UiO: Department of Technology Systems
University of Oslo

Lecture 5.4
 An introduction to Lie theory

Trym Vegard Haavardsholm

Orientations and poses are «special»

The special orthogonal group in 3D is the set of valid rotation matrices

$$
S O(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R} \mathbf{R}^{\top}=\mathbf{I}, \operatorname{det} \mathbf{R}=1\right\}
$$

The special Euclidean group in 3D is the set of valid Euclidean transformation matrices

$$
S E(3)=\left\{\left.\mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \mathbf{R} \in S O(3), \mathbf{t} \in \mathbb{R}^{3}\right\}
$$

Example

```
#include "Eigen/Eigen"
#include "sophus/so3.hpp"
#include "sophus/se3.hpp"
#include <iostream>
constexpr double pi = 3.14159265358979323846;
int main()
{
    Eigen::Matrix4d mat4_cb;
    mat4_cb <<
        0,-1, 0, 0,
        0, 0, 1, 2,
        1, 0, 0, 0,
        0, 0, 0, 1;
    const auto T_cb = Sophus::SE3d::fitToSE3(mat4_cb);
    std::cout << "T_cb = " << std::endl << T_cb.matrix() << std::endl;
}
```


Orientations and poses lie on manifolds

Orientations and poses lie on manifolds in higher-dimensional spaces, which are not vector spaces!

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped and edited; licensed under CC BY-NC-SA 4.0)

Orientations and poses lie on manifolds

Orientations and poses lie on manifolds in higher-dimensional spaces, which are not vector spaces!

For example:

$$
\begin{aligned}
& \mathbf{R} \in S O(3) \\
& \delta \mathbf{R} \in \mathbb{R}^{3 \times 3} \\
& \mathbf{R}+\delta \mathbf{R} \notin S O(3)
\end{aligned}
$$

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped and edited; licensed under CC BY-NC-SA 4.0)

Orientations and poses lie on manifolds

So how can we compute the mean of a set of poses?

Orientations and poses lie on manifolds

So how can we compute the mean of a set of poses?

Or represent the probability distribution of that set?

Orientations and poses lie on manifolds

So how can we compute the mean of a set of poses?

Or represent the probability distribution of that set?

Or compute the derivative of functions with orientations and poses?

$$
\mathbf{J}=\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \triangleq \lim _{\mathbf{h} \rightarrow 0} \frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})}{\mathbf{h}} \in \mathbb{R}^{n \times m}
$$

Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped and edited; licensed under CC BY-NC-SA 4.0)

Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped and edited; licensed under CC BY-NC-SA 4.0)

Lie theory lets us work on these manifolds

A Lie group is both:

- a smooth differential manifold
- a group (\mathcal{G}, \circ) with set \mathcal{G} and composition operation \circ that satisfies the axioms:

$$
\begin{aligned}
\text { Closure under } \circ: & \mathcal{X} \circ \mathcal{Y} \in \mathcal{G} \\
\text { Identity } \mathcal{E}: & \mathcal{E} \circ \mathcal{X}=\mathcal{X} \circ \mathcal{E}=\mathcal{X} \\
\text { Inverse } \mathcal{X}^{-1}: & \mathcal{X}^{-1} \circ \mathcal{X}=\mathcal{X} \circ \mathcal{X}^{-1}=\mathcal{E} \\
\text { Associativity }: & (\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z}=\mathcal{X} \circ(\mathcal{Y} \circ \mathcal{Z})
\end{aligned}
$$

Action of $\mathcal{X} \in \mathcal{M}$ on $v \in \mathcal{V}: \mathcal{X} \cdot v$

The SO(3) group

The special orthogonal group in 3D is the set of valid rotation matrices

$$
S O(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R R}^{\top}=\mathbf{I}, \operatorname{det} \mathbf{R}=1\right\}
$$

and is closed under matrix multiplication with identity \mathbf{I}.
Inversion is achieved with transposition

$$
\mathbf{R}^{-1}=\mathbf{R}^{\top}
$$

and composition with matrix multiplication

$$
\mathbf{R}_{a} \circ \mathbf{R}_{b}=\mathbf{R}_{a} \mathbf{R}_{b}
$$

The group action on vectors is given by the product

$$
\mathbf{R} \cdot \mathbf{x}=\mathbf{R x}
$$

The $S E(3)$ group

The special Euclidean group in 3D is the set of valid Euclidean transformation matrices

