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Artificial Intelligence (AI)

Ability to mimic human intelligence

Ability to mimic human intelligence by 
learning from experience

Ability to mimic human intelligence by 
«end-to-end» learning of large neural 
networks

Machine 
Learning

Artificial
Intelligence

Deep
Learning
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Classic Machine Learning

Supervised learning
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Deep learning

End-to-end learning
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Applications of Deep Learning

Foto: Alarmy Foto: Augmentyka

Object Recognition (Classification) Computer Chess
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Deep Learning for Object Recognition

«Ship»

Millions of images Millions of parameters Thousands of classes

(AlexNet)

AlexNet

6



TEK5030

Deep Learning for Semantic Segmentation (SegNet)

http://mi.eng.cam.ac.uk/projects/segnet/
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Artificial Neural Network (ANN)
Used in Machine Learning:

• Regression
• Classification
• Clustering
• …

Applications:
• Speech recognition
• Recognition of handwritten text
• Image classification
• …

Network types:
• Feed-forward neural networks
• Recurrent neural networks (RNN)
• …

Feed-forward ANN (non-linear classifier)
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Classic neural networks were inspired by 
biological nerve cells (neurons)

(Credit: Quasar Jarosz, English Wikipedia)

Perceptron (Rosenblatt, 1957-59)

Neural Networks
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Activation functions

• Sigmoid (logistic function):

• Hyperbolic tangent:

• Rectified linear unit (ReLU):
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Deep learning

● Main goal is to approximate a function

● The approximation is improved by using
many layers

● Simplest form: Matrix multiplications and 
non-linear functions

● Deep learning: Matrix multiplications often
replaced by convolutions
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Deep learning

● Non-linear functions are important

● The ReLu function max(0, x) is commonly
used, providing good gradients and efficient
training og networks
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Object Classification with Neural Networks

Problems:
• Curse of dimensionality (too many input samples)
• Too many connections (weights) in a fully connected network
• Input pattern different if object has moved

Training data

New data

Error rate
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Convolutional Neural Network
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Learning of feature representations
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How is deep learning possible?

● No feature extraction for 
compression of raw data (i.e. the
input image)

● Many more parameters than
training examples!

● How can we reduce the need for 
training examples?

● How can overfitting be 
prevented?
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How is deep learning possible?

● Depth off the network (many layers)

● Use of hierarchical representations

● Large training set
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How is deep learning possible?

● Sharing of representations for several
classes (blobs, edges etc.)

● Reusing training data for multiple 
classes

● Blobs and edges can be combined to 
higher order features (e.g. eyes, nose 
etc.) in next level

● No need for training data spanning all 
combinations
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How is deep learning possible?

● It has been found that some neurons (filters) 
will react to eyes in general, both human 
eyes and eyes from various animals

● Studies have shown that deep networks may
learn isolated concepts (e.g. spectacles)
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Ways to prevent overfitting

• Regularization and weight decay
• Dataset Augmentation
• Dropout
• Batch normalization
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Pooling, dropout and softmax
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Pooling Pooling Pooling Dropout Prediction

Conv1 Conv2 Conv3 Fc1 Fc2 Softmax
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Training of weights in a neural net (Gradient decent)

● Specify a loss function, i.e a measure of 
distance between the outcome f(x) of the 
network and the target value y

● Compute the gradient using the chain rule

● The gradient is usually computen for a «mini 
batch» of training samples to reduce noise

● Update the weights (steepest descent)

● «Momentum» can be introduced in the 
update to avoid stalling when reaching a «flat 
spot» in search space

L = ( f(x) - y )² e.g.
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@L
@W = 2(f(x)� y) @f

@W
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Gradient decent 

W1

W2

L
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Object detection with deep learning

Find and classify objects 
separatly (very common 
application)
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Segmentation

Associate single pixels with objects

MSCOCO is a standard benchmark
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http://mscoco.org/
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Segmentation

Pixel-by-pixel classification
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Audio Classification with Deep Learning

Input to deep neural network
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Summary

Deep learning:
• Perceptrons and neural networks
• Deep networks
• Backpropagation
• Examples of applications

Recommended reading:
• Szeliski 5.3

28


