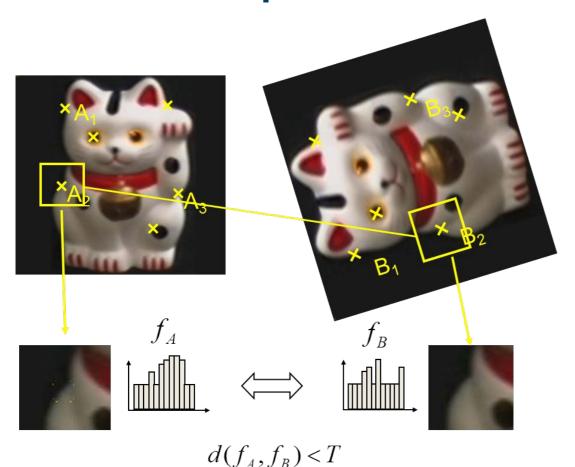


Lecture 4.2 Feature matching

Trym Vegard Haavardsholm

Overview of point feature matching



- 1. Detect a set of distinct feature points
- 2. Define a patch around each point
- 3. Extract and normalize the patch
- 4. Compute a local descriptor
- 5. Match local descriptors

Distance between descriptors

- Define distance function that compares two descriptors
 - L₁ distance (SAD):

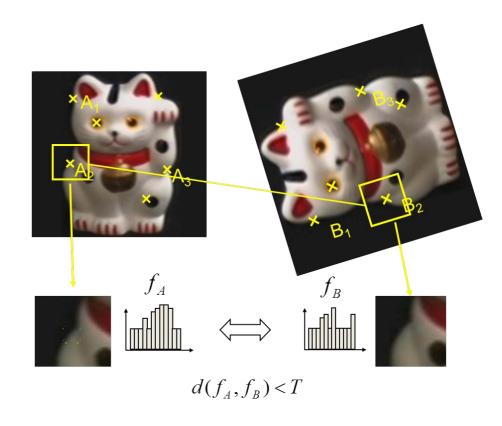
$$d(f_a, f_b) = \sum |f_a - f_b|$$

– L₂ distance (SSD):

$$d(f_a, f_b) = \sum (f_a - f_b)^2$$

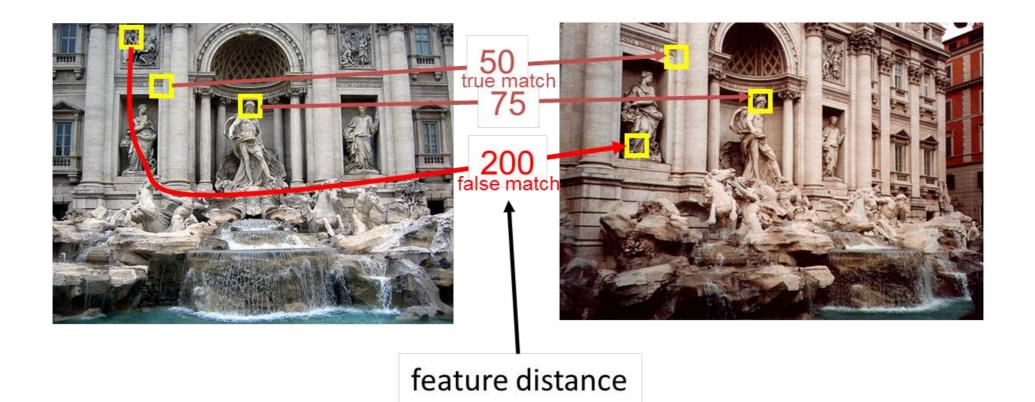
Hamming distance:

$$d(f_a, f_b) = \sum XOR(f_a, f_b)$$

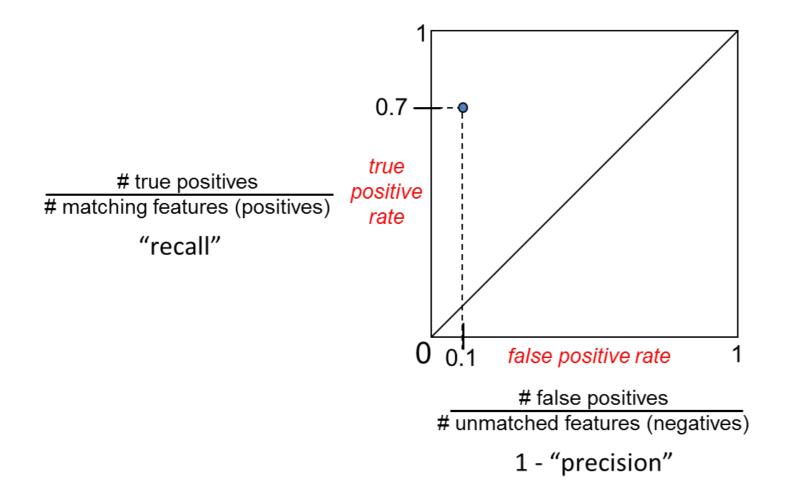


At which threshold do we get a good match?

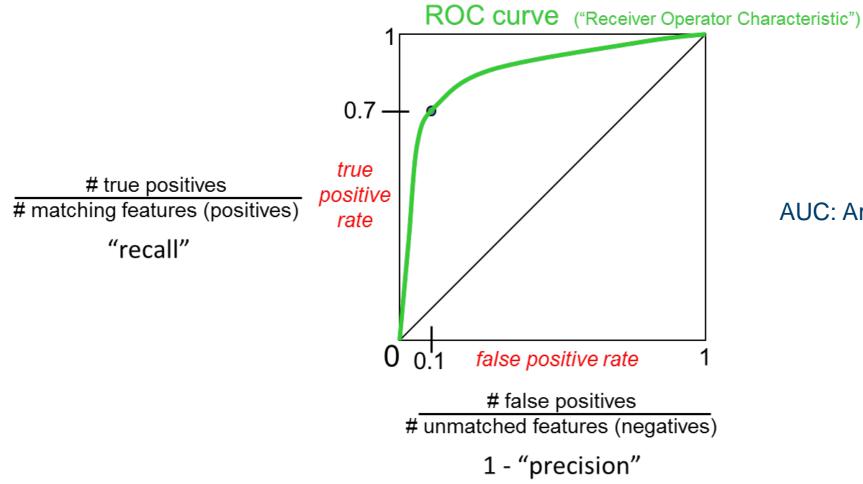
• The distance threshold affects performance



Evaluating matching performance



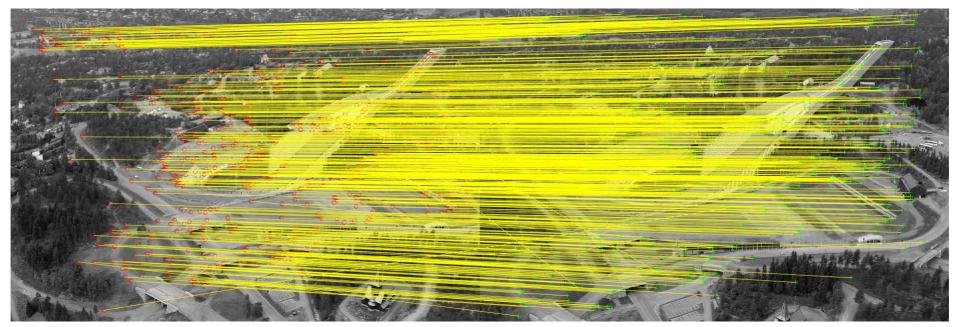
Evaluating matching performance



AUC: Area Under the Curve

Matching strategy

- Compare all
- Take the closest
 - Or k closest
 - And/or within a (low) thresholded distance

