UiO: Department of Technology Systems
University of Oslo

Estimating camera pose
from a single image and a known map

Trym Vegard Haavardsholm

2023

Computer vision is an inverse problem!

The inverse analysis process

Localisation

Pose estimation based on correspondences with a known map is called localisation

In visual localisation,

 this is also sometimes called tracking- Tracking the map in the image frames

Why learn about localisation?

From PTAM by Georg Klein and David Murray (2007) https://www.youtube.com/watch?v=F3s3MOmokNc

How can we track a map with a camera?

Pose from 2D correspondences with known 3D points

Pose from 2D correspondences with known 3D points

Pose from 2D correspondences with known 3D points

Minimise geometric error

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

TEK5030

Pose from 2D correspondences with known 3D points

Minimise geometric error

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

also called reprojection error

TEK5030

Pose estimation

We will solve the indirect tracking problem

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

in the next few videos.

But lets first solve a simpler problem, when we can assume that the world is planar!

Pose estimation relative to a world plane

Choose the world coordinate system so that the $x y$-plane corresponds to a plane Π in the scene

$$
\mathbf{x}_{I I}^{w}=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] \quad \mathbf{x}^{\Pi}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Pose estimation relative to a world plane

We can map points on the world plane into image coordinates by using the perspective camera model

$$
\tilde{\mathbf{u}}=\mathbf{K}[\mathbf{R} \mathbf{t}] \tilde{\mathbf{x}}_{\Pi}^{w} \quad \mathbf{T}_{c w}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

Pose estimation relative to a world plane

We can map points on the world plane into image coordinates by using the perspective camera model

Pose estimation relative to a world plane

We can map points on the world plane into image coordinates by using the perspective camera model

Pose estimation relative to a world plane

We can map points on the world plane into image coordinates by using the perspective camera model

$$
\tilde{\mathbf{u}}=\mathbf{K}[\mathbf{R} \mathbf{t}] \tilde{\mathbf{x}}_{\Pi}^{w}
$$

$$
\mathbf{T}_{c w}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

$$
=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{t}\right]\left[\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right]
$$

$$
=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
=\mathbf{H}_{i I I} \tilde{\mathbf{x}}^{I}
$$

Pose estimation relative to a world plane

\Rightarrow For a calibrated camera, we have a relationship between the camera pose and the homography between the world plane and the image!
$\widetilde{\mathbf{u}}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \widetilde{\mathbf{x}}_{\Pi}^{W}$

$$
\mathbf{H}_{i I I}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right] \quad \mathbf{T}_{c w}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

Pose estimation relative to a world plane

\Rightarrow For a calibrated camera, we have a relationship between the camera pose and the homography between the world plane and the image!
$\widetilde{\mathbf{u}}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \widetilde{\mathbf{x}}_{\Pi}^{W}$

$$
\mathbf{H}_{i I I}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right] \quad \mathbf{T}_{c w}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How can we use this to estimate camera pose given a homography?

Pose estimation relative to a world plane

Assume a perfect, noise-free homography between the world plane and the image:

$$
\mathbf{H}_{i \Pi}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right]
$$

Pose estimation relative to a world plane

Assume a perfect, noise-free homography between the world plane and the image:

$$
\mathbf{H}_{i I I}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right]
$$

Then, because of scale ambiguity:

$$
\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right] \sim \mathbf{K}^{-1} \mathbf{H}_{i I I}=\mathbf{M}
$$

Pose estimation relative to a world plane

Assume a perfect, noise-free homography between the world plane and the image:

$$
\mathbf{H}_{i I I}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right]
$$

Then, because of scale ambiguity:

$$
\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right] \sim \mathbf{K}^{-1} \mathbf{H}_{i I I}=\mathbf{M}
$$

Since the columns of rotation matrices have unit norm, we find a scale factor λ so that the first two columns of \mathbf{M} also get unit norm. We then have the two possible solutions:

$$
\left[\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}, \hat{\mathbf{t}}\right]= \pm \lambda \mathbf{M}
$$

Pose estimation relative to a world plane

Assume a perfect, noise-free homography between the world plane and the image:

$$
\mathbf{H}_{i \Pi}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right]
$$

Then, because of scale ambiguity:

$$
\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right] \sim \mathbf{K}^{-1} \mathbf{H}_{i \Pi}=\mathbf{M}
$$

Since the columns of rotation matrices have unit norm, we find a scale factor λ so that the first two columns of M also get unit norm. We then have the two possible solutions:

$$
\left[\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}, \hat{\mathbf{t}}\right]= \pm \lambda \mathbf{M}
$$

The last column in $\widehat{\mathbf{R}}$ is given by the cross product of the two first columns:

$$
\hat{\mathbf{r}}_{3}= \pm\left(\hat{\mathbf{r}}_{1} \times \hat{\mathbf{r}}_{2}\right) \text {, where the sign is chosen so that } \operatorname{det}(\hat{\mathbf{R}})=1
$$

Pose estimation relative to a world plane

We are now able to reconstruct the camera pose in the world coordinate system for each of the two solutions:

$$
\hat{\mathbf{T}}_{w c}=\hat{\mathbf{T}}_{c w}^{-1}=\left[\begin{array}{cc}
\hat{\mathbf{R}}^{T} & -\hat{\mathbf{R}}^{T} \hat{\mathbf{t}} \\
\mathbf{0} & 1
\end{array}\right] \quad \text { where } \quad \hat{\mathbf{R}}=\left[\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}, \hat{\mathbf{r}}_{3}\right]
$$

