UiO **Department of Technology Systems**

University of Oslo

Nonlinear least squares

Trym Vegard Haavardsholm

Consider a set of *n* possibly nonlinear equations in *m* unknowns $\mathbf{x} = [x_1, ..., x_m]^T$ written as

$$e_i(\mathbf{x}) = 0, \quad i = 1, \dots, n$$

 $e_i:\mathbb{R}^m\to\mathbb{R}$

Consider a set of *n* possibly nonlinear equations in *m* unknowns $\mathbf{x} = [x_1, ..., x_m]^T$ written as

$$e_i(\mathbf{x}) = 0, \quad i = 1, \dots, n$$

$$e_i:\mathbb{R}^m\to\mathbb{R}$$

i-th equation

Consider a set of *n* possibly nonlinear equations in *m* unknowns $\mathbf{x} = [x_1, ..., x_m]^T$ written as

$$e_i(\mathbf{x}) = 0, \quad i = 1, \dots, n$$

$$e_i:\mathbb{R}^m\to\mathbb{R}$$

Consider a set of *n* possibly nonlinear equations in *m* unknowns $\mathbf{x} = [x_1, ..., x_m]^T$ written as

$$e_i(\mathbf{x}) = 0, \quad i = 1, \dots, n$$
 $e_i: \mathbb{R}^m \to \mathbb{R}$

We can write these equations on vector form

$$e(\mathbf{x}) = \mathbf{0}, \qquad \qquad e: \mathbb{R}^m \to \mathbb{R}^n$$

where

$$e(\mathbf{x}) = \begin{bmatrix} e_1(\mathbf{x}) \\ \vdots \\ e_n(\mathbf{x}) \end{bmatrix}$$

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution that minimizes the sum of squares of the residuals

 $f(\mathbf{x}) = e(\mathbf{x})^T e(\mathbf{x}) = \|e(\mathbf{x})\|^2$

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution that minimizes the sum of squares of the residuals

$$f(\mathbf{x}) = e(\mathbf{x})^T e(\mathbf{x}) = \|e(\mathbf{x})\|^2$$

The objective function

TEK5030

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution that minimizes the sum of squares of the residuals

 $f(\mathbf{x}) = e(\mathbf{x})^T e(\mathbf{x}) = \|e(\mathbf{x})\|^2$

This means that we want to find the x that minimizes the objective function:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{argmin}} \left\| e(\mathbf{x}) \right\|^2$$

Linear least squares

When the equations $e(\mathbf{x})$ are linear, we can obtain an objective function on the form

$$f(\mathbf{x}) = \left\| e(\mathbf{x}) \right\|^2 = \left\| \mathbf{A}\mathbf{x} - \mathbf{b} \right\|^2$$

A solution is required to have zero gradient:

 $\nabla f(\mathbf{x}^*) = 2\mathbf{A}^T \left(\mathbf{A}\mathbf{x}^* - \mathbf{b} \right) = \mathbf{0}$

This results in the **normal equations**,

$$\mathbf{A}^{T}\mathbf{A}\mathbf{x}^{*} = \mathbf{A}^{T}\mathbf{b}$$
$$\mathbf{x}^{*} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{b}$$

which can be solved with for example Cholesky or QR, or SVD.

TEK5030

Linear least squares

When the equations $e(\mathbf{x})$ are linear, we can obtain an objective function on the form

 $f(\mathbf{x}) = \left\| e(\mathbf{x}) \right\|^2 = \left\| \mathbf{A}\mathbf{x} - \mathbf{b} \right\|^2$

A solution is required to have zero gradient:

 $\nabla f(\mathbf{x}^*) = 2\mathbf{A}^T \left(\mathbf{A}\mathbf{x}^* - \mathbf{b} \right) = \mathbf{0}$

This results in the normal equations,

$$\mathbf{A}^{T}\mathbf{A}\mathbf{x}^{*} = \mathbf{A}^{T}\mathbf{b}$$
$$\mathbf{x}^{*} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{b}$$

Matlab example: x = A\b;

Python example: x = numpy.linalg.lstsq(A, b)[0]

Eigen example: x = A.colPivHouseholderQr().solve(b);

Read more about LLS:

<u>http://vmls-book.stanford.edu/vmls.pdf</u>

which can be solved with for example Cholesky or QR, or SVD.