$$
S E(3)=\left\{\left.\mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \mathbf{R} \in S O(3), \mathbf{t} \in \mathbb{R}^{3}\right\}
$$

and is closed under matrix multiplication with identity \mathbf{I}.
Inversion is achieved with matrix inversion

$$
\mathbf{T}^{-1}=\left[\begin{array}{cc}
\mathbf{R}^{\top} & -\mathbf{R}^{\top} \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

and composition with matrix multiplication

$$
\mathbf{T}_{a} \circ \mathbf{T}_{b}=\mathbf{T}_{a} \mathbf{T}_{b}=\left[\begin{array}{cc}
\mathbf{R}_{a} \mathbf{R}_{b} & \mathbf{R}_{a} \mathbf{t}_{b}+\mathbf{t}_{a} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

The group action on vectors is given by the product

$$
\mathbf{T} \cdot \mathbf{x}=\mathbf{T} \tilde{\mathbf{x}}=\mathbf{R} \mathbf{x}+\mathbf{t}
$$

Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped and edited; licensed under CC BY-NC-SA 4.0)

Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Lie theory describes the tangent space around elements of a Lie group, and defines exact mappings between the tangent space and the manifold

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped; licensed under CC BY-NC-SA 4.0)

Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Lie theory describes the tangent space around elements of a Lie group, and defines exact mappings between the tangent space and the manifold

The tangent space is a vector space with the same dimension as the number of degrees of freedom of the group transformations

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped; licensed under CC BY-NC-SA 4.0)

Lie algebra

The tangent space at the identity $\mathcal{T} \mathcal{M}_{\mathcal{E}}$ is called the Lie algebra of \mathcal{M} :

$$
\text { Lie algebra : } \quad \mathfrak{m} \triangleq \mathcal{T} \mathcal{M}_{\mathcal{E}}
$$

The Lie algebra is a vector space with elements $\tau^{\wedge} \in \mathfrak{m}$ which can be identified with vectors $\tau \in \mathbb{R}^{m}$ through the linear maps

$$
\begin{array}{ll}
\text { Hat: }(\cdot)^{\wedge}: \mathbb{R}^{m} \rightarrow \mathfrak{m} ; & \boldsymbol{\tau}^{\wedge}=\sum_{i=1}^{m} \tau_{i} \mathbf{E}_{i} \\
\text { Vee: }(\cdot)^{\vee}: \mathfrak{m} \rightarrow \mathbb{R}^{m} ; & \boldsymbol{\tau}=\left(\boldsymbol{\tau}^{\wedge}\right)^{\vee}=\sum_{i=1}^{m} \tau_{i} \mathbf{e}_{i}
\end{array}
$$

The Lie algebra of SO(3)

The Lie algebra of SO(3) is given by

$$
\mathfrak{s o}(3)=\left\{\boldsymbol{\theta}^{\wedge}=[\boldsymbol{\theta}]_{\times} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\theta} \in \mathbb{R}^{3}\right\}
$$

where the tangent space vector $\theta \triangleq \theta \mathbf{u}$ corresponds to the rotation on angle-axis form. The Lie algebra can be decomposed into

$$
\begin{aligned}
& \boldsymbol{\theta}^{\wedge}=[\boldsymbol{\theta}]_{\times}=\theta_{1} \mathbf{E}_{1}+\theta_{2} \mathbf{E}_{2}+\theta_{3} \mathbf{E}_{3} \\
& \mathbf{E}_{1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{E}_{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \mathbf{E}_{3}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The Lie algebra of SO(3)

The Lie algebra of $S O(3)$ is given by

$$
[\mathbf{u}]_{\times}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]_{\times} \triangleq\left[\begin{array}{ccc}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right]
$$

$$
\mathfrak{s o}(3)=\left\{\boldsymbol{\theta}^{\wedge}=[\boldsymbol{\theta}]_{\times} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\theta} \in \mathbb{R}^{3}\right\}
$$

where the tangent space vector $\theta \triangleq \theta \mathbf{u}$ corresponds to the rotation on angle-axis form. The Lie algebra can be decomposed into

$$
\boldsymbol{\theta}^{\wedge}=[\boldsymbol{\theta}]_{\times}=\theta_{1} \mathbf{E}_{1}+\theta_{2} \mathbf{E}_{2}+\theta_{3} \mathbf{E}_{3}
$$

$$
\mathbf{E}_{1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{E}_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
-1 & 0 \\
-1 & 0
\end{array}\right], \mathbf{E}_{3}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The Lie algebra of $\operatorname{SE}(3)$