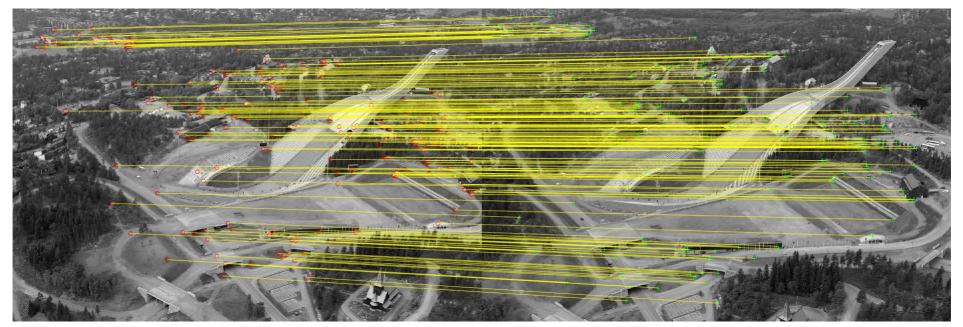


Matching strategy

Compare all

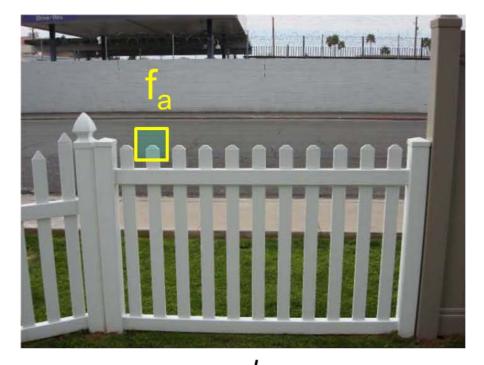
• Choose the *N* best *putative* matches

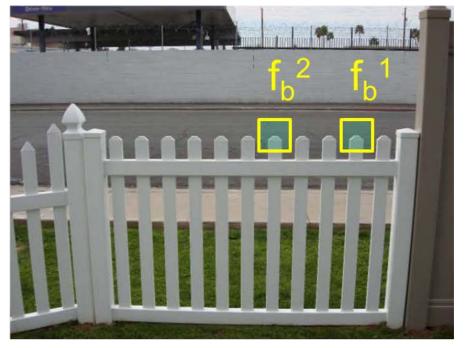
- Take the closest
 - Or k closest
 - And/or within a (low) thresholded distance



Which matches are good?

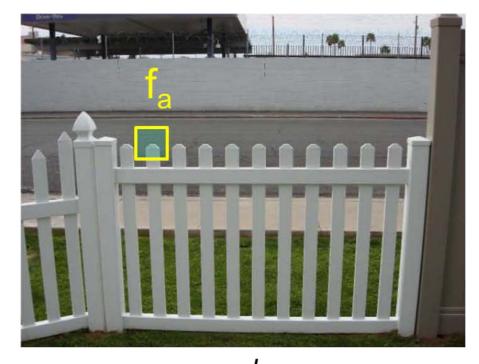
Can get good scores for ambiguous or incorrect matches

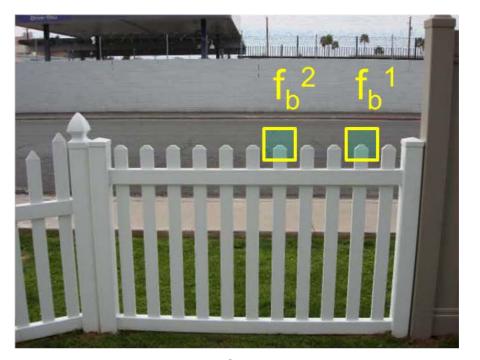




Nearest Neighbour Distance Ratio

- For a descriptor f_a in I_a , take the two closest descriptors $f_b^{\ 1}$ and $f_b^{\ 2}$ in I_b
- Perform ratio test: $d(f_a, f_b^1) / d(f_a, f_b^2)$
 - Low distance ratio: f_b^1 can be a good match
 - High distance ratio: f_b^1 can be an ambiguous or incorrect match