Nonlinear least squares

When the equations $e(\mathbf{x})$ are nonlinear, we have a **nonlinear least squares** problem.

They cannot be solved directly, but require an iterative procedure starting from a suitable initial estimate.

State variables

A state variable x is typically used to describe the physical state of an object.

We can estimate several state variables at once by concatenating all the variables into the vector \mathbf{x} :

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_p \end{bmatrix}$$

The equations $e_i(\mathbf{x})$ can be defined to operate on one or more of these *p* state variables.

State variables

A state variable x is typically used to describe the physical state of an object.

We can estimate several state variables at once by concatenating all the variables into the vector \mathbf{x} :

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_p \end{bmatrix}$$

The equations $e_i(\mathbf{x})$ can be defined to operate on one or more of these *p* state variables.

How can we represent both points and poses as states?

Concatenation of state variables over a composite manifold and the corresponding concatenation of tangent space vectors

$$\underline{\mathcal{X}} \triangleq \begin{cases} \mathcal{X}_1 \\ \vdots \\ \mathcal{X}_p \end{cases} \in \mathcal{M} \qquad \underline{\mathbf{\tau}} \triangleq \begin{bmatrix} \mathbf{\tau}_1 \\ \vdots \\ \mathbf{\tau}_p \end{bmatrix} \in \mathbb{R}^m \qquad \qquad \mathcal{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_p\} \\ \mathbf{\tau}_i \in \mathcal{T}\mathcal{M}_i \end{cases}$$

Plus and minus for the concatenated state variable

$$\underline{\mathcal{X}} \oplus \underline{\mathbf{\tau}} \triangleq \begin{cases} \mathcal{X}_1 \oplus \mathbf{\tau}_1 \\ \vdots \\ \mathcal{X}_p \oplus \mathbf{\tau}_p \end{cases} \in \mathcal{M} \qquad \underline{\mathcal{Y}} \ominus \underline{\mathcal{X}} \triangleq \begin{bmatrix} \mathcal{Y}_1 \ominus \mathcal{X}_1 \\ \vdots \\ \mathcal{Y}_p \ominus \mathcal{X}_p \end{bmatrix} \in \mathbb{R}^m$$

We define $\underline{\mathcal{X}}_i$ to be the concatenated set of state variables taken as input by the *i*-th equation $e_i(\underline{\mathcal{X}}_i)$.

We define \underline{X}_i to be the concatenated set of state variables taken as input by the *i*-th equation $e_i(\underline{X}_i)$.

Example:

$$e_{ij}(\underline{\mathcal{X}}_{ij}) = e_{ij}(\mathbf{T}_{wc_i}, \mathbf{x}_j^w) = \pi(\mathbf{T}_{wc_i}^{-1} \cdot \mathbf{x}_j^w) - \mathbf{u}_j^i$$

$$\underline{\mathcal{X}}_{ij} = \begin{cases} \mathbf{T}_{wc_i} \\ \mathbf{X}_j^w \end{cases}$$

We define \underline{X}_i to be the concatenated set of state variables taken as input by the *i*-th equation $e_i(\underline{X}_i)$.

We can then define the objective function over all state variables

$$f(\underline{\mathcal{X}}) = \left\| e(\underline{\mathcal{X}}) \right\|^2 = \sum_{i=1}^n \left\| e_i(\underline{\mathcal{X}}_i) \right\|^2$$

State estimation

We want to solve **state estimation problems** based on **measurements** and corresponding **measurement models**

Let *X* be the set of all unknown state variables, and *Z* be the set of all measurements.

State estimation

We want to solve **state estimation problems** based on **measurements** and corresponding **measurement models**

Let *X* be the set of all unknown state variables, and *Z* be the set of all measurements.

