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Problem formulation

Consider a set of n possibly nonlinear equations
in m unknowns x = [x4, ..., x,,,]7 written as

e(x)=0, i=1...,n e :R" >R
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Problem formulation

Consider a set of n possibly nonlinear equations
in m unknowns x = [x4, ..., x,,,]7 written as

e(x)=0, i=1...,n e :R" >R

i-th error or residual

TEKS5030



Problem formulation

Consider a set of n possibly nonlinear equations
in m unknowns x = [x4, ..., x,,,]7 written as

e(x)=0, i=1...,n e :R" >R

We can write these equations on vector form
e(x) =0, e:R" - R"
where

_el (X)_

e(x) =

| e,(X) ]
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution
that minimizes the sum of squares of the residuals

f(x) =e(x)" e(x) = e(x)[
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution
that minimizes the sum of squares of the residuals

f(x) =e(x)" e(x) = e(x)[

The objective function

TEKS5030



Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution
that minimizes the sum of squares of the residuals

f(x) =e(x)" e(x) = e(x)[

This means that we want to find the x that minimizes the objective function:

x" = argmin £ (x) = argmin |e(x)|

X X
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Linear least squares

When the equations e(x) are linear,
we can obtain an objective function on the form

S =|e)| = Ax—b|

A solution is required to have zero gradient:
VF(x')=2A" (AX"=b)=0

This results in the normal equations,

ATAX = A'b
X' =(A"A)"'A'b

which can be solved with for example Cholesky or QR, or SVD.
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Linear least squares

When the equations e(x) are linear, Matlab example:
we can obtain an objective function on the form X = A\b;
2 2
f(x)= ||e(x)|| = ”AX—b” Python example:

A solution is required to have zero gradient: x = numpy.linalg.lstsq(A, b)[0]

VA(x")=2A" (Ax* _b) —0 Eigen example:
X = A.colPivHouseholderQr().solve(b);

This results in the normal equations,

Read more about LLS:
ATAX =A'b e http://vmls-book.stanford.edu/vmils.pdf

x' =(ATA)'ATb

which can be solved with for example Cholesky or QR, or SVD.
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Nonlinear least squares

When the equations e(x) are nonlinear,
we have a nonlinear least squares problem.

They cannot be solved directly,
but require an iterative procedure
starting from a suitable initial estimate.

TEKS5030

Choose a suitable inital estimate

Linearize the problem

Solve the linearized problem

Update the estimate
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State variables

A state variable x is typically used to describe the physical state of an object.

We can estimate several state variables at once
by concatenating all the variables into the vector x:

The equations e, (x) can be defined to operate
on one or more of these p state variables.
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State variables

A state variable x is typically used to describe the physical state of an object.

We can estimate several state variables at once
by concatenating all the variables into the vector x:

The equations e, (x) can be defined to operate
on one or more of these p state variables.

TEKS5030

How can we represent both
points and poses as states?
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Concatenated set of state variables

Concatenation of state variables over a composite manifold
and the corresponding concatenation of tangent space vectors

X X e M
X=J: teM T=| ¢ |eR” ./\/l={/\/l1,...,./\/lp}
\Xp) _Tp_ TZET'/\/ll

Plus and minus for the concatenated state variable

X D1, NoeX
Xeort=y  teM yoXx=2 : cR"”
k)(p@‘rp) _yp@)cp_

TEKS5030
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Concatenated set of state variables

We define X to be the concatenated set of state variables
taken as input by the i-th equation ¢,(&X)).

TEKS5030
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Concatenated set of state variables

We define X to be the concatenated set of state variables
taken as input by the i-th equation ¢,(X)).

Example:
Measurement

wy -1 w i
e;(X,)=¢e,(T, . x;))=7n(T, -X;)—u,

TEKS5030

States
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Concatenated set of state variables

We define X to be the concatenated set of state variables
taken as input by the i-th equation ¢,(&X)).

We can then define the objective function over all state variables

F@) =e@f = Je)f

TEKS5030
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State estimation

We want to solve state estimation problems
based on measurements and corresponding measurement models

Let X be the set of all unknown state variables,
and Z be the set of all measurements.

