UiO **Content of Technology Systems**

University of Oslo

Lecture 5.5 Applying Lie theory in practice

Trym Vegard Haavardsholm

The exponential map

Plus and minus operators

It is convenient to express perturbations using plus and minus operators.

The **right plus and minus operators** are defined as:

$$\mathcal{Y} = \mathcal{X} \oplus {}^{\mathcal{X}} \boldsymbol{\tau} \triangleq \mathcal{X} \circ \operatorname{Exp}({}^{\mathcal{X}} \boldsymbol{\tau}) \in \mathcal{M}$$

$${}^{\mathcal{X}}\boldsymbol{\tau} = \mathcal{Y} \ominus \mathcal{X} \quad \triangleq \operatorname{Log}(\mathcal{X}^{-1} \circ \mathcal{Y}) \in \mathcal{TM}_{\mathcal{X}}$$

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (licensed under <u>CC BY-NC-SA 4.0</u>)

Plus and minus operators example: Interpolation

Vectors:

$$\mathbf{t} = \mathbf{t}_1 + \alpha(\mathbf{t}_2 - \mathbf{t}_1)$$

Group elements:

$$\begin{aligned} \mathcal{X} &= \mathcal{X}_1 \oplus \alpha(\mathcal{X}_2 \ominus \mathcal{X}_1) \\ &= \mathcal{X}_1 \circ \operatorname{Exp}(\alpha \operatorname{Log}(\mathcal{X}_1^{-1} \circ \mathcal{X}_2)) \end{aligned}$$

Poses:

$$\mathbf{T} = \mathbf{T}_1 \circ \operatorname{Exp}(\alpha \operatorname{Log}(\mathbf{T}_1^{-1} \circ \mathbf{T}_2))$$

Uncertainty for Lie groups

We can represent a random variable on the manifold as a perturbation

$$\mathcal{X} = \bar{\mathcal{X}} \oplus \boldsymbol{ au}, \quad \boldsymbol{ au} = \mathcal{X} \ominus \bar{\mathcal{X}}$$

 $oldsymbol{ au} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma}_{\mathcal{X}}) \ \mathcal{X} \sim \mathcal{N}(ar{\mathcal{X}}, oldsymbol{\Sigma}_{\mathcal{X}})$

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (licensed under <u>CC BY-NC-SA 4.0</u>)

Uncertainty for Lie groups: Example

Drawing random poses from

 $\mathbf{T} \sim \mathcal{N}(ar{\mathbf{T}}, \mathbf{\Sigma}_{\mathbf{T}})$

by drawing random vectors:

 $oldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma_T})$

 $\mathbf{T} = ar{\mathbf{T}} \oplus oldsymbol{\xi}$

Uncertainty for Lie groups: Example

10 uncertain steps (pose compositions) of length 1 in the (local) *x*-direction

Black lines show randomly drawn paths

Green shape corresponds to the 95% error ellipsoid in the tangent space computed from the probabilistic model for the final pose, but transformed to the 2D-translation plane

The normal distribution in the tangent space models the real pose distribution very well

Initialise for example with $\bar{\mathbf{T}}^0 \leftarrow \mathbf{T}_1$

Resources

Learn more:

- The compendium
- <u>Solà, J., Deray, J., & Atchuthan, D. (n.d.).</u> <u>A micro Lie theory for state estimation in robotics</u>

Using Lie theory in practice:

- My python library pylie: <u>https://github.com/tussedrotten/pylie</u>
- The C++ library Sophus: <u>https://github.com/strasdat/Sophus</u>

