UiO: Department of Technology Systems
University of Oslo

Pose in 3D

Thomas Opsahl

2023

What is pose?

- A term describing the relationship between coordinate frames
- Pose $=\{$ Position, Orientation $\}$

What is pose?

- A term describing the relationship between coordinate frames
- Pose $=\{$ Position, Orientation $\}$

The pose of \mathcal{F}_{c} relative to \mathcal{F}_{w}

$\mathbb{1}$

How \mathcal{F}_{w} should rotate and translate in order to coincide with \mathcal{F}_{c}

Pose

- The pose of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by the Euclidean transformation matrix

$$
\mathbf{T}_{w c}=\left[\begin{array}{cc}
\mathbf{R}_{w c} & \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in S E(3)
$$

where $\mathbf{R}_{w c} \in S O(3)$ is a rotation matrix and $\mathbf{t}_{w c}^{w} \in \mathbb{R}^{3}$ is a translation vector given in world coordinates

Pose

- The pose of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by the Euclidean transformation matrix

$$
\mathbf{T}_{w c}=\left[\begin{array}{cc}
\mathbf{R}_{w c} & \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in S E(3)
$$

where $\mathbf{R}_{w c} \in S O$ (3) is a rotation matrix and $\mathbf{t}_{w c}^{w} \in \mathbb{R}^{3}$ is a translation vector given in world coordinates

NOTATION
$\mathbf{T}_{a b}=$ The pose of \mathcal{F}_{b} relative to \mathcal{F}_{a}
$\mathbf{R}_{a b}=$ The orientation of \mathcal{F}_{b} relative to \mathcal{F}_{a}
$\mathbf{t}_{a b}^{c}=$The translation of \mathcal{F}_{b} relative to \mathcal{F}_{a} given in \mathcal{F}_{c} coordinates

Pose

- The pose of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by the Euclidean transformation matrix

$$
\mathbf{T}_{w c}=\left[\begin{array}{cc}
\mathbf{R}_{w c} & \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in S E(3)
$$

where $\mathbf{R}_{w c} \in S O$ (3) is a rotation matrix and $\mathbf{t}_{w c}^{w} \in \mathbb{R}^{3}$ is a translation vector given in world coordinates

$$
\operatorname{SE}(3)=\left\{\left.\mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \mathbf{R} \mathbf{R}^{T}=\mathbf{1}, \operatorname{det} \mathbf{R}=1, \mathbf{t} \in \mathbb{R}^{3}\right\}
$$

- In illustrations we often represent the pose as an arrow similar to that of the translation vector

Pose - Inverse

- The opposite pose, the pose of \mathcal{F}_{w} with respect to \mathcal{F}_{c}, is given by the inverse

$$
\mathbf{T}_{c w}=\mathbf{T}_{w c}^{-1}
$$

- One can show that

$$
\mathbf{T}_{c w}=\left[\begin{array}{cc}
\mathbf{R}_{w c} & \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{R}_{w c}^{T} & -\mathbf{R}_{w c}^{T} \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

- Hence $\mathbf{R}_{c w}=\mathbf{R}_{w c}^{T}$ and $\mathbf{t}_{c w}^{c}=-\mathbf{R}_{w c}^{T} \mathbf{t}_{w c}^{w}$

Pose - Action on points

- The action of the pose $\mathbf{T}_{c w}$ on a point \mathbf{x} is defined to be the transformation

$$
\mathbf{x}^{c}=\mathbf{T}_{c w} \cdot \mathbf{x}^{w}
$$

- For the matrix representation, this corresponds to the matrix product

$$
\begin{aligned}
\tilde{\mathbf{x}}^{c} & =\mathbf{T}_{c w} \tilde{\mathbf{x}}^{w} \\
\mathbf{x}^{c} & =\mathbf{R}_{c w} \mathbf{x}^{w}+\mathbf{t}_{c w}^{c}
\end{aligned}
$$

Pose - Action on points

- The action of the pose $\mathbf{T}_{c w}$ on a point \mathbf{x} is defined to be the transformation

$$
\mathbf{x}^{c}=\mathbf{T}_{c w} \cdot \mathbf{x}^{w}
$$

- For the matrix representation, this corresponds to the matrix product

$$
\begin{aligned}
\tilde{\mathbf{x}}^{c} & =\mathbf{T}_{c w} \tilde{\mathbf{x}}^{w} \\
\mathbf{x}^{c} & =\mathbf{R}_{c w} \mathbf{x}^{w}+\mathbf{t}_{c w}^{c}
\end{aligned}
$$

