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The Jacobian

Given a multivariate function f : R™ — R™ with inputs x € R™ and outputs f(x) € R"”
the Jacobian matrix stacks all the partial derivatives as:
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The Jacobian

We will use the following convenient notation:
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0x h—0

f(x+h) - fx)
h

This lets us define a compact procedure for finding the Jacobian:
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The Jacobian: Example
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The chain rule

For y = f(x) and z = ¢g(y) we have z = ¢(f(x))
We can find the derivative of z with respect to x by applying the chain rule:
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We will use the corresponding notation:
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First-order Taylor approximation

We can linearise the function f(X) with the first-order Taylor approximation

fx +h) — f(x) + Ih
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Derivatives on Lie groups

We can express the derivative of functions acting on Lie groups similarly
using the right plus and minus operators:
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Derivatives on Lie groups
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Image source: Sola, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation

(license d under CC BY-NC-SA 4.0)

in robotics


https://creativecommons.org/licenses/by-nc-sa/4.0/

Derivatives on Lie groups: Example

J5°Y = lim (Xo(YeT)O(X0))
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First-order Taylor approximation

We can linearise the function f (X’) with the first-order Taylor approximation

f(X @ T) — f(X) eI T

T—0
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Elementary Lie group Jacobians

Jacobians for SO(3) and SE(3) are given in the compendium!
« Try computing a few of them by hand!

 They are also implemented in pylie
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5.4.1 Jacobian of the inverse operation

I - _Adp - -R. (5.50)

5.4.2 Jacobians of the composition operation

I = Ady, ' = R] (5.51)
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5.4.3 Jacobians of the group action

From Example 5.14 we have

h e Rx|, (5.53)
B=_R (5.54)

5.4.4 Jacobians of the plus and minus operators

IR = Adp,e = R()

IR - 7.(0) (5.56)

For 8 = Ry & R,, we have

5.5 Jacobian blocks for SE(3)

The left Jacobian and its inverse have the following closed form expressions:
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https://github.com/tussedrotten/pylie

Vectors are also Lie groups!

The group of vectors under addition (R", +) is a trivial Lie group
where the group elements, the Lie algebra and the tangent spaces are all the same:

t =t = Exp(t)

This means that

t; Dty =1t +to
thot; =ty —t4

and that everything we have developed for Lie groups also applies for vectors, including:
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