UiO : Department of Technology Systems
University of Oslo

Orientation in 3D

Thomas Opsahl

2023

What is orientation?

- A term describing the relationship between coordinate frames
- Orientation \leftrightarrow Rotation

What is orientation?

- A term describing the relationship between coordinate frames
- Orientation \leftrightarrow Rotation

The orientation of \mathcal{F}_{c} relative to \mathcal{F}_{w}

$$
\mathbb{1}
$$

How \mathcal{F}_{w} should rotate in order to align with $\mathcal{F}_{\boldsymbol{c}}$

Orientation

- The orientation of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by an orthonormal rotation matrix

$$
\mathbf{R}_{w c} \in S O(3)
$$

Orientation

- The orientation of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by an orthonormal rotation matrix

$$
\mathbf{R}_{w c} \in S O(3)
$$

orthonormal

 matrix॥

1. All rows and columns have norm 1
2. Any two rows are orthogonal
3. Any two columns are orthogonal

Orientation

- The orientation of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by an orthonormal rotation matrix

$$
\mathbf{R}_{w c} \in S O(3)
$$

- Special orthogonal group

$$
S O(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R R}^{T}=\mathbf{1}, \operatorname{det} \mathbf{R}=1\right\}
$$

Orientation

- The orientation of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by an orthonormal rotation matrix

$$
\mathbf{R}_{w c} \in S O(3)
$$

- Special orthogonal group

$$
S O(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R R}^{T}=\mathbf{1}, \operatorname{det} \mathbf{R}=1\right\}
$$

Group

1. Closed under matrix multiplication $\mathbf{R}_{1} \mathbf{R}_{2} \in S O(3)$
2. Neutral element

$$
\mathbf{1} \in S O(3)
$$

3. Inverse

$$
\mathbf{R}^{-1} \in S O(3)
$$

4. Associativity $\mathbf{R}_{1}\left(\mathbf{R}_{2} \mathbf{R}_{3}\right)=\left(\mathbf{R}_{1} \mathbf{R}_{2}\right) \mathbf{R}_{3}$

Orientation

- The orientation of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by an orthonormal rotation matrix

$$
\mathbf{R}_{w c} \in S O(3)
$$

- Special orthogonal group

Orientation

- The orientation of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by an orthonormal rotation matrix

$$
\mathbf{R}_{w c} \in S O(3)
$$

- Special orthogonal group

$$
S O(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R R}^{T}=\mathbf{1}, \operatorname{det} \mathbf{R}=1\right\}
$$

- Construction from orthonormal basis vectors

$$
\mathbf{R}_{w c}=\begin{array}{|c|c|c|}
\hline r_{12} & r_{12} & r_{13} \\
\hline r_{12} & r_{22} & r_{22} \\
\hline r_{31} & r_{32} & \begin{array}{ll}
r_{32} \\
\hline
\end{array} \\
\hline \mathbf{c}_{1}^{w} & \mathbf{c}_{2}^{w} & \mathbf{c}_{3}^{w}
\end{array}
$$

Principal rotations

$$
\mathbf{R}_{a b}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{1} & -\sin \theta_{1} \\
0 & \sin \theta_{1} & \cos \theta_{1}
\end{array}\right] \quad \mathbf{R}_{a b}\left(\theta_{2}\right)
$$

$$
\mathbf{R}_{a b}^{\mathbf{R}_{z}\left(\theta_{3}\right)}=\left[\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 \\
\sin \theta_{3} & \cos \theta_{3} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Action on points

- If $\mathbf{R}_{a b}$ is the orientation of \mathcal{F}_{b} relative to \mathcal{F}_{a}, we define its action on a point \mathbf{x} to be the change of reference frame from \mathcal{F}_{b} to \mathcal{F}_{a}

$$
\mathbf{x}^{a}=\mathbf{R}_{a b} \cdot \mathbf{x}^{b}
$$

- For the matrix representation, this corresponds to the standard matrix product

$$
\mathbf{x}^{a}=\mathbf{R}_{a b} \mathbf{x}^{b}
$$

Composition

- We can chain together consecutive orientations
- If $\mathbf{R}_{a b}$ is the orientation of \mathcal{F}_{b} relative to \mathcal{F}_{a} and $\mathbf{R}_{b c}$ is the orientation of \mathcal{F}_{c} relative to \mathcal{F}_{b}, then the orientation of \mathcal{F}_{c} relative to \mathcal{F}_{a} is given by

$$
\mathbf{R}_{a c}=\mathbf{R}_{a b} \mathbf{R}_{b c}
$$

Composition

- We can chain together consecutive orientations
- If $\mathbf{R}_{a b}$ is the orientation of \mathcal{F}_{b} relative to \mathcal{F}_{a} and $\mathbf{R}_{b c}$ is the orientation of \mathcal{F}_{c} relative to \mathcal{F}_{b}, then the orientation of \mathcal{F}_{c} relative to \mathcal{F}_{a} is given by

$$
\mathbf{R}_{a c}=\mathbf{R}_{a b} \mathbf{R}_{b c}
$$

Note

The indexes are always pairwise equal

Other representations - Euler angles

- Any orientation can be decomposed into a sequence of three principal rotations

$$
\mathbf{R}=\mathbf{R}_{z}\left(\theta_{3}\right) \mathbf{R}_{\mathbf{y}}\left(\theta_{2}\right) \mathbf{R}_{x}\left(\theta_{1}\right)
$$