Note

The indexes are always pairwise equal

Pose - Composition

We can chain together consecutive poses by compounding transformation matrices

$$
\mathbf{T}_{a c}=\mathbf{T}_{a b} \mathbf{T}_{b c}
$$

Pose - Composition

We can chain together consecutive poses by compounding transformation matrices

$$
\mathbf{T}_{a c}=\mathbf{T}_{a b} \mathbf{T}_{b c}
$$

Note

The indexes are always pairwise equal

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle

The vehicle has a known pose relative to the world

The camera has a known pose relative to the vehicle

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle \mathbf{x}^{c}

The vehicle has a known pose relative to the world $\mathbf{T}_{w v}$

The camera has a known pose relative to the vehicle $\mathbf{T}_{v c}$

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle \mathbf{x}^{c}

The vehicle has a known pose relative to the world $\mathbf{T}_{w v}$

The camera has a known pose relative to the vehicle $\mathbf{T}_{v c}$

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

$$
\mathbf{x}^{v}=\mathbf{T}_{v c} \cdot \mathbf{x}^{c}
$$

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle \mathbf{x}^{c}

The vehicle has a known pose relative to the world $\mathbf{T}_{w v}$

The camera has a known pose relative to the vehicle $\mathbf{T}_{v c}$

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

$$
\begin{aligned}
& \mathbf{x}^{v}=\mathbf{T}_{v c} \cdot \mathbf{x}^{c} \\
& \mathbf{x}^{w}=\mathbf{T}_{w v} \mathbf{T}_{v c} \cdot \mathbf{x}^{c}
\end{aligned}
$$

Example - Image rotation about center

Projective transformation

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & w / 2 \\
0 & 1 & h / 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -w / 2 \\
0 & 1 & -h / 2 \\
0 & 0 & 1
\end{array}\right]
$$

Example - Image rotation about center

w

Pose of \mathcal{F}_{0} relative to $\mathcal{F}_{3} \quad \mathbf{T}_{30}=\left[\begin{array}{ccc}1 & 0 & w / 2 \\ 0 & 1 & h / 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -w / 2 \\ 0 & 1 & -h / 2 \\ 0 & 0 & 1\end{array}\right]=\mathbf{T}_{32} \mathbf{T}_{21} \mathbf{T}_{10}$

Pose - Other representations

- Several representation of rotation in 3D
- Orthonormal rotation matrix \mathbf{R}
- Euler angles $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
- Axis angle $\boldsymbol{\phi}=\phi \mathbf{v}$
- Unit quaternions $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$
- Several representations of pose in 3D
- Transformation matrix $\mathbf{T}_{a b} \in S E$ (3)
- Pair of rotation matrix and translation vector ($\mathbf{R}_{a b}, \mathbf{t}_{a b}$)
- Euler angles and translation vector $\left(\theta_{1}, \theta_{2}, \theta_{3}, \mathbf{t}_{a b}\right)$
- Axis angle and translation vector ($\boldsymbol{\phi}, \mathbf{t}_{a b}$)
- Unit quaternion and translation vector $\left(q, \mathbf{t}_{a b}\right)$

Summary

- Pose $=\{$ Position, Orientation $\}$
- Representation

$$
\mathbf{T}_{a b}=\left[\begin{array}{cc}
\mathbf{R}_{a b} & \mathbf{t}_{a b}^{a} \\
\mathbf{0} & 1
\end{array}\right] \in S E(3)
$$

- Properties
- Composition

$$
\mathbf{T}_{a b} \mathbf{T}_{b c}=\mathbf{T}_{a c}
$$

- Inverse

$$
\mathbf{T}_{a b}^{-1}=\mathbf{T}_{b a}
$$

- Action on points

$$
\mathbf{T}_{a b} \tilde{\mathbf{x}}^{b}=\tilde{\mathbf{x}}^{a}
$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Szeliski does not focus directly on pose representation, but covers the topic indirectly several places e.g. in section 2.1 Geometric primitives and transformations
- T. V. Haavardsholm: A Handbook In Visual SLAM
- Chapter 2 "3D geometry", in particular section 2.3 "Representing pose"

