detection)
  - Detecting stable points of interest
  - Image Registration
  - Compression
  - Image Blending
  - ...





# **Image Scaling**

- Assume that the image is too big for practical use:
  - Requires too much memory
  - Time consuming to process
  - Too big for the screen
  - ...
- A smaller image can be obtained by image sub-sampling





### Image Downsampling





1/4



1/8

1/2

Throw away every other row and column  $\rightarrow$  image reduced to  $\frac{1}{2}$  size along each dimension.



### Image Downsampling



1/2

1/4 (2x zoom)

1/8 (4x zoom)

The subsampled images are of low quality. Why?



## **Spatial undersampling**



Checkerboard with 10 x 10 pixel squares

Downsampled images





1/10

1/16



# Aliasing

- Occurs when the (spatial) sampling rate is not high enough to capture the details in the image
- High frequencies are transformed to lower frequencies (i.e. aliases)
- To avoid aliasing the sampling rate must be at least two times the maximum frequency in the image (at least two samples per cycle)
- This minimum sampling rate is called the **Nyquist rate**.

Aliasing can be avoided by low-pass filtering the image before downsampling



## Gaussian pre-filtering (low pass)



Gaussian 1/2



Gaussian 1/4



Gaussian 1/8



### Gaussian pre-filtering (low pass)



Gaussian 1/2

Gaussian 1/4

Gaussian 1/8



## Compared to downsampling without low-pass filtering...



1/2

1/4

1/8

Conclusion: Low-pass filtering (i.e. smoothing with a Gaussian kernel) before subsampling the image!





### **TEK5030**

# Upsampling

10 x magnification



# Nearest neighbor interpolation:

- Repeat each row and column 10 times
- Fast and simple approach.

### **Image interpolation**

A digital image is a discrete point-sampling of a continuous function f(x,y):



A new image could be generated, at any resolution and scale, if the original function could be reconstructed.

#### **TEK5030**

### Interpolation by convolution



$$g[i,j] = \sum_{u=-k}^{n} \sum_{v=-k}^{n} h[u,v] f[i-ru,j-rv] \qquad \qquad \text{r = scale factor}$$



### Linear interpolation (bilinear for images)



### Some kernels for signal and image interpolation

Linear:

**Bilinear:** 





**Bicubic** (better choice for images):

**Nearest neighbor:** 







### **Image interpolation - examples**





Nearest neighbor

Bilinear

Bicubic



# **Application: Template Matching with Image Pyramids**

Input: Image, Template

- 1. Match template at current scale
- 2. Downsample image
- 3. Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression.



# Summary

### Image Pyramids:

- Downsampling
- Upsampling
- Gaussian Pyramids

### **Recommended reading:**

• Szeliski 3.5