- The orientation can be represented by the three angles $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ known as Euler angles

$$
\mathbf{R} \rightarrow\left(\theta_{1}, \theta_{2}, \theta_{3}\right)
$$

- Several sequences can be used
- $\mathbf{R}_{z} \mathbf{R}_{y} \mathbf{R}_{x}, \mathbf{R}_{x} \mathbf{R}_{y} \mathbf{R}_{z}, \mathbf{R}_{z} \mathbf{R}_{x} \mathbf{R}_{z}, \ldots$
- To understand Euler angles, we MUST know the sequence they came from!
- All sequences have singularities, i.e. orientations where the angles of the sequence are not unique
- Problematic if we want to recover Euler angles from a rotation matrix

Other representations - Euler angles

- (roll, pitch, yaw) is often used in navigation to represent the orientation of a vehicle
- The orientation is often described relative to a local North-East-Down (NED) coordinate frame \mathcal{F}_{w} in the world situated directly below the body frame \mathcal{F}_{b}
- Then the yaw angle is commonly referred to as «heading» since it corresponds to the compass direction
- North corresponds to 0°, east 90° and so on

Other representations - Euler angles

- The roll-pitch-yaw sequence $\mathbf{R}_{z}\left(\theta_{3}\right) \mathbf{R}_{y}\left(\theta_{2}\right) \mathbf{R}_{x}\left(\theta_{1}\right)$ is singular when $\theta_{2}=\frac{\pi}{2}$

$$
\begin{array}{r}
\mathbf{R}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left[\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 \\
\sin \theta_{3} & \cos \theta_{3} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{2} & 0 & \sin \theta_{2} \\
0 & 1 & 0 \\
-\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{1} & -\sin \theta_{1} \\
0 & \sin \theta_{1} & \cos \theta_{1}
\end{array}\right] \\
\theta_{3} \text { = yaw } \\
\theta_{2}=\text { pitch }
\end{array}
$$

- If we use the notation $c_{i}=\cos \left(\theta_{i}\right)$ and $s_{i}=\sin \left(\theta_{i}\right)$ then we can write

$$
\mathbf{R}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left[\begin{array}{ccc}
c_{2} c_{3} & s_{1} s_{2} c_{3}-c_{1} s_{3} & c_{1} s_{2} c_{3}+s_{1} s_{3} \\
c_{2} s_{3} & s_{1} s_{2} s_{3}+c_{1} c_{3} & c_{1} s_{2} s_{3}-s_{1} c_{3} \\
-s_{2} & s_{1} c_{2} & c_{1} c_{2}
\end{array}\right]
$$

Other representations - Euler angles

- (roll, pitch, yaw) is practical for vehicles not meant to experience $\theta_{2}=\frac{\pi}{2}$
- Most airplanes, cars and ships
- (roll, pitch, yaw) provides an intuitive understanding of the orientation

Other representations - Axis angle

- The orientation of \mathcal{F}_{b} relative to \mathcal{F}_{a} can be represented by a vector $\boldsymbol{\Phi}=\phi \mathbf{v}$, where the unit vector $\mathbf{v}=\left[v_{1}, v_{2}, v_{3}\right]^{T}$ is the axis of rotation and ϕ is the angle of rotation between them
- This representation provides an intuitive understanding of the orientation
- Action on point

$$
\mathbf{x}^{a}=\cos (\phi) \mathbf{x}^{b}+\sin (\phi)\left(\mathbf{v}^{a} \times \mathbf{x}^{b}\right)+(1-\cos (\phi))\left(\mathbf{v}^{a} \cdot \mathbf{x}^{b}\right) \mathbf{v}^{a}
$$

- The corresponding rotation matrix is

$$
\mathbf{R}_{a b}=\cos \phi \mathbf{1}+(1-\cos \phi) \mathbf{v}^{a} \mathbf{v}^{a^{T}}+\sin \phi\left[\mathbf{v}^{a}\right]_{\times}
$$

Other representations - Axis angle

- The orientation of \mathcal{F}_{b} relative to \mathcal{F}_{a} can be represented by a vector $\boldsymbol{\Phi}=\phi \mathbf{v}$, where the unit vector $\mathbf{v}=\left[v_{1}, v_{2}, v_{3}\right]^{T}$ is the axis of rotation and ϕ is the angle of rotation between them
- This representation provides an intuitive understanding of the orientation
- Action on point

$$
\mathbf{x}^{a}=\cos (\phi) \mathbf{x}^{b}+\sin (\phi)\left(\mathbf{v}^{a} \times \mathbf{x}^{b}\right)+(1-\cos (\phi))\left(\mathbf{v}^{a} \cdot \mathbf{x}^{b}\right) \mathbf{v}^{a}
$$

