The perspective camera model revisited

Thomas Opsahl

2023

The perspective camera model

A mathematical model that describes the viewing geometry of pinhole cameras

It describes how the perspective projection maps 3D points in the world to 2D points in the image

Combined with a distortion model, the perspective camera model can describe the viewing geometry of most cameras

The perspective camera model

The perspective camera model

The perspective camera model

- The pose of the world frame relative to the camera frame, denoted by $\mathbf{T}_{c w}$, is also a point transformation from \mathcal{F}_{w} to \mathcal{F}_{c}
- General perspective camera model

$$
\begin{gathered}
\tilde{\mathbf{u}}=\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{x}}^{w} \\
\mathbf{K} \\
\\
\widetilde{\mathbf{u}_{0}} \leftarrow \tilde{\mathbf{x}}_{n}\left|\tilde{\mathbf{x}}_{n} \leftarrow \tilde{\mathbf{x}}^{c}\right| \tilde{\mathbf{x}}^{c} \leftarrow \tilde{\mathbf{x}}^{w} \\
\hline
\end{gathered}
$$

The perspective camera model

- By multiplying Π_{0} with $\mathbf{T}_{c w}$ we get a very compact expression that is commonly used to represent the perspective camera model

$$
\tilde{\mathbf{u}}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c}
\end{array}\right] \tilde{\mathbf{x}}^{w}
$$

The perspective camera model

- By multiplying Π_{0} with $\mathbf{T}_{c w}$ we get a very compact expression that is commonly used to represent the perspective camera model

$$
\tilde{\mathbf{u}}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c}
\end{array}\right] \tilde{\mathbf{X}}^{w}
$$

- We refer to \mathbf{K} as the intrinsic part and $\left[\mathbf{R}_{\mathrm{cw}} \quad \mathbf{t}_{\mathrm{cw}}^{\mathrm{c}}\right]$ as the extrinsic part of the perspective camera model
- The matrix $\mathbf{K}\left[\begin{array}{ll}\mathbf{R}_{\mathrm{cw}} & \mathbf{t}_{\mathrm{cw}}^{\mathrm{c}}\end{array}\right]$ is often denoted by \mathbf{P} and referred to as the camera's projection matrix

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c}
\end{array}\right]
$$

The perspective camera model

- Note that $\mathbf{R}_{c w}$ and $\mathbf{t}_{c w}^{c}$ are the orientation and position of the world relative to the camera
- Alternative formulation

$$
\tilde{\mathbf{u}}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R}_{w c}^{T} & -\mathbf{R}_{w c}^{T} \mathbf{t}_{w c}^{w}
\end{array}\right] \tilde{\mathbf{x}}^{w}
$$

where we have used that

$$
\mathbf{T}_{c w}=\mathbf{T}_{w c}^{-1}=\left[\begin{array}{cc}
\mathbf{R}_{w c}^{T} & -\mathbf{R}_{w c}^{T} \mathbf{t}_{w c}^{w} \\
\mathbf{0} & 1
\end{array}\right]
$$

Example

- This image was captured from a platform with a good onboard navigation system
- So we know the camera's position and orientation when the image was taken
- Based on what we now know about the perspective camera model and pose, we can
- Project points in the scene into the image

Example

- This image was captured from a platform with a good onboard navigation system
- So we know the camera's position and orientation when the image was taken
- Based on what we now know about the perspective camera model and pose, we can
- Project points in the scene into the image

A terrain model projected into the image

Example

- This image was captured from a platform with a good onboard navigation system
- So we know the camera's position and orientation when the image was taken
- Based on what we now know about the perspective camera model and pose, we can
- Project points in the scene into the image

Roads, railroad and a stream from a vector map

Example

- This image was captured from a platform with a good onboard navigation system
- So we know the camera's position and orientation when the image was taken
- Based on what we now know about the perspective camera model and pose, we can
- Project points in the scene into the image
- Backproject the image to the scene

Distance from the camera to the terrain model

Example

- This image was captured from a platform with a good onboard navigation system
- So we know the camera's position and orientation when the image was taken
- Based on what we now know about the perspective camera model and pose, we can
- Project points in the scene into the image
- Backproject the image to the scene

Image georeferenced by backprojection

Summary

points in a frame \mathcal{F}_{w} instead of the camera frame \mathcal{F}_{c}

$$
\tilde{\mathbf{u}}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c}
\end{array}\right] \tilde{\mathbf{x}}^{w}
$$

$$
\tilde{\tilde{\mathbf{u}}}=\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{x}}^{w}
$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Chapter 2 "Image formation", in particular section 2.1.4 "3D to 2D projections" and section 2.1.5 "Lens distortions"
- T. V. Haavardsholm: A Handbook In Visual SLAM
- Chapter 3 "Camera geometry", in particular section 3.1 "Geometric camera models"