Deterministic model for state estimation

Measurement model:

 $\mathbf{z}_i = h_i(\underline{\mathcal{X}}_i) + \eta_i, \qquad \eta_i - N(\mathbf{0}, \underline{\boldsymbol{\Sigma}}_i)$

Measurement prediction function:

 $\hat{\mathbf{z}}_i = h_i(\underline{\mathcal{X}}_i)$

Measurement error function:

 $e_i(\underline{\mathcal{X}}_i) = h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i$

Objective function:

$$f(\underline{\mathcal{X}}) = \sum_{i=1}^{n} \left\| h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i \right\|^2$$

Deterministic model for state estimation

Measurement model:

$$\mathbf{z}_i = h_i(\underline{\mathcal{X}}_i) + \eta_i, \qquad \eta_i - N(\mathbf{0}, \underline{\boldsymbol{\Sigma}}_i)$$

Measurement prediction function:

 $\hat{\mathbf{z}}_i = h_i(\underline{\mathcal{X}}_i)$

Measurement error function:

 $e_i(\underline{\mathcal{X}}_i) = h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i$

Objective function:

$$f(\underline{\mathcal{X}}) = \sum_{i=1}^{n} \left\| h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i \right\|^2$$

This results in the nonlinear least squares problem:

$$\underline{\mathcal{X}}^* = \underset{\underline{\mathcal{X}}}{\operatorname{argmin}} \sum_{i=1}^n \left\| h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i \right\|^2$$

States: Our location

 $\underline{\mathcal{X}} = \mathbf{x}$

States: Our location

 $\underline{\mathcal{X}} = \mathbf{x}$

Measurements: Range to landmarks

 $Z = \{\rho_1, \ldots, \rho_n\}$

States: Our location

 $\underline{\mathcal{X}} = \mathbf{x}$

Measurements: Range to landmarks

 $Z = \{\rho_1, \ldots, \rho_n\}$

States: Our location

 $\underline{\mathcal{X}} = \mathbf{x}$

Measurements: Range to landmarks

 $Z = \{\rho_1, \ldots, \rho_n\}$

States: Our location

 $\underline{\mathcal{X}} = \mathbf{x}$

Measurements: Range to landmarks

 $Z = \{\rho_1, \dots, \rho_n\}$

Measurement model:

 $\rho_i = \|\mathbf{x} - \mathbf{l}_i\|$

Measurement prediction function:

 $\hat{\rho}_i = h(\mathbf{x}; \mathbf{l}_i) = \|\mathbf{x} - \mathbf{l}_i\|$

Measurement prediction function:

 $\hat{\rho}_i = h(\mathbf{x}; \mathbf{l}_i) = \|\mathbf{x} - \mathbf{l}_i\|$

Objective function:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \|h(\mathbf{x}; \mathbf{l}_{i}) - \rho_{i}\|^{2}$$
$$= \sum_{i=1}^{n} (\|\mathbf{x} - \mathbf{l}_{i}\| - \rho_{i})^{2}$$

Measurement prediction function:

 $\hat{\rho}_i = h(\mathbf{x}; \mathbf{l}_i) = \|\mathbf{x} - \mathbf{l}_i\|$

Objective function:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \left\| h(\mathbf{x}; \mathbf{l}_{i}) - \rho_{i} \right\|^{2}$$
$$= \sum_{i=1}^{n} \left(\left\| \mathbf{x} - \mathbf{l}_{i} \right\| - \rho_{i} \right)^{2}$$

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{X}}{\operatorname{argmin}} \sum_{i=1}^n (\|\mathbf{x} - \mathbf{l}_i\| - \rho_i)^2$$

Nonlinear least squares

When the equations $e_i(\underline{\mathcal{X}}_i) = h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i$ are nonlinear, we have a **nonlinear least squares** problem.

They cannot be solved directly, but require an iterative procedure starting from a suitable initial estimate.

We can linearize the measurement prediction functions using **first order Taylor expansions** at the current estimates \hat{X}_i :

$$h_i(\underline{\mathcal{X}}_i) = h_i(\underline{\hat{\mathcal{X}}}_i \oplus \underline{\mathbf{\tau}}_i) \approx h_i(\underline{\hat{\mathcal{X}}}_i) + \mathbf{J}_{\underline{\hat{\mathcal{X}}}_i}^{h_i} \underline{\mathbf{\tau}}_i$$

where the **measurement Jacobian** $\mathbf{J}_{\hat{\mathcal{X}}_i}^{h_i}$ is

$$\mathbf{J}_{\underline{\hat{\mathcal{X}}}_{i}}^{h_{i}} \triangleq \frac{\partial h_{i}(\underline{\mathcal{X}}_{i})}{\partial \underline{\mathcal{X}}_{i}}\Big|_{\underline{\hat{\mathcal{X}}}}$$

and

$$\underline{\mathbf{\tau}}_{i} \triangleq \underline{\mathcal{X}}_{i} \ominus \underline{\hat{\mathcal{X}}}_{i}$$

is the state update vector.