- The corresponding rotation matrix is

$$
\mathbf{R}_{a b}=\cos \phi \mathbf{1}+(1-\cos \phi) \mathbf{v}^{a} \mathbf{v}^{a T}+\sin \phi\left[\mathbf{v}^{a}\right]_{\times}
$$

Recall that:

$$
[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}
0 & -v_{3} & v_{2} \\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right]
$$

Other representations - Unit quaternions

- Quaternions are 4D complex numbers

$$
q=q_{0}+q_{1} i+q_{2} j+q_{3} k \in \mathbb{H}
$$

defined by $i^{2}=j^{2}=k^{2}=i j k=-1$

- Norm

$$
\|q\|=\sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}
$$

- Unit quaternions $(\|q\|=1)$ is a popular representation for orientation/rotation
- The complex terms are closely related to the axis of rotation, while the real term is closely related to the angle of rotation

$$
\begin{aligned}
q_{0} & =\cos \left(\frac{\phi}{2}\right) \\
{\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right] } & =\sin \left(\frac{\phi}{2}\right) \mathbf{v}
\end{aligned}
$$

Other representations - Unit quaternions

- Inverse of unit quaternions

$$
q^{-1}=q^{*}=q_{0}-q_{1} i-q_{2} j-q_{3} k
$$

- Action on point a \mathbf{x}^{b} can be expressed as a product

$$
p^{a}=q_{a b} p^{b} q_{a b}^{*}
$$

where points are represented as quaternions with zero real term

$$
\mathbf{x}=(x, y, z) \quad \mapsto \quad p=0+x i+y j+z k
$$

$$
\begin{aligned}
q_{0} & =\cos \left(\frac{\phi}{2}\right) \\
{\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right] } & =\sin \left(\frac{\phi}{2}\right) \mathbf{v}
\end{aligned}
$$

Other representations - Unit quaternions

- The rotation matrix corresponding to the unit quaternion $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$ is

$$
\mathbf{R}=\left[\begin{array}{lll}
1-2\left(q_{3}^{2}+q_{4}^{2}\right) & 2\left(q_{2} q_{3}-q_{1} q_{4}\right) & 2\left(q_{2} q_{4}+q_{1} q_{3}\right) \\
2\left(q_{2} q_{3}+q_{1} q_{4}\right) & 1-2\left(q_{2}^{2}+q_{4}^{2}\right) & 2\left(q_{3} q_{4}-q_{1} q_{2}\right) \\
2\left(q_{2} q_{4}-q_{1} q_{3}\right) & 2\left(q_{3} q_{4}+q_{1} q_{2}\right) & 1-2\left(q_{2}^{2}+q_{3}^{2}\right)
\end{array}\right]
$$

WARNING

Some like to order the quaternion terms differently

$$
q=q_{0} i+q_{1} j+q_{2} k+q_{3}
$$

$$
\begin{aligned}
q_{0} & =\cos \left(\frac{\phi}{2}\right) \\
{\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right] } & =\sin \left(\frac{\phi}{2}\right) \mathbf{v}
\end{aligned}
$$

Pros and cons

Rotation matrix $\mathbf{R} \in S O$ (3)

- 9 parameters
- Interpretation
- Composition
- Action on points
- Derivative

Euler angles $\boldsymbol{\theta}=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{T}$

- 3 parameters
- Interpretation
- Composition
- Action on points
- Derivative

Axis-angle $\boldsymbol{\phi}=\phi \mathbf{v}$

- 3 parameters
- Interpretation
- Composition
- Action on points
- Derivative

Unit quaternions $q=q_{1}+q_{2} i+q_{3} j+q_{4} k$

- 4 parameters
- Interpretation
- Composition
- Action on points
- Derivative

Summary

- Orientation of a frame \mathcal{F}_{b} relative to a frame \mathcal{F}_{a} has several representations
- Rotation matrix $\mathbf{R} \in S O$ (3)
- Euler angles $\boldsymbol{\theta}=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{T}$
- Axis-angle $\boldsymbol{\phi}=\phi \mathbf{v}$

- Unit quaternion $\mathbf{q}=q_{1}+q_{2} i+q_{3} j+q_{4} k$
- Important properties
- Inverse
- Composition
- Action on points

$$
\begin{array}{|c|}
\hline \mathbf{R}_{b a}=\mathbf{R}_{a b}^{-1} \\
\hline \mathbf{R}_{a c}=\mathbf{R}_{a b} \mathbf{R}_{b c} \\
\mathbf{x}^{b}=\mathbf{R}_{b a} \mathbf{x}^{a} \\
\hline
\end{array}
$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Chapter 2 "Image formation", in particular section 2.1.3 "3D rotations"
- T. V. Haavardsholm: A Handbook In Visual SLAM
- Chapter 2 "3D geometry", in particular section 2.1 "Points and coordinate frames" and section 2.2 "Representing orientation"

