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Problem formulation

Consider a set of n possibly nonlinear equations 
in m unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 𝑇𝑇 written as

2

( ) 0, 1, ,ie i n= =x  : m
ie → 



TEK5030

Problem formulation

Consider a set of n possibly nonlinear equations 
in m unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 𝑇𝑇 written as

3

( ) 0, 1, ,ie i n= =x  : m
ie → 

i-th equation



TEK5030

Problem formulation

Consider a set of n possibly nonlinear equations 
in m unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 𝑇𝑇 written as
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Problem formulation

Consider a set of n possibly nonlinear equations 
in m unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 𝑇𝑇 written as

We can write these equations on vector form

where
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution 
that minimizes the sum of squares of the residuals
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution 
that minimizes the sum of squares of the residuals
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The objective function 
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution 
that minimizes the sum of squares of the residuals

This means that we want to find the 𝐱𝐱 that minimizes the objective function:
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Linear least squares

When the equations        are linear,
we can obtain an objective function on the form

A solution is required to have zero gradient:

This results in the normal equations, 

which can be solved with for example Cholesky or QR, or SVD.
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Linear least squares

When the equations        are linear,
we can obtain an objective function on the form

A solution is required to have zero gradient:

This results in the normal equations, 

which can be solved with for example Cholesky or QR, or SVD.
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2 2( ) ( )f e= = −x x Ax b

( )( ) 2 Tf ∗ ∗∇ = − =x A Ax b 0

1( )

T T

T T

∗

∗ −

=

=

A Ax A b
x A A A b

Read more about LLS:
• http://vmls-book.stanford.edu/vmls.pdf

Matlab example:
x = A\b;

Python example:
x = numpy.linalg.lstsq(A, b)[0]

Eigen example:
x = A.colPivHouseholderQr().solve(b);

( )e x

http://vmls-book.stanford.edu/vmls.pdf
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Nonlinear least squares

When the equations are nonlinear, 
we have a nonlinear least squares problem.

They cannot be solved directly, 
but require an iterative procedure 
starting from a suitable initial estimate.
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Solve the linearized problem

Linearize the problem

Update the estimate

Choose a suitable inital estimate( )e x
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State variables

A state variable 𝐱𝐱 is typically used to describe the physical state of an object.

We can estimate several state variables at once
by concatenating all the variables into the vector 𝐱𝐱: 

The equations         can be defined to operate 
on one or more of these p state variables.
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State variables

A state variable 𝐱𝐱 is typically used to describe the physical state of an object.

We can estimate several state variables at once
by concatenating all the variables into the vector 𝐱𝐱: 

The equations         can be defined to operate 
on one or more of these p state variables.
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How can we represent both
points and poses as states?
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Concatenated set of state variables

Concatenation of state variables over a composite manifold
and the corresponding concatenation of tangent space vectors

Plus and minus for the concatenated state variable
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Concatenated set of state variables

We define     to be the concatenated set of state variables 
taken as input by the i-th equation          .
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Concatenated set of state variables

We define     to be the concatenated set of state variables 
taken as input by the i-th equation          .

Example:
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Concatenated set of state variables

We define     to be the concatenated set of state variables 
taken as input by the i-th equation          .

We can then define the objective function over all state variables

17

( )i ie 
i

2 2

1
( ) ( ) ( )

n

i i
i

f e e
=

= =∑  



TEK5030

State estimation

We want to solve state estimation problems 
based on measurements and corresponding measurement models

Let 𝑋𝑋 be the set of all unknown state variables, 
and 𝑍𝑍 be the set of all measurements.

18
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State estimation

We want to solve state estimation problems 
based on measurements and corresponding measurement models

Let 𝑋𝑋 be the set of all unknown state variables, 
and 𝑍𝑍 be the set of all measurements.

Example:
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Deterministic model for state estimation

Measurement model:

Measurement prediction function:

Measurement error function:

Objective function:
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Deterministic model for state estimation

Measurement model:

Measurement prediction function:

Measurement error function:

Objective function:
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This results in the nonlinear least squares problem:
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Example:
Range-based localization
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Example:
Range-based localization
States: Our location
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Example:
Range-based localization
States: Our location

Measurements: Range to landmarks

24

𝐱𝐱

𝐥𝐥1

𝐥𝐥2
𝐥𝐥3

𝐥𝐥5

𝐥𝐥4

= x

1{ , , }nZ ρ ρ= 



TEK5030

Example:
Range-based localization
States: Our location

Measurements: Range to landmarks
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Example:
Range-based localization
States: Our location

Measurements: Range to landmarks
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Example:
Range-based localization
States: Our location

Measurements: Range to landmarks

Measurement model:
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Example:
Range-based localization
Measurement prediction function:
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Example:
Range-based localization
Measurement prediction function:

Objective function:
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Example:
Range-based localization
Measurement prediction function:

Objective function:

Nonlinear least squares problem:
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Nonlinear least squares

When the equations are nonlinear, 
we have a nonlinear least squares problem.

They cannot be solved directly, 
but require an iterative procedure 
starting from a suitable initial estimate.

31

Solve the linearized problem

Linearize the problem

Update the estimate

Choose a suitable inital estimate( ) ( )i i i i ie h= − z 
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We can linearize the measurement prediction functions
using first order Taylor expansions at the current estimates     :

where the measurement Jacobian is

and

is the state update vector.