The Lie algebra of $\operatorname{SE}(3)$ is given by

$$
\mathfrak{s e}(3)=\left\{\left.\boldsymbol{\xi}^{\wedge}=\left[\begin{array}{cc}
{[\boldsymbol{\theta}]_{\times}} & \boldsymbol{\rho} \\
\mathbf{0}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \boldsymbol{\xi}=\left[\begin{array}{c}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right] \in \mathbb{R}^{6}\right\}
$$

where the vectors $\rho, \boldsymbol{\theta} \in \mathbb{R}^{3}$ correspond to the translational and rotational parts, respectively. The Lie algebra can be decomposed into

$$
\begin{aligned}
& \boldsymbol{\xi}^{\wedge}=\xi_{1} \mathbf{E}_{1}+\xi_{2} \mathbf{E}_{2}+\xi_{3} \mathbf{E}_{3}+\xi_{4} \mathbf{E}_{4}+\xi_{5} \mathbf{E}_{5}+\xi_{6} \mathbf{E}_{6} \\
& \mathbf{E}_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{E}_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{E}_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \mathbf{E}_{4}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \mathbf{E}_{5}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \mathbf{E}_{6}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The exponential map

The exponential map

The exponential map transfers elements of the Lie algebra to elements of the group:

$$
\exp : \mathfrak{m} \rightarrow \mathcal{M} ; \quad \mathcal{X}=\exp \left(\boldsymbol{\tau}^{\wedge}\right)
$$

The inverse operation is the logarithmic map:

$$
\log : \mathcal{M} \rightarrow \mathfrak{m} ; \quad \boldsymbol{\tau}^{\wedge}=\log (\mathcal{X})
$$

The capitalised exponential and logarithmic maps are convenient compositions that work directly on the vector elements:

$$
\begin{array}{ll}
\operatorname{Exp}: \mathbb{R}^{m} \rightarrow \mathcal{M} ; & \mathcal{X}=\operatorname{Exp}(\boldsymbol{\tau}) \triangleq \exp \left(\boldsymbol{\tau}^{\wedge}\right) \\
\log : \mathcal{M} \rightarrow \mathbb{R}^{m} ; & \boldsymbol{\tau}=\log (\mathcal{X}) \triangleq \log (\mathcal{X})^{\vee}
\end{array}
$$

The exponential map

The exponential map transfers elements of the Lie algebra to elements of the group:

$$
\exp : \mathfrak{m} \rightarrow \mathcal{M} ; \quad \mathcal{X}=\exp \left(\boldsymbol{\tau}^{\wedge}\right)
$$

The inverse operation is the logarithmic map:

$$
\log : \mathcal{M} \rightarrow \mathfrak{m} ; \quad \boldsymbol{\tau}^{\wedge}=\log (\mathcal{X})
$$

The matrix exponential:

$$
\exp (\mathbf{X})=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{X}^{k}
$$

The capitalised exponential and logarithmic maps are convenient compositions that work directly on the vector elements:

$$
\begin{array}{ll}
\operatorname{Exp}: \mathbb{R}^{m} \rightarrow \mathcal{M} ; & \mathcal{X}=\operatorname{Exp}(\boldsymbol{\tau}) \triangleq \exp \left(\boldsymbol{\tau}^{\wedge}\right) \\
\log : \mathcal{M} \rightarrow \mathbb{R}^{m} ; & \boldsymbol{\tau}=\log (\mathcal{X}) \triangleq \log (\mathcal{X})^{\vee}
\end{array}
$$

The exponential map

The exponential map

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotic

The exponential map for $S O(3)$

The tangent space vector $\theta=\theta \mathbf{u}$ corresponds to the angle-axis representation, and the Exp map is simply the Rodrigues' rotation formula:

$$
\mathbf{R}=\operatorname{Exp}(\boldsymbol{\theta}) \triangleq \mathbf{I}+\sin \theta[\mathbf{u}]_{\times}+(1-\cos \theta)[\mathbf{u}]_{\times}^{2}
$$

