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Computer vision is an inverse problem!

2



TEK5030

The inverse analysis process
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Mathematics

Analysis

Prior knowledge

Scene/object
Name
Class
Pose
Shape
…

Environment
Atmosphere
Illumination
…

Camera
Optics
Detector
Pose
…

Images
Pixel intensities
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Localisation

Pose estimation based on correspondences 
with a known map is called localisation

In visual localisation, 
this is also sometimes called tracking

– Tracking the map in the image frames
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Why learn about localisation?
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From PTAM by Georg Klein and David Murray (2007)
https://www.youtube.com/watch?v=F3s3M0mokNc

https://www.youtube.com/watch?v=F3s3M0mokNc
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How can we track a map with a camera?
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Pose from 2D correspondences with known 3D points
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Pose from 2D correspondences with known 3D points
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Pose from 2D correspondences with known 3D points

Minimise geometric error

21argmin ( )
wc

w
wc wc i i

i
π∗ −= ⋅ −∑

T
T T x u
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Pose from 2D correspondences with known 3D points

Minimise geometric error

also called reprojection error

21argmin ( )
wc

w
wc wc i i

i
π∗ −= ⋅ −∑

T
T T x u
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Pose estimation

We will solve the indirect tracking problem 

in the next few videos.

But lets first solve a simpler problem, 
when we can assume that the world is planar!
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Pose estimation relative to a world plane

Choose the world coordinate system
so that the xy-plane corresponds to
a plane 𝛱𝛱 in the scene
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We can map points on the world plane
into image coordinates by using
the perspective camera model

Pose estimation relative to a world plane
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We can map points on the world plane
into image coordinates by using
the perspective camera model

Pose estimation relative to a world plane
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Pose estimation relative to a world plane
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Pose estimation relative to a world plane
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⇒ For a calibrated camera,
we have a relationship between the camera pose
and the homography between the world plane and the image!

Pose estimation relative to a world plane
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⇒ For a calibrated camera,
we have a relationship between the camera pose
and the homography between the world plane and the image!

Pose estimation relative to a world plane
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Assume a perfect, noise-free homography between the world plane and the image:

[ ]1 2, ,iΠ =H K r r t

Pose estimation relative to a world plane
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Pose estimation relative to a world plane

Assume a perfect, noise-free homography between the world plane and the image:

Then, because of scale ambiguity:

20
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Pose estimation relative to a world plane

Assume a perfect, noise-free homography between the world plane and the image:

Then, because of scale ambiguity:

Since the columns of rotation matrices have unit norm, 
we find a scale factor λ so that the first two columns of M also get unit norm.
We then have the two possible solutions:
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1 2
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[ ]1 2, ,iΠ =H K r r t
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Pose estimation relative to a world plane

Assume a perfect, noise-free homography between the world plane and the image:

Then, because of scale ambiguity:

Since the columns of rotation matrices have unit norm, 
we find a scale factor λ so that the first two columns of M also get unit norm.
We then have the two possible solutions:

The last column in �𝐑𝐑 is given by the cross product of the two first columns:
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( )3 1 2ˆ ˆ ˆ ,= ± ×r r r where the sign is chosen so that ( )ˆdet 1=R
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Pose estimation relative to a world plane

We are now able to reconstruct the camera pose in the world coordinate system
for each of the two solutions:

It is easy to find the correct solution in practice
because only one side of the plane is typically visible
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Pose estimation with planar correspondences

With a homography estimated from point correspondences,
this approach will typically not give proper rotation matrices because of noise

24

( )ˆ 3SO∉R
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Pose estimation with planar correspondences

With a homography estimated from point correspondences,
this approach will typically not give proper rotation matrices because of noise

But it is possible to find the closest rotation matrix with SVD!
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( )ˆ 3SO∉R

( )ˆ ˆ 3SO∗→ ∈R R
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Pose estimation with planar correspondences

Let �𝐌𝐌 be the matrix with the two first columns of 𝐌𝐌:

26

[ ]1 2,=M m m
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Pose estimation with planar correspondences

Let �𝐌𝐌 be the matrix with the two first columns of 𝐌𝐌:

With SVD we can get the decomposition �𝐌𝐌 = 𝐔𝐔3×2𝚺𝚺2×2𝐕𝐕2×2
𝑇𝑇 .

27

[ ]1 2,=M m m
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Pose estimation with planar correspondences

Let �𝐌𝐌 be the matrix with the two first columns of 𝐌𝐌:

With SVD we can get the decomposition �𝐌𝐌 = 𝐔𝐔3×2𝚺𝚺2×2𝐕𝐕2×2
𝑇𝑇 .

The first two columns �𝐑𝐑∗ of a proper �𝐑𝐑∗ is then

28

[ ]1 2,=M m m

T∗ =R UV
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Pose estimation with planar correspondences

Let �𝐌𝐌 be the matrix with the two first columns of 𝐌𝐌:

With SVD we can get the decomposition �𝐌𝐌 = 𝐔𝐔3×2𝚺𝚺2×2𝐕𝐕2×2
𝑇𝑇 .

The first two columns �𝐑𝐑∗ of a proper �𝐑𝐑∗ is then

The corresponding scale λ can be computed as:
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Pose estimation with planar correspondences

Let �𝐌𝐌 be the matrix with the two first columns of 𝐌𝐌:

With SVD we can get the decomposition �𝐌𝐌 = 𝐔𝐔3×2𝚺𝚺2×2𝐕𝐕2×2
𝑇𝑇 .

The first two columns �𝐑𝐑∗ of a proper �𝐑𝐑∗ is then

The corresponding scale λ can be computed as:

With �𝐑𝐑∗ and λ, we can now compute the pose with ambiguity as we did in the error-free case
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Summary

2D-3D pose estimation:

– Homography-based method

– Minimising geometric/reprojection error
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