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Orientations and poses are «special»

The special orthogonal group in 3D is the set of valid rotation matrices

The special Euclidean group in 3D is the set of valid Euclidean transformation matrices
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Example

#include "Eigen/Eigen"
#include "sophus/so3.hpp"
#include "sophus/se3.hpp"
#include <iostream>

constexpr double pi = 3.14159265358979323846;

int main()
{
Eigen::Matrix4d mat4_cb;
mat4_cb <<
0, 1, 0, 0,
0, 0, 1, 2,
1, 0, 0, 0,
0, 0, 0, 1;

const auto T_cb = Sophus::SE3d::fitToSE3(mat4_cb);

std::cout << "T_cb = " << std::endl << T_cb.matrix() << std::endl;

}

Presenter
Presentation Notes
Kommer tilbake til hele i oppsummeringen på torsdag
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Orientations and poses lie on manifolds

Orientations and poses lie on manifolds
in higher-dimensional spaces,
which are not vector spaces!
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(Cropped and edited; licensed under CC BY-NC-SA 4.0)
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Orientations and poses lie on manifolds

Orientations and poses lie on manifolds
in higher-dimensional spaces,
which are not vector spaces!

For example:
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Orientations and poses lie on manifolds

So how can we compute the mean of a set of poses?
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Orientations and poses lie on manifolds

So how can we compute the mean of a set of poses?

Or represent the probability distribution of that set?
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Orientations and poses lie on manifolds

So how can we compute the mean of a set of poses?

Or represent the probability distribution of that set?

Or compute the derivative
of functions with orientations and poses?
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Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(Cropped and edited; licensed under CC BY-NC-SA 4.0)
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Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold
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Lie theory lets us work on these manifolds

A Lie group is both:

• a smooth differential manifold

• a group           with set     and composition 
operation    that satisfies the axioms: 

Action of               on           : 
Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics

(Cropped and edited; licensed under CC BY-NC-SA 4.0)
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The SO(3) group

The special orthogonal group in 3D is the set of valid rotation matrices

and is closed under matrix multiplication with identity I.
Inversion is achieved with transposition

and composition with matrix multiplication

The group action on vectors is given by the product
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The SE(3) group

The special Euclidean group in 3D is the set of valid Euclidean transformation matrices

and is closed under matrix multiplication with identity I.
Inversion is achieved with matrix inversion

and composition with matrix multiplication

The group action on vectors is given by the product
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Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(Cropped and edited; licensed under CC BY-NC-SA 4.0)
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Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Lie theory describes the tangent space 
around elements of a Lie group, 
and defines exact mappings between 
the tangent space and the manifold

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
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Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Lie theory describes the tangent space 
around elements of a Lie group, 
and defines exact mappings between 
the tangent space and the manifold

The tangent space is a vector space with the 
same dimension as the number of degrees of 
freedom of the group transformations

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(Cropped; licensed under CC BY-NC-SA 4.0)
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Lie algebra

The tangent space at the identity           is called
the Lie algebra of :

The Lie algebra is a vector space 
with elements
which can be identified with vectors 
through the linear maps

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(Cropped; licensed under CC BY-NC-SA 4.0)
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The Lie algebra of SO(3)

The Lie algebra of SO(3) is given by

where the tangent space vector              corresponds to the rotation on angle-axis form.
The Lie algebra can be decomposed into
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The Lie algebra of SO(3)

The Lie algebra of SO(3) is given by

where the tangent space vector              corresponds to the rotation on angle-axis form.
The Lie algebra can be decomposed into
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The Lie algebra of SE(3)

The Lie algebra of SE(3) is given by

where the vectors                correspond to the translational and rotational parts, respectively.
The Lie algebra can be decomposed into
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The exponential map

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(licensed under CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
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The exponential map

The exponential map transfers elements of the Lie algebra to elements of the group:

The inverse operation is the logarithmic map:

The capitalised exponential and logarithmic maps are convenient compositions
that work directly on the vector elements:
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The exponential map

The exponential map transfers elements of the Lie algebra to elements of the group:

The inverse operation is the logarithmic map:

The capitalised exponential and logarithmic maps are convenient compositions
that work directly on the vector elements:
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The exponential map

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
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The exponential map

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(licensed under CC BY-NC-SA 4.0)
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The exponential map for SO(3)

The tangent space vector             corresponds to the angle-axis representation,
and the Exp map is simply the Rodrigues’ rotation formula:

The Log map is given by

When     is small, the following approximation holds:
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The exponential map for SE(3)

The Exp map is given by:

The Log map is given by:

When     is small, the following approximation holds:
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The exponential map

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(licensed under CC BY-NC-SA 4.0)
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Right and left perturbations

We can perform perturbations on the manifold expressed as tangent space vectors
by combining one Exp/Log operation with one composition.

Right perturbations are performed in the local frame:

Left perturbations are performed in the global frame:
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Right and left perturbations example
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Right and left perturbations

We can perform perturbations on the manifold expressed as tangent space vectors
by combining one Exp/Log operation with one composition.

Right perturbations are performed in the local frame:

Left perturbations are performed in the global frame:

We will in the following
consider right perturbations
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Plus and minus operators

It is convenient to express perturbations using plus and minus operators.

The right plus and minus operators are defined as:

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(licensed under CC BY-NC-SA 4.0)
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Resources

Learn more:
• The compendium

• Solà, J., Deray, J., & Atchuthan, D. (n.d.). 
A micro Lie theory for state estimation in robotics

Using Lie theory in practice:
• My python library pylie: 

https://github.com/tussedrotten/pylie

• The C++ library Sophus:
https://github.com/strasdat/Sophus

https://arxiv.org/pdf/1812.01537.pdf
https://github.com/tussedrotten/pylie
https://github.com/strasdat/Sophus
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Next lecture
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