UiO Department of Technology Systems University of Oslo

Pose in 3D

Thomas Opsahl

2023

What is pose?

- A term describing the relationship between coordinate frames
- Pose = {Position, Orientation}

What is pose?

- A term describing the relationship between coordinate frames
- Pose = {Position, Orientation}

The pose of \mathcal{F}_c relative to \mathcal{F}_w

How \mathcal{F}_w should rotate and translate in order to coincide with \mathcal{F}_c

Pose

• The pose of the camera frame \mathcal{F}_c with respect to the world frame \mathcal{F}_w can be represented by the Euclidean transformation matrix

$$\mathbf{T}_{wc} = \begin{bmatrix} \mathbf{R}_{wc} & \mathbf{t}_{wc}^w \\ \mathbf{0}^T & 1 \end{bmatrix} \in SE(3)$$

where $\mathbf{R}_{wc} \in SO(3)$ is a rotation matrix and $\mathbf{t}_{wc}^w \in \mathbb{R}^3$ is a translation vector given in world coordinates

Pose

• The pose of the camera frame \mathcal{F}_c with respect to the world frame \mathcal{F}_w can be represented by the Euclidean transformation matrix

$$\mathbf{T}_{wc} = \begin{bmatrix} \mathbf{R}_{wc} & \mathbf{t}_{wc}^{w} \\ \mathbf{0}^{T} & 1 \end{bmatrix} \in SE(3)$$

where $\mathbf{R}_{wc} \in SO(3)$ is a rotation matrix and $\mathbf{t}_{wc}^w \in \mathbb{R}^3$ is a translation vector given in world coordinates

NOTATION

 \mathbf{T}_{ab} = The pose of \mathcal{F}_b relative to \mathcal{F}_a

 \mathbf{R}_{ab} = The orientation of \mathcal{F}_b relative to \mathcal{F}_a

 \mathbf{t}_{ab}^{c} = The translation of \mathcal{F}_{b} relative to \mathcal{F}_{a} given in \mathcal{F}_{c} coordinates

Pose

• The pose of the camera frame \mathcal{F}_c with respect to the world frame \mathcal{F}_w can be represented by the Euclidean transformation matrix

$$\mathbf{T}_{wc} = \begin{bmatrix} \mathbf{R}_{wc} & \mathbf{t}_{wc}^{w} \\ \mathbf{0}^{T} & 1 \end{bmatrix} \in SE(3)$$

where $\mathbf{R}_{wc} \in SO(3)$ is a rotation matrix and $\mathbf{t}_{wc}^w \in \mathbb{R}^3$ is a translation vector given in world coordinates

$$SE(3) = \left\{ \mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix} \in \mathbb{R}^{4\times 4} \mid \mathbf{R}\mathbf{R}^T = \mathbf{1}, \det \mathbf{R} = 1, \mathbf{t} \in \mathbb{R}^3 \right\}$$

 In illustrations we often represent the pose as an arrow similar to that of the translation vector

Pose – Inverse

• The opposite pose, the pose of \mathcal{F}_w with respect to \mathcal{F}_c , is given by the inverse

$$\mathbf{T}_{cw} = \mathbf{T}_{wc}^{-1}$$

One can show that

$$\mathbf{T}_{cw} = \begin{bmatrix} \mathbf{R}_{wc} & \mathbf{t}_{wc}^w \\ \mathbf{0}^T & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{R}_{wc}^T & -\mathbf{R}_{wc}^T \mathbf{t}_{wc}^w \\ \mathbf{0}^T & 1 \end{bmatrix}$$

• Hence $\mathbf{R}_{cw} = \mathbf{R}_{wc}^T$ and $\mathbf{t}_{cw}^c = -\mathbf{R}_{wc}^T \mathbf{t}_{wc}^w$

Pose – Action on points

• The action of the pose T_{cw} on a point x is defined to be the transformation

$$\mathbf{x}^c = \mathbf{T}_{cw} \cdot \mathbf{x}^w$$

For the matrix representation, this corresponds to the matrix product

$$\tilde{\mathbf{x}}^c = \mathbf{T}_{cw} \tilde{\mathbf{x}}^w$$
$$\mathbf{x}^c = \mathbf{R}_{cw} \mathbf{x}^w + \mathbf{t}_{cw}^c$$

Pose – Action on points

• The action of the pose T_{cw} on a point x is defined to be the transformation

$$\mathbf{x}^c = \mathbf{T}_{cw} \cdot \mathbf{x}^w$$

For the matrix representation, this corresponds to the matrix product

$$\tilde{\mathbf{x}}^c = \mathbf{T}_{cw} \tilde{\mathbf{x}}^w$$
$$\mathbf{x}^c = \mathbf{R}_{cw} \mathbf{x}^w + \mathbf{t}_{cw}^c$$

