UiO Separtment of Technology Systems

University of Oslo

Image Segmentation

Idar Dyrdal

Image Segmentation

- Image segmentation is the process of partitioning a digital image into multiple parts, i.e. find groups of pixels that belong together
- The goal is to divide the image into meaningful and/or perceptually uniform regions
- Segmentation is typically used to locate objects and boundaries of physical entities in the scene
- The segmentation process utilize available image information (intensity, color, texture, pixel position, ...).

Segmentation

First step in image analysis:

- Going from pixels to objects or object parts (physical items or scene elements)
- Paves the way for object feature extraction followed by
- Object recognition (Classification)

Principles:

- Thresholding
- Edge based
- Region based
- Automatic (unsupervised) or interactive (supervised)

Colour based segmentation - three categories

TEK5030

Original image

Segmented image

Semantic Segmentation (meaningful regions)

Segmentation methods

- Active contours (Snakes, Scissors, Level Sets)
- Split and merge (Watershed, Divisive & agglomerative clustering, Graph-based segmentation)
- Gray level thresholding
- K-means (parametric clustering)
- Mean shift (non-parametric clustering)
- Normalized cuts
- Graph cuts

Supervised color based segmentation (region growing)

Segmentation by thresholding

Number of pixels

Thresholding with Otsu's method

Binary segmentation – foreground vs. background

Binary segmentation - Otsu's method

Binary thresholding – Object detection

Thermal image

Thresholded image (Otsu's method)

Global threshold selection \rightarrow threshold *too low* for detection of the object of interest

Manual thresholding

Medium threshold

High threshold

Local thresholding

Threshold computed from gray level statistics in selected window (Otsu's method)

Local thresholding using edge information

Threshold = average gray level along edges

Edge image (Canny edge detector applied to selected window)

Thresholded window

Object detection in video sequences (visible light)

Daylight video frame

Thresholded difference image

- Change detection
- Absolute difference image (Current image - time averaged background image)
- Thresholding of difference image, i.e. Otsu's method
- Requires fixed camera (or registration of images)

Segmentation by clustering

Segmented image

Original image

Segmentation by clustering

Segmented image

Original image

K-means (parametric) clustering

- 1. Select K points (for example randomly) as initial cluster centers
- 2. Assign each sample to nearest cluster center
- 3. Compute new cluster centers (i.e. sample means)
- 4. Repeat steps 2 and 3 until no further reassignments are possible.

Unlabeled dataset

Initial cluster centers (red, green and blue points) Samples assigned to nearest cluster center

Re-computed cluster centres

Samples re-assigned to new cluster centers

Re-computed cluster centres

Final clustering

Segmentation by clustering - example

TEK5030

Segmentation result

K-means clustering using colour

Original image

Clustered image – 10 clusters

Mean shift (non-parametric) segmentation

- Segmentation by clustering of the pixels in the image (e.g. using color and position)
- Non-parametric method (using the so called Parzen window technique) to find modes (i.e. peaks) in the density function
- All pixels climbing to the same peak are assigned to the same region.

(Szeliski: Computer Vision – Algorithms and Applications)

Mean shift segmentation

Plot of **a** vs. **b** for each pixel in **Lab** transformed image

Parzen Method

Density estimate (smoothing of point cloud):

$$f(\boldsymbol{x}) = \frac{1}{nh^d} \sum_{i=1}^n \varphi\left(\frac{\boldsymbol{x} - \boldsymbol{x}_i}{h}\right)$$

Window (kernel) function: $\varphi(u)$ (h = Bandwidth)

Example:

$$arphi(m{u}) = rac{1}{(2\pi)^{d/2}} e^{-rac{1}{2}||m{u}||^2}$$

Mean shift segmentation

Gradient ascent (hill climbing)

Mean Shift Segmentation - example

Original image

Segmented in five categories

TEK5030

Active contours

Fitting of curves to object boundaries:

- Snakes (fitting of spline curves to strong edges)
- Intelligent scissors (interactive specification of curves clinging to object boundaries)
- Level set techniques (evolving boundaries as the zero set of a characteristic function).

These methods iteratively move towards a final solution.

(Szeliski: Computer Vision – Algorithms and Applications)

Active Contours - example

Original image

Segmented image

Split and merge methods

Principles:

- Region based methods
- Recursive splitting of the image based on region statistics
- Hierarchical merging of pixels and regions
- Combined splitting and merging

Methods:

- Watershed segmentation
- Region splitting (divisive clustering)
- Region merging (agglomerative clustering)
- Graph-based segmentation

(Szeliski: Computer Vision – Algorithms and Applications)

Agglomerative clustering

Normalized cuts

Separation of groups with weak affinities (similarities) between nearby pixels

(Szeliski: Computer Vision – Algorithms and Applications)

Graph cuts

(Szeliski: Computer Vision – Algorithms and Applications)

Energy-based methods for binary segmentation:

- Grouping of pixels with similar statistics
- Minimization of pixel-based energy function
- Region-based and boundary-based energy terms
- Image represented as a graph
- Cutting of weak edges, i.e. low similarity between corresponding pixels.

Graph cuts - example

Original image

Segmented image

Morphological operations

- Non-linear filtering
- Typically used to clean up binary images
- Erosion: replace pixel value with minimum in local neighborhood
- Dilation: replace pixel value with maximum in local neighborhood
- Structuring element used to define the local neighborhood:

(Renato Keshet 2008)

A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element.

TEK5030

Closing = Dilation + Erosion

Opening - example

Segmented image (Active Contours)

Result of opening

Closing - example

Segmented image

Result of closing

Summary

Image Segmentation:

- Thresholding techniques
- Clustering methods for segmentation
- Morphological operations

Recommended reading:

• Szeliski 6.4, 7.3 and 7.5