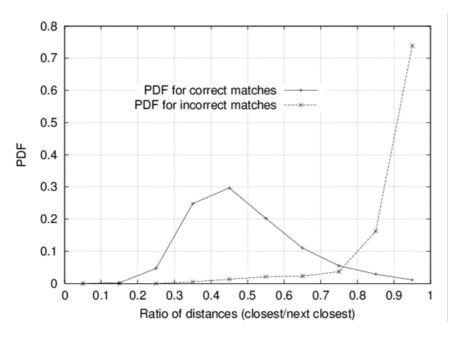


Nearest Neighbour Distance Ratio

- For a descriptor f_a in I_a , take the two closest descriptors $f_b^{\ 1}$ and $f_b^{\ 2}$ in I_b
- Perform ratio test: $d(f_a, f_b^1) / d(f_a, f_b^2)$
 - Low distance ratio: f_b^1 can be a good match
 - High distance ratio: f_b^1 can be an ambiguous or incorrect match

Nearest Neighbour Distance Ratio

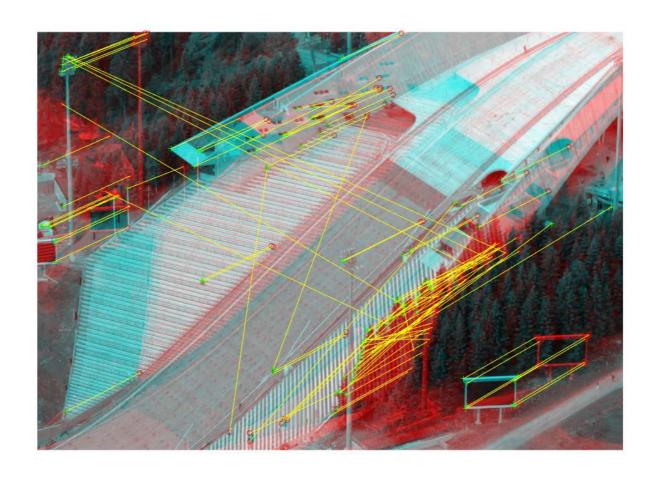
- For a descriptor f_a in I_a , take the two closest descriptors $f_b^{\ 1}$ and $f_b^{\ 2}$ in I_b
- Perform ratio test: $d(f_a, f_b^1) / d(f_a, f_b^2)$
 - Low distance ratio: f_b^1 can be a good match
 - High distance ratio: f_b^1 can be an ambiguous or incorrect match



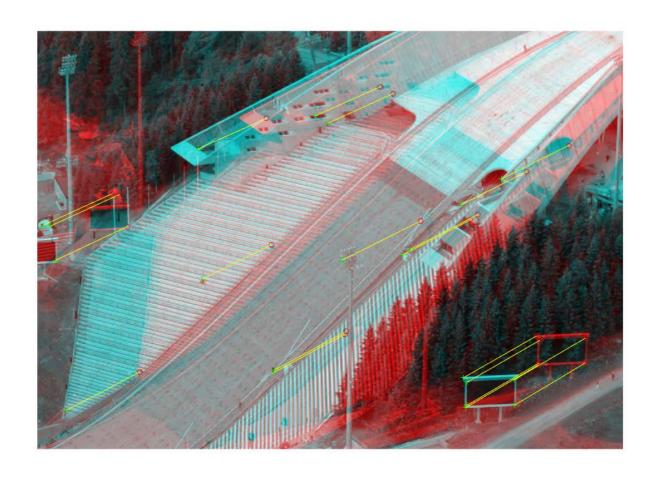
Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004