Note

The indexes are always pairwise equal

$$\tilde{\mathbf{x}}^a = \mathbf{T}_{ab} \tilde{\mathbf{x}}^b$$
destination source frame frame

Pose – Composition

We can chain together consecutive poses by compounding transformation matrices

$$\mathbf{T}_{ac} = \mathbf{T}_{ab} \mathbf{T}_{bc}$$

Pose – Composition

We can chain together consecutive poses by compounding transformation matrices

$$\mathbf{T}_{ac} = \mathbf{T}_{ab}\mathbf{T}_{bc}$$

Note

The indexes are always pairwise equal

$$\tilde{\mathbf{x}}_{ab}^{a} = \mathbf{T}_{ab} \mathbf{T}_{bc} \tilde{\mathbf{x}}^{c}$$
 source frame intermediate frame

A point x has a known position relative to a camera mounted on a vehicle

The vehicle has a known pose relative to the world

The camera has a known pose relative to the vehicle

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

X

A point x has a known position relative to a camera mounted on a vehicle x^c

The vehicle has a known pose relative to the world \mathbf{T}_{wv}

The camera has a known pose relative to the vehicle \mathbf{T}_{vc}

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

A point x has a known position relative to a camera mounted on a vehicle x^c

The vehicle has a known pose relative to the world \mathbf{T}_{wv}

The camera has a known pose relative to the vehicle T_{vc}

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

$$\mathbf{x}^{v} = \mathbf{T}_{vc} \cdot \mathbf{x}^{c}$$

A point x has a known position relative to a camera mounted on a vehicle x^c

The vehicle has a known pose relative to the world \mathbf{T}_{wv}

The camera has a known pose relative to the vehicle \mathbf{T}_{vc}

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

$$\mathbf{x}^{v} = \mathbf{T}_{vc} \cdot \mathbf{x}^{c}$$

$$\mathbf{x}^w = \mathbf{T}_{wv} \mathbf{T}_{vc} \cdot \mathbf{x}^c$$

Example – Image rotation about center

Projective transformation

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & \frac{w}{2} \\ 0 & 1 & \frac{h}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\frac{w}{2} \\ 0 & 1 & -\frac{h}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

Example – Image rotation about center

Pose of
$$\mathcal{F}_0$$
 relative to \mathcal{F}_3

$$\mathbf{T}_{30} = \begin{bmatrix} 1 & 0 & \frac{w}{2} \\ 0 & 1 & \frac{h}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\frac{w}{2} \\ 0 & 1 & -\frac{h}{2} \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{T}_{32} \mathbf{T}_{21} \mathbf{T}_{10}$$

Pose – Other representations

- Several representation of rotation in 3D
 - Orthonormal rotation matrix R
 - Euler angles $(\theta_1, \theta_2, \theta_3)$
 - Axis angle $\mathbf{\phi} = \phi \mathbf{v}$
 - Unit quaternions $q = q_0 + q_1i + q_2j + q_3k$
- Several representations of pose in 3D
 - Transformation matrix $\mathbf{T}_{ab} \in SE(3)$
 - Pair of rotation matrix and translation vector (\mathbf{R}_{ab} , \mathbf{t}_{ab})
 - Euler angles and translation vector $(\theta_1, \theta_2, \theta_3, \mathbf{t}_{ab})$
 - Axis angle and translation vector $(\mathbf{\phi}, \mathbf{t}_{ab})$
 - Unit quaternion and translation vector (q, \mathbf{t}_{ab})

Summary

- Pose = {Position, Orientation}
- Representation

$$\mathbf{T}_{ab} = \begin{bmatrix} \mathbf{R}_{ab} & \mathbf{t}_{ab}^{a} \\ \mathbf{0} & 1 \end{bmatrix} \in SE(3)$$

- Properties
 - Composition

$$\mathbf{T}_{ab}\mathbf{T}_{bc}=\mathbf{T}_{ac}$$

Inverse

$$\mathbf{T}_{ab}^{-1} = \mathbf{T}_{ba}$$

Action on points

$$\mathbf{T}_{ab}\tilde{\mathbf{x}}^b = \tilde{\mathbf{x}}^a$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications 2nd ed
 - Szeliski does not focus directly on pose representation, but covers the topic indirectly several places e.g. in section 2.1 Geometric primitives and transformations
- T. V. Haavardsholm: A Handbook In Visual SLAM
 - Chapter 2 "3D geometry", in particular section 2.3 "Representing pose"