It is easy to find the correct solution in practice because only one side of the plane is typically visible

Pose estimation with planar correspondences

With a homography estimated from point correspondences, this approach will typically not give proper rotation matrices because of noise

$$
\hat{\mathbf{R}} \notin S O(3)
$$

Pose estimation with planar correspondences

With a homography estimated from point correspondences, this approach will typically not give proper rotation matrices because of noise

$$
\hat{\mathbf{R}} \notin S O(3)
$$

But it is possible to find the closest rotation matrix with SVD!

$$
\hat{\mathbf{R}} \rightarrow \hat{\mathbf{R}}^{*} \in S O(3)
$$

Pose estimation with planar correspondences

Let $\overline{\mathbf{M}}$ be the matrix with the two first columns of \mathbf{M} :

$$
\overline{\mathbf{M}}=\left[\mathbf{m}_{1}, \mathbf{m}_{2}\right]
$$

Pose estimation with planar correspondences

Let $\overline{\mathbf{M}}$ be the matrix with the two first columns of \mathbf{M} :

$$
\overline{\mathbf{M}}=\left[\mathbf{m}_{1}, \mathbf{m}_{2}\right]
$$

With SVD we can get the decomposition $\overline{\mathbf{M}}=\mathbf{U}_{3 \times 2} \boldsymbol{\Sigma}_{2 \times 2} \mathbf{V}_{2 \times 2}^{T}$.

Pose estimation with planar correspondences

Let $\overline{\mathbf{M}}$ be the matrix with the two first columns of \mathbf{M} :

$$
\overline{\mathbf{M}}=\left[\mathbf{m}_{1}, \mathbf{m}_{2}\right]
$$

With SVD we can get the decomposition $\overline{\mathbf{M}}=\mathbf{U}_{3 \times 2} \boldsymbol{\Sigma}_{2 \times 2} \mathbf{V}_{2 \times 2}^{T}$. The first two columns $\overline{\mathbf{R}}^{*}$ of a proper $\widehat{\mathbf{R}}^{*}$ is then

$$
\overline{\mathbf{R}}^{*}=\mathbf{U} \mathbf{V}^{T}
$$

Pose estimation with planar correspondences

Let $\overline{\mathbf{M}}$ be the matrix with the two first columns of \mathbf{M} :

$$
\overline{\mathbf{M}}=\left[\mathbf{m}_{1}, \mathbf{m}_{2}\right]
$$

With SVD we can get the decomposition $\overline{\mathbf{M}}=\mathbf{U}_{3 \times 2} \boldsymbol{\Sigma}_{2 \times 2} \mathbf{V}_{2 \times 2}^{T}$. The first two columns $\overline{\mathbf{R}}^{*}$ of a proper $\widehat{\mathbf{R}}^{*}$ is then

$$
\overline{\mathbf{R}}^{*}=\mathbf{U} \mathbf{V}^{T}
$$

The corresponding scale λ can be computed as:

$$
\lambda=\frac{\operatorname{trace}\left(\overline{\mathbf{R}}^{* T} \overline{\mathbf{M}}\right)}{\operatorname{trace}\left(\overline{\mathbf{M}}^{T} \overline{\mathbf{M}}\right)}=\frac{\sum_{i=1}^{3} \sum_{j=1}^{2} r_{i j}^{*} m_{i j}}{\sum_{i=1}^{3} \sum_{j=1}^{2} m_{i j}^{2}}
$$

Pose estimation with planar correspondences

Let $\overline{\mathbf{M}}$ be the matrix with the two first columns of \mathbf{M} :

$$
\overline{\mathbf{M}}=\left[\mathbf{m}_{1}, \mathbf{m}_{2}\right]
$$

With SVD we can get the decomposition $\overline{\mathbf{M}}=\mathbf{U}_{3 \times 2} \boldsymbol{\Sigma}_{2 \times 2} \mathbf{V}_{2 \times 2}^{T}$.
The first two columns $\overline{\mathbf{R}}^{*}$ of a proper $\widehat{\mathbf{R}}^{*}$ is then

$$
\overline{\mathbf{R}}^{*}=\mathbf{U} \mathbf{V}^{T}
$$

The corresponding scale λ can be computed as:

$$
\lambda=\frac{\operatorname{trace}\left(\overline{\mathbf{R}}^{* T} \overline{\mathbf{M}}\right)}{\operatorname{trace}\left(\overline{\mathbf{M}}^{T} \overline{\mathbf{M}}\right)}=\frac{\sum_{i=1}^{3} \sum_{j=1}^{2} r_{i j}^{*} m_{i j}}{\sum_{i=1}^{3} \sum_{j=1}^{2} m_{i j}^{2}}
$$

With $\overline{\mathbf{R}}^{*}$ and λ, we can now compute the pose with ambiguity as we did in the error-free case

Summary

2D-3D pose estimation:

- Homography-based method

$$
\mathbf{H}_{i I I}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right]
$$

- Minimising geometric/reprojection error

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