Example: Holmenkollen



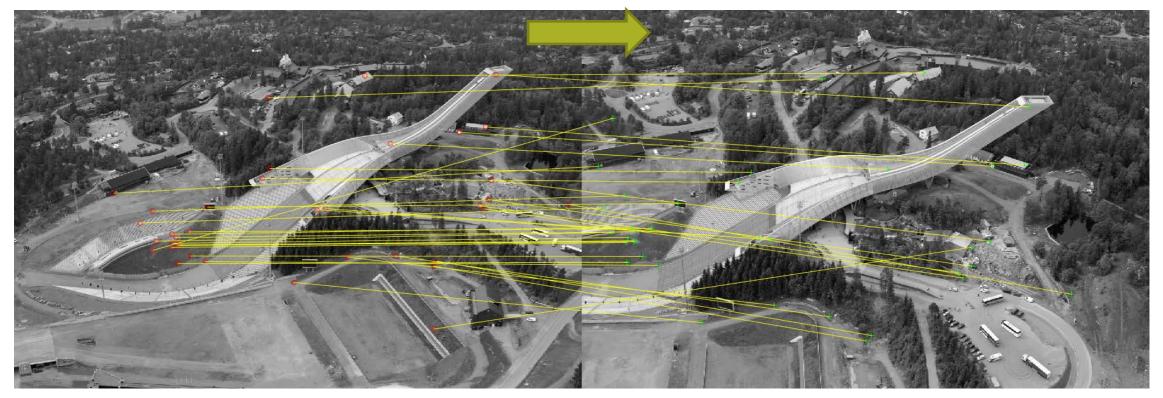
Example: Holmenkollen



Cross check test

- Choose matches (f_a, f_b) so that
 - f_b is the best match for f_a in I_b
 - And f_a is the best match for f_b in I_a

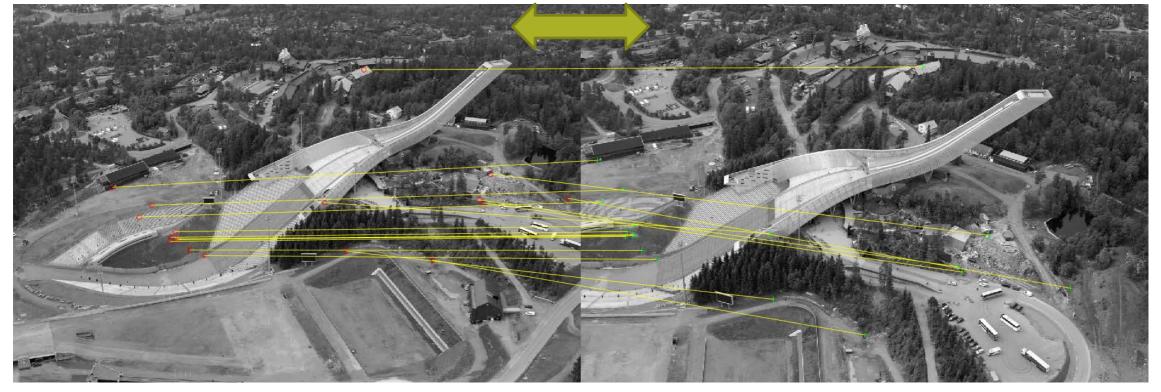
Alternative to ratio test



Cross check test

- Choose matches (f_a, f_b) so that
 - f_b is the best match for f_a in I_b
 - And f_a is the best match for f_b in I_a

Alternative to ratio test



Matching algorithms

- Comparing all features works well for small sets of images
 - Brute force: BFMatcher in OpenCV
- When the number of features is large, an indexing structure is required
 - For example a k-d tree
 - Training an indexing structure takes time, but accelerates matching
 - FlannBasedMatcher in OpenCV

Summary

- Matching keypoints
 - Comparing local patches in canonical scale and orientation
- Feature descriptors
 - Robust, distinctive and efficient
- Descriptor types
 - HoG descriptors
 - Binary descriptors
- Putative matching
 - Closest match, distance ratio, cross check
- Next lecture
 - Matches that fit a model