This leads to the linearized measurement error function

 $e_i(\underline{\mathcal{X}}_i) = e_i(\underline{\hat{\mathcal{X}}}_i \oplus \underline{\mathbf{\tau}}_i) \approx h_i(\underline{\hat{\mathcal{X}}}_i) + \mathbf{J}_{\underline{\hat{\mathcal{X}}}_i}^{h_i} \underline{\mathbf{\tau}}_i - \mathbf{z}_i$

The linearized objective function is then given by

$$f(\underline{\mathcal{X}}) = f(\underline{\hat{\mathcal{X}}} \oplus \underline{\mathbf{\tau}}) = \sum_{i=1}^{n} \left\| e_{i}(\underline{\hat{\mathcal{X}}}_{i} \oplus \underline{\mathbf{\tau}}_{i}) \right\|^{2}$$
$$\approx \sum_{i=1}^{n} \left\| h_{i}(\underline{\hat{\mathcal{X}}}_{i}) + \mathbf{J}_{\underline{\hat{\mathcal{X}}}_{i}}^{h_{i}} \underline{\mathbf{\tau}}_{i} - \mathbf{z}_{i} \right\|^{2}$$
$$= \sum_{i=1}^{n} \left\| \mathbf{J}_{\underline{\hat{\mathcal{X}}}_{i}}^{h_{i}} \underline{\mathbf{\tau}}_{i} - \left(\mathbf{z}_{i} - h_{i}(\underline{\hat{\mathcal{X}}}_{i}) \right) \right\|^{2}$$
$$= \sum_{i=1}^{n} \left\| \mathbf{A}_{i} \underline{\mathbf{\tau}}_{i} - \mathbf{b}_{i} \right\|^{2}$$

The linearized objective function is then given by

$$\begin{split} f(\underline{\mathcal{X}}) &= f(\underline{\hat{\mathcal{X}}} \oplus \underline{\mathbf{\tau}}) = \sum_{i=1}^{n} \left\| e_{i}(\underline{\hat{\mathcal{X}}_{i}} \oplus \underline{\mathbf{\tau}}_{i}) \right\|^{2} \\ &\approx \sum_{i=1}^{n} \left\| h_{i}(\underline{\hat{\mathcal{X}}_{i}}) + \mathbf{J}_{\underline{\hat{\mathcal{X}}_{i}}}^{h_{i}} \underline{\mathbf{\tau}}_{i} - \mathbf{z}_{i} \right\|^{2} \\ &= \sum_{i=1}^{n} \left\| \mathbf{J}_{\underline{\hat{\mathcal{X}}_{i}}}^{h_{i}} \underline{\mathbf{\tau}}_{i} - \left(\mathbf{z}_{i} - h_{i}(\underline{\hat{\mathcal{X}}_{i}}) \right) \right\|^{2} \\ &= \sum_{i=1}^{n} \left\| \mathbf{A}_{i} \underline{\mathbf{\tau}}_{i} - \mathbf{b}_{i} \right\|^{2} \\ &= \left\| \mathbf{A}\underline{\mathbf{\tau}} - \mathbf{b} \right\|^{2} \\ &\mathbf{b}_{i} = -e_{i}(\underline{\hat{\mathcal{X}}_{i}}) \text{ are subvectors of the error } \mathbf{b} = -e(\underline{\hat{\mathcal{X}}}) \end{split}$$

TEK5030

Solving the linearized problem

The linearized objective function is then given by

$$f(\underline{\mathcal{X}}) = f(\underline{\hat{\mathcal{X}}} \oplus \underline{\mathbf{\tau}}) = \sum_{i=1}^{n} \left\| e_{i}(\underline{\hat{\mathcal{X}}}_{i} \oplus \underline{\mathbf{\tau}}_{i}) \right\|^{2}$$
$$\approx \sum_{i=1}^{n} \left\| h_{i}(\underline{\hat{\mathcal{X}}}_{i}) + \mathbf{J}_{\underline{\hat{\mathcal{X}}}_{i}}^{h_{i}} \underline{\mathbf{\tau}}_{i} - \mathbf{z}_{i} \right\|^{2}$$
$$= \sum_{i=1}^{n} \left\| \mathbf{J}_{\underline{\hat{\mathcal{X}}}_{i}}^{h_{i}} \underline{\mathbf{\tau}}_{i} - \left(\mathbf{z}_{i} - h_{i}(\underline{\hat{\mathcal{X}}}_{i}) \right) \right\|^{2}$$
$$= \sum_{i=1}^{n} \left\| \mathbf{A}_{i} \underline{\mathbf{\tau}}_{i} - \mathbf{b}_{i} \right\|^{2}$$