The Log map is given by

$$
\begin{aligned}
& \boldsymbol{\theta}=\log (\mathbf{R}) \triangleq \frac{\theta}{2 \sin \theta}\left(\mathbf{R}-\mathbf{R}^{\top}\right)^{\vee} \\
& \theta=\arccos \left(\frac{\operatorname{tr}(\mathbf{R})-1}{2}\right)
\end{aligned}
$$

When θ is small, the following approximation holds:

$$
\mathbf{R}=\operatorname{Exp}(\boldsymbol{\theta}) \approx \mathbf{I}+\boldsymbol{\theta}^{\wedge}
$$

The exponential map for $S E(3)$

The Exp map is given by:

$$
\begin{aligned}
& \mathbf{T}=\operatorname{Exp}(\boldsymbol{\xi}) \triangleq\left[\begin{array}{cc}
\operatorname{Exp}(\boldsymbol{\theta}) & \mathbf{V}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \\
& \mathbf{V}(\boldsymbol{\theta})=\mathbf{I}+\frac{1-\cos \theta}{\theta}[\mathbf{u}]_{\times}+\frac{\theta-\sin \theta}{\theta}[\mathbf{u}]_{\times}^{2}
\end{aligned}
$$

The Log map is given by:

$$
\begin{gathered}
\boldsymbol{\xi}=\log (\mathbf{T}) \triangleq\left[\begin{array}{c}
\mathbf{V}^{-1}(\boldsymbol{\theta}) \mathbf{t} \\
\boldsymbol{\theta}
\end{array}\right] \quad \boldsymbol{\theta}=\log (\mathbf{R}) \\
\mathbf{V}^{-1}(\boldsymbol{\theta})=\mathbf{I}-\frac{\theta}{2}[\mathbf{u}]_{\times}+\left(1-\frac{\theta \sin \theta}{2(1-\cos \theta)}\right)[\mathbf{u}]_{\times}^{2}
\end{gathered}
$$

When θ is small, the following approximation holds:

$$
\mathbf{T}=\operatorname{Exp}(\boldsymbol{\xi}) \approx \mathbf{I}+\boldsymbol{\xi}^{\wedge}
$$

The exponential map

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotic

Right and left perturbations

We can perform perturbations on the manifold expressed as tangent space vectors by combining one Exp/Log operation with one composition.

Right perturbations are performed in the local frame:

$$
\mathcal{X} \circ \operatorname{Exp}\left({ }^{\mathcal{X}} \boldsymbol{\tau}\right)
$$

Left perturbations are performed in the global frame:

$$
\operatorname{Exp}\left({ }^{\mathcal{E}} \boldsymbol{\tau}\right) \circ \mathcal{X}
$$

Right and left perturbations example

$$
\boldsymbol{\xi}=\left[\begin{array}{llllll}
2 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{\top}
$$

Right and left perturbations

We can perform perturbations on the manifold expressed as tangent space vectors by combining one Exp/Log operation with one composition.

Right perturbations are performed in the local frame:

$$
\mathcal{X} \circ \operatorname{Exp}\left({ }^{\mathcal{X}} \boldsymbol{\tau}\right)
$$

Left perturbations are performed in the global frame:

$$
\operatorname{Exp}\left({ }^{\mathcal{E}} \boldsymbol{\tau}\right) \circ \mathcal{X}
$$

We will in the following consider right perturbations

Plus and minus operators

It is convenient to express perturbations using plus and minus operators.
The right plus and minus operators are defined as:

$$
\begin{gathered}
\mathcal{Y}=\mathcal{X} \oplus{ }^{\mathcal{X}} \boldsymbol{\tau} \triangleq \mathcal{X} \circ \operatorname{Exp}\left({ }^{\mathcal{X}} \boldsymbol{\tau}\right) \in \mathcal{M} \\
{ }^{\mathcal{X}} \boldsymbol{\tau}=\mathcal{Y} \ominus \mathcal{X} \triangleq \log \left(\mathcal{X}^{-1} \circ \mathcal{Y}\right) \in \mathcal{T} \mathcal{M}_{\mathcal{X}}
\end{gathered}
$$

Resources

Learn more:

- The compendium
- Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics

Using Lie theory in practice:

- My python library pylie:
https://github.com/tussedrotten/pylie
- The C++ library Sophus: https://github.com/strasdat/Sophus

Next lecture