Linearizing the problem

ˆ
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Linearizing the problem

This leads to the linearized measurement error function
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Linearizing the problem

The linearized objective function is then given by
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Linearizing the problem

The linearized objective function is then given by
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Solving the linearized problem

The linearized objective function is then given by
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We can solve the linearized problem
as a linear least squares problem 
using the normal equations

T T∗ =A Aτ A b
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Example:
Range-based localization
Measurement prediction function:

Nonlinear least squares problem:
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Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:
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(See example 5.12 in the compendium)
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Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:
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Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:
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Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:
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Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:

42

( )2

1
argmin ( ; )

n

i i
i

h ρ∗

=

= −∑
x

x x l

( )

{ }( )

( )

2ˆ( ; )
ˆ

1

2ˆ( ; )
ˆ

1

2

1

ˆargmin ( ; )

ˆargmin ( ; )

argmin

i

i

n
h

i i
i
n

h
i i

i
n

i i
i

h

h

ρ

ρ

∗

=

=

=

= + −

= − −

= −

∑

∑

∑

x l
x

δ

x l
x

δ

δ

δ x l J δ

J δ x l

A δ b

{ }
0

1.50 1.50 2.00 2.50 1.80
, , , ,

1.50 2.00 1.75 1.50 2.50

0.64,1.23,1.17,1.47,1.61

1.80
3.50

i

iρ

          
=           

          
=

 
=  
 

l

x

( )0
1

0

0
1( ; )

1 0
1

0.30
2.00
0.30
2.00

T

T

h

  
  −   = = =

−  
 
 

x l
x

x l
A J

x l



TEK5030

Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:
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Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:
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Example:
Range-based localization
Nonlinear least squares problem:

Linearized problem at �𝐱𝐱:
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Example:
Range-based localization
Linearized problem at 𝐱𝐱0:
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Example:
Range-based localization
Linearized problem at 𝐱𝐱0:

Solution to the normal equations                      :

47

2argmin∗ = −
δ

δ Aδ b

𝐥𝐥1

𝐥𝐥2
𝐥𝐥3

𝐥𝐥5

𝐥𝐥4

𝐱𝐱0

1 00.12 1.68
0.47 3.03

∗ ∗−   
= = + =   −   

δ x x δ

𝐱𝐱1

T T∗ =A Aδ A b

0.15 0.99 1.38
0.20 0.98 0.29
0.11 0.99 0.59
0.33 0.94 0.65
0 1.00 0.62

−   
   −   
   = =− −
   − −   
      

A b



TEK5030

Solving the nonlinear problem

We solve the nonlinear least-squares problem
by iteratively solving the linearized system:

2olve argminS∗ ← −
τ

τ Aτ b

ˆ, Linearize at t←A b 

1ˆ ˆt t+ ∗← ⊕ τ 

48

0ˆChoose a suitable inital estimate 
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The Gauss-Newton algorithm

49
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The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective           at      as 

This approximation is good if we are near the solution and the objective is nearly quadratic.
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The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective           at      as 

This approximation is good if we are near the solution and the objective is nearly quadratic.

When the approximation is good:
– The update direction is good
– The update step length is good
– We obtain almost quadratic convergence to a local minimum

51

22

1

ˆˆ ˆ ˆ ( )( ) ( ) ( ) ˆ( )ˆ ˆ ˆ ˆ ˆ ˆ

T
m

T Ti i
i iT T

i i i

ef e e e
=

     ∂∂ ∂ ∂
= + = + ≈         ∂ ∂ ∂ ∂ ∂ ∂     

∑ A A Q A A  


     

( )f  ̂



TEK5030

The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective           at      as 

This approximation is good if we are near the solution and the objective is nearly quadratic.

When the approximation is poor:
– The update direction is typically still decent
– The update step length may be bad
– The convergence is slower, and we may even diverge
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Example:
Range-based localization
Gauss-Newton optimization
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Example:
Range-based localization
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Example:
Range-based localization
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Example:
Range-based localization
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Example:
Range-based localization

57

𝐥𝐥1

𝐥𝐥2
𝐥𝐥3

𝐥𝐥5

𝐥𝐥4

𝐱𝐱0

𝐱𝐱1𝐱𝐱2

𝐱𝐱3

𝐱𝐱4

Gauss-Newton optimization



TEK5030

Example:
Range-based localization
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Example:
Range-based localization
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Example:
Range-based localization
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Trust region

• The Gauss-Newton method is not guaranteed to converge
because of the approximate Hessian matrix

• Since the update directions typically are decent,
we can help with convergence by limiting the step sizes
– More conservative towards robustness, rather than speed

• Such methods are often called trust region methods,
and one example is Levenberg-Marquardt

61
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The Levenberg–Marquardt algorithm
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Example:
Range-based localization
Levenberg–Marquardt optimization
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Example:
Range-based localization
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Example:
Range-based localization
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Example:
Range-based localization

66

𝐥𝐥1

𝐥𝐥2
𝐥𝐥3

𝐥𝐥5

𝐥𝐥4

𝐱𝐱0

𝐱𝐱1𝐱𝐱3
Levenberg–Marquardt optimization



TEK5030

Example:
Range-based localization
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Example:
Range-based localization
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Example:
Range-based localization

69

𝐥𝐥1

𝐥𝐥2
𝐥𝐥3

𝐥𝐥5

𝐥𝐥4

𝐱𝐱0

𝐱𝐱1
Levenberg–Marquardt optimization

𝐱𝐱6

𝐱𝐱3

𝐱𝐱4



TEK5030

Example:
Range-based localization
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Example:
Range-based localization
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Example:
Range-based localization
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Converged to a local minima
with higher cost!
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Next: Take measurement noise into account!

Measurement model:

Measurement prediction function:

Measurement error function:

Objective function:

73
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This results in the nonlinear least squares problem:
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