We can solve the linearized problem as a linear least squares problem using the normal equations

$$\mathbf{A}^T \mathbf{A} \underline{\boldsymbol{\tau}}^* = \mathbf{A}^T \mathbf{b}$$
Measurement prediction function:

 $\hat{\rho}_i = h(\mathbf{x}; \mathbf{l}_i) = \|\mathbf{x} - \mathbf{l}_i\|$

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at $\hat{\mathbf{x}}$:

$$\boldsymbol{\delta}^* = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \sum_{i=1}^n \left(h(\hat{\mathbf{x}}; \mathbf{l}_i) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \boldsymbol{\rho}_i \right)^2$$

$$h(\mathbf{x};\mathbf{l}_i) = \left\|\mathbf{x} - \mathbf{l}_i\right\|$$

$$\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}};\mathbf{l}_{i})} = \frac{\left(\hat{\mathbf{x}}-\mathbf{l}_{i}\right)^{T}}{\left\|\hat{\mathbf{x}}-\mathbf{l}_{i}\right\|}$$

(See example 5.12 in the compendium)

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at $\hat{\mathbf{x}}$:

$$\boldsymbol{\delta}^* = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \sum_{i=1}^n \left(h(\hat{\mathbf{x}}; \mathbf{l}_i) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \rho_i \right)^2$$
$$= \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \sum_{i=1}^n \left(\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \left\{ \rho_i - h(\hat{\mathbf{x}}; \mathbf{l}_i) \right\} \right)^2$$

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at $\hat{\mathbf{x}}$:

$$\begin{split} \boldsymbol{\delta}^* &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(h(\hat{\mathbf{x}}; \mathbf{l}_i) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \rho_i \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \left\{ \rho_i - h(\hat{\mathbf{x}}; \mathbf{l}_i) \right\} \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{A}_i \boldsymbol{\delta} - \mathbf{b}_i \right)^2 \end{split}$$

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at $\boldsymbol{\hat{x}}$:

$$\begin{split} \boldsymbol{\delta}^* &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(h(\hat{\mathbf{x}}; \mathbf{l}_i) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \rho_i \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \left\{ \rho_i - h(\hat{\mathbf{x}}; \mathbf{l}_i) \right\} \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{A}_i \boldsymbol{\delta} - \mathbf{b}_i \right)^2 \end{split}$$

$$\mathbf{l}_{i} = \left\{ \begin{bmatrix} 1.50\\ 1.50 \end{bmatrix}, \begin{bmatrix} 1.50\\ 2.00 \end{bmatrix}, \begin{bmatrix} 2.00\\ 1.75 \end{bmatrix}, \begin{bmatrix} 2.50\\ 1.50 \end{bmatrix}, \begin{bmatrix} 1.80\\ 2.50 \end{bmatrix} \right\}$$
$$\rho_{i} = \left\{ 0.64, 1.23, 1.17, 1.47, 1.61 \right\}$$
$$\mathbf{x}^{0} = \begin{bmatrix} 1.80\\ 3.50 \end{bmatrix}$$

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at $\hat{\mathbf{x}}$:

$$\begin{split} \boldsymbol{\delta}^* &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(h(\hat{\mathbf{x}}; \mathbf{l}_i) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \rho_i \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \left\{ \rho_i - h(\hat{\mathbf{x}}; \mathbf{l}_i) \right\} \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{A}_i \boldsymbol{\delta} - \mathbf{b}_i \right)^2 \end{split}$$