TEKS5030
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State estimation

We want to solve state estimation problems
based on measurements and corresponding measurement models

Let X be the set of all unknown state variables,

and Z be the set of all measurements.
Measurement

Measurement model

Example: /

wy -1 w i
e, (X,)=¢e,(T, ., x;))=7n(T, -X;)—u,

—y J

T, |
/xz‘j:{ﬂ} Zij:{“j}

TEKS5030

States
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Deterministic model for state estimation

Measurement model:
z, = (X)) POy
Measurement prediction function:
2, = h(X)
Measurement error function:
e(X)=h(X)-z,
Objective function:

@)=Y |(X) -2

TEKS5030
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Deterministic model for state estimation

Measurement model: This results in the nonlinear least squares problem:
2, = (&) N5 X" = argmin Y [[1(2)~zf

Measurement prediction function: -
2, = h(X)

Measurement error function:
e(X)=h(X)-z,

Objective function:

@)=Y |(X) -2

21
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Example:
Range-based localization
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Example:
Range-based localization 3.5
States: Our location 3l
X =x
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Example:
Range-based localization

States: Our location

X =X

Measurements: Range to landmarks

Z={pPys--s Py}

3.9

25T .

1.5+

05

O 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5

TEK5030 2



Example:
Range-based localization

States: Our location

X =X

Measurements: Range to landmarks

Z={pPys--s Py}
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Example:
Range-based localization

States: Our location

X =X

Measurements: Range to landmarks

Z={pPys--s Py}
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Example:
Range-based localization

States: Our location
X =X

Measurements: Range to landmarks

Z={pPys--s Py}

Measurement model:

P :”X_li”

TEKS5030
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Example:
Range-based localization

Measurement prediction function:

g, =h(x;1,) =|x-1

TEK5030 28



Example:
Range-based localization

Measurement prediction function:
P, =h(x;1)=|x—1|

Objective function:

0= a1 -

A

TEKS5030




Example:
Range-based localization

Measurement prediction function:
P, =h(x;1)=|x—1|

Objective function:

0= a1 -

A

Nonlinear least squares problem:

X" = arg)r{nin;(nx—]l_”_pi )2
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Nonlinear least squares

When the equations e,(X,) =/ (X )—z, are nonlinear,
we have a nonlinear least squares problem.

They cannot be solved directly,
but require an iterative procedure
starting from a suitable initial estimate.

TEKS5030

Choose a suitable inital estimate

Linearize the problem

Solve the linearized problem

Update the estimate
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Linearizing the problem

We can linearize the measurement prediction functions

using first order Taylor expansions at the current estimates X. ;

h(X)=h(X,®1)~h(X)+T}1,

where the measurement Jacobian J’)’( is

Jhi A ahz (‘)_(z)
&; a‘ic'l

and
Iié /Xz S /l%z

is the state update vector.

TEKS5030
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Linearizing the problem

This leads to the linearized measurement error function

e(X)=e(X ®1)~h(X)+Iiz-2,

TEKS5030
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Linearizing the problem

The linearized objective function is then given by

2

[@=/EeD=3 [ ex)
Y EArS (e |
=S x (2, @)
YAz b
=[Az—b|

TEKS5030
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Linearizing the problem

The linearized objective function is then given by

2

f(@)= R0 =Y (X @1)

2

1

~ Z hi(')_%i)‘FJﬁéIi_Z'
i=1 -

2

— g J%Ii_(zi _hz(‘)—%z))

= ;”Aili_ bi”2

A, =J" are submatrices of the Jacobian A
=|Az-bf .

b, = —e.(X) are subvectors of the error b = —e(X)

TEKS5030



Solving the linearized problem

The linearized objective function is then given by

2

f(@)= R0 =Y (X @1)

2

1

~ Z hi(')_%i)‘FJﬁéIi_Z'
i=1 -

2

= g J%Ii_(zi _hz(‘i%z))

= ;”Aili_ bi”2

- Jaz o]

TEKS5030

We can solve the linearized problem
as a linear least squares problem
using the normal equations

A"AT" =A'Db
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Example:
Range-based localization

Measurement prediction function:
P, =hxl)= ”X _li”

Nonlinear least squares problem:

X = argmini(h(x; 1)-p, )2
X i=1

TEKS5030



Example:
Range-based localization

Nonlinear least squares problem:
x" =argmin ) (h(x;1,)-p, )
X i=l1

Linearized problem at X:

5" = argmin i (h(ﬁ; 1)+ Jz(fc;l,-)f) — P, )2
0 i=1

TEKS5030

h(x;l) = ||x -1 ||

Jh& _ (’A‘_li )T
' ’A‘_li”

(See example 5.12 in the compendium)
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Example:
Range-based localization

Nonlinear least squares problem:
x" =argmin ) (h(x;1,)-p, )
X i=l1

Linearized problem at X:

5" = argmin i (h(ﬁ; 1)+ Jz(fc;l,-)ﬁ — P, )2
5 i=1

= argmin ZH: (Jz(f‘;lf)ﬁ — {,0,- — h(X; li)} )2
0 i=1

TEKS5030
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Example:
Range-based localization

Nonlinear least squares problem:
x" =argmin ) (h(x;1,)-p, )
X i=l1

Linearized problem at X:

§° = argmin Zn: (h(ﬁ; 1)+ Jg(&;l,-)ﬁ — P, )2
8 o

= argmin Zn: (Jz(f‘;lf)ﬁ — {,0,- — h(X; li)} )2
0 i=1

n

=argmin ) (A, —bl.)2

0 i=1

TEKS5030
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Example:
Range-based localization

Nonlinear least squares problem:
x" =argmin ) (h(x;1,)-p, )
X i=l1

Linearized problem at X:

§° = argmin Zn: (h(ﬁ; 1)+ Jg(&;l,-)ﬁ — P, )2
8 o

= argmin Zn: (Jz(f‘;lf)ﬁ — {,0,- — h(X; li)} )2
0 i=1

n

=argmin ) (A, —bl.)2

o i=1

i

P;

0
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Example:
Range-based localization

Nonlinear least squares problem:
x" =argmin ) (h(x;1,)-p, )
X i=l1

Linearized problem at X:

§° = argmin Zn: (h(ﬁ; 1)+ Jg(&;l,-)ﬁ — P, )2
8 o

= argmin Zn: (Jz(f‘;lf)ﬁ — {,0,- — h(X; li)} )2
0 i=1

n

=argmin ) (A, —bl.)2

o i=1

i

P;

0
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Example: o 1507 [1.507 [2.007 [2.507 [1.80
Range-based localization . :{1.50}’{200“1.75}’{1.50}’{2.50}

Nonlinear least squares problem: p, ={0.64,1.23,1.17,1.47,1.61}
, . i(h( )= p) XO_F.SO}
X =argmin x;1.)—p. =
A & 3.50
Linearized problem at X: (-0.30} T
n 0 T
6* = argminZ(h(i;li)+Jz(ﬁ;li)6_pi )2 A1 — Jh(gxo;ll) — (X 11) — _200
s o : x -1, {0.30}
= argmin Zn: (Jz(f‘;lf)ﬁ —{p,—h(x; ll.)})2 2.00
©o 030 2.00]
S 2 = =[0.15 0.99]
=argmin ) (A,8-b,) 2.02

0 i=1

43
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Example: o 1507 [1.507 [2.007 [2.507 [1.80
Range-based localization . :{1.50}’{200“1.75}’{1.50}’{2.50}

Nonlinear least squares problem: p, ={0.64,1.23,1.17,1.47,1.61}
, . i(h( )= p) XO_F.SO}
X =argmin x;1.)—p. =
A & 3.50
Linearized problem at X: (-0.30} T
n 0 T
6* = argminZ(h(i;li)+Jz(ﬁ;li)6_pi )2 A1 — Jh(gxo;ll) — (X 11) — _200
s o : x -1, {0.30}
= argmin Zn: (Jz(f‘;lf)ﬁ —{p,—h(x; ll.)})2 2.00
©o 030 2.00]
S 2 = =[0.15 0.99]
=argmin ) (A,8-b,) 2.02

o i=1

b, = p —h(x";1)=0.64—2.02 =—1.38

TEKS5030
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Example:
Range-based localization

Nonlinear least squares problem:
x" =argmin ) (h(x;1,)-p, )
X i=l1

Linearized problem at X:

0 =argmin Zn: (h(f(; 1)+JI%8 - p )2
0 i=1

= argmin Zn: (J';(ﬁ;lf)ﬁ — {,0,- —h(x;1, )} )2
0 i=1

= argmini(Alf) —b, )2

d i=1

= argmin ||A6 — b||2
0

i

P;

0

A =

TEKS5030
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Example:
Range-based localization

Linearized problem at x°:
6" =argmin ||A6 —b||2
0

[ 0.15 0.99] —1.38 |

0.20 0.98 ~0.29
A=|-0.11 099| b=|-0.59
~0.33 0.94 ~0.65
0 1.00 0.62
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Example:
Range-based localization

Linearized problem at x°:

0 = argmin||A8 —b||2
0

C0.15 0.99] —1.38"
0.20 0.98 ~0.29
A=|-0.11 099| b=|-0.59
~0.33 0.94 ~0.65
0 1.00 0.62

Solution to the normal equations A" A" = A'b:

=012 T
—-0.47 3.03

TEK5030 4



Solving the nonlinear problem

We solve the nonlinear least-squares problem
by iteratively solving the linearized system:

Choose a suitable 1nital estimate 2_% 0

A,b <« Linearize at X"

T~ < Solve argmin”AI—b”2

‘)_(t+l «— ‘xt @I*

TEKS5030
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The Gauss-Newton algorithm

Data: An objective function f(X’) and a good initial state estimate X°
Result: An estimate for the states X

fort=0.,1...., " do

A.b + Linearise f(X) at X"

T + Solve the linearised problem ATAT = A"b
XX eT

if f(XY) is very small or X' =~ X' then
X « xtt+l
return

end

end

TEKS5030
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The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective f(X) at 2_? as

P rE) (2@ aem Ze< (X)) AT+ Q~ATA
oxXoX" | X = oX0X

This approximation is good if we are near the solution and the objective is nearly quadratic.

TEKS5030

50



The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective f(X) at 2_? as

P rE) (2@ aem Ze< (X)) AT+ Q~ATA
oxXoX" | X = oX0X

This approximation is good if we are near the solution and the objective is nearly quadratic.

When the
— The
— The
— We obtain almost

TEKS5030
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The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective f(X) at 2_? as

P rE) (2@ aem Ze< (X)) AT+ Q~ATA
oxXoX" | X = oX0X

This approximation is good if we are near the solution and the objective is nearly quadratic.

When the approximation is poor:

— The
— The update step length may be bad
— The , and we may even diverge

TEKS5030
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Example:
Range-based localization
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Trust region

» The Gauss-Newton method is not guaranteed to converge
because of the approximate Hessian matrix

« Since the update directions typically are decent,
we can help with convergence by limiting the step sizes

— More conservative towards robustness, rather than speed

« Such methods are often called trust region methods,
and one example is Levenberg-Marquardt

TEKS5030
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The Levenberg—Marquardt algorithm

Data: An objective function f(X') and a good initial state estimate X 0
Result: An estimate for the states X

A« 1074

fort=0,1,....t"*" do
A, b « Linearise f(X) at X"
T « Solve the linearised problem (AT A + Adiag(ATA))T = A'b

if f(X'®T)< f(X") then

Accept update, increase trust region
Xt —Xter

A+ A/10

else

Reject update, reduce trust region
X+l xt

A Ax10
end

if f((_?Hl) is very small or Xt ~ Xt then
X« xytt+l
return

end

end

TEKS5030

62



Example:
Range-based localization
Levenberg—Marquardt optimization
i
e i A
3'—‘\.\
25F
g o
15}
|l
05}
% 1 2 3 4 5 & 7
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Example:
Range-based localization
Levenberg—Marquardt optimization
i
e i A
3
15} \‘
|l
05}
% 1 2 3 4 5 & 7
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Example:
Range-based localization
Levenberg—Marquardt optimization
i
e i A
3'_
1.5 }
|l
05}
% 1 2 3 4 5 & 7
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Example:
Range-based localization

Levenberg—Marquardt optimization

------ Gauss-Newton
—=— Levenberg-Marquardt
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Example:
Range-based localization

Levenberg—Marquardt optimization

------ Gauss-Newton
—=— Levenberg-Marquardt
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Example:
Range-based localization

Levenberg—Marquardt optimization

4 r

------- Gauss-Newton
—=— Levenberg-Marquardt
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Example:
Range-based localization

Levenberg—Marquardt optimization

4 r

------- Gauss-Newton
—=— Levenberg-Marquardt
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Example:
Range-based localization

Levenberg—Marquardt optimization

4 r

------- Gauss-Newton
—=— Levenberg-Marquardt
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Example:
Range-based localization

Levenberg—Marquardt optimization
- Slightly different initial estimate

4 r

3571
3+

25}

151
' Converged to a local minima
05 with higher cost!
. . . . . 1
0 1 2 3 4 5 6 7
Iterati mber

TEKS5030



Next: Take measurement noise into account!

Measurement model: This results in the nonlinear least squares problem:
2, = (&) N5 X" = argmin Y [[1(2)~zf

Measurement prediction function: -
2, = h(X)

Measurement error function:
e(X)=h(X)-z,

Objective function:

@)=Y |(X) -2

73
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