$$\mathbf{I}_{i} = \left\{ \begin{bmatrix} 1.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.50\\2.00 \end{bmatrix}, \begin{bmatrix} 2.00\\1.75 \end{bmatrix}, \begin{bmatrix} 2.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.80\\2.50 \end{bmatrix} \right\}$$
$$\rho_{i} = \left\{ 0.64, 1.23, 1.17, 1.47, 1.61 \right\}$$
$$\mathbf{x}^{0} = \begin{bmatrix} 1.80\\3.50 \end{bmatrix}$$

$$\mathbf{A}_{1} = \mathbf{J}_{\mathbf{x}^{0}}^{h(\mathbf{x}^{0};\mathbf{l}_{1})} = \frac{\left(\mathbf{x}^{0} - \mathbf{l}_{1}\right)^{T}}{\left\|\mathbf{x}^{0} - \mathbf{l}_{1}\right\|} = \frac{\left(\begin{bmatrix}0.30\\2.00\end{bmatrix}\right)^{T}}{\left\|\begin{bmatrix}0.30\\2.00\end{bmatrix}\right\|}$$

TEK5030

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at $\hat{\mathbf{x}}$:

$$\begin{split} \boldsymbol{\delta}^* &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(h(\hat{\mathbf{x}}; \mathbf{l}_i) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \rho_i \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \left\{ \rho_i - h(\hat{\mathbf{x}}; \mathbf{l}_i) \right\} \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{A}_i \boldsymbol{\delta} - \mathbf{b}_i \right)^2 \end{split}$$

$$\mathbf{I}_{i} = \left\{ \begin{bmatrix} 1.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.50\\2.00 \end{bmatrix}, \begin{bmatrix} 2.00\\1.75 \end{bmatrix}, \begin{bmatrix} 2.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.80\\2.50 \end{bmatrix} \right\}$$
$$\rho_{i} = \left\{ 0.64, 1.23, 1.17, 1.47, 1.61 \right\}$$
$$\mathbf{x}^{0} = \begin{bmatrix} 1.80\\3.50 \end{bmatrix}$$

$$\mathbf{A}_{1} = \mathbf{J}_{\mathbf{x}^{0}}^{h(\mathbf{x}^{0};\mathbf{l}_{1})} = \frac{\left(\mathbf{x}^{0} - \mathbf{l}_{1}\right)^{T}}{\left\|\mathbf{x}^{0} - \mathbf{l}_{1}\right\|} = \frac{\left(\begin{bmatrix}0.30\\2.00\end{bmatrix}\right)^{T}}{\left\|\begin{bmatrix}0.30\\2.00\end{bmatrix}\right\|}$$
$$= \frac{\begin{bmatrix}0.30&2.00\\2.02\end{bmatrix} = \begin{bmatrix}0.15&0.99\end{bmatrix}$$

TEK5030

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at $\hat{\mathbf{x}}$:

$$\begin{split} \boldsymbol{\delta}^* &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(h(\hat{\mathbf{x}}; \mathbf{l}_i) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \rho_i \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_i)} \boldsymbol{\delta} - \left\{ \rho_i - h(\hat{\mathbf{x}}; \mathbf{l}_i) \right\} \right)^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^n \left(\mathbf{A}_i \boldsymbol{\delta} - \mathbf{b}_i \right)^2 \end{split}$$

$$\mathbf{l}_{i} = \left\{ \begin{bmatrix} 1.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.50\\2.00 \end{bmatrix}, \begin{bmatrix} 2.00\\1.75 \end{bmatrix}, \begin{bmatrix} 2.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.80\\2.50 \end{bmatrix} \right\}$$
$$\rho_{i} = \left\{ 0.64, 1.23, 1.17, 1.47, 1.61 \right\}$$
$$\mathbf{x}^{0} = \begin{bmatrix} 1.80\\3.50 \end{bmatrix}$$

$$\mathbf{A}_{1} = \mathbf{J}_{\mathbf{x}^{0}}^{h(\mathbf{x}^{0};\mathbf{l}_{1})} = \frac{\left(\mathbf{x}^{0} - \mathbf{l}_{1}\right)^{T}}{\left\|\mathbf{x}^{0} - \mathbf{l}_{1}\right\|} = \frac{\left(\begin{bmatrix}0.30\\2.00\end{bmatrix}\right)^{T}}{\left\|\begin{bmatrix}0.30\\2.00\end{bmatrix}\right\|}$$
$$= \frac{\left[0.30\quad2.00\right]}{2.02} = \begin{bmatrix}0.15\quad0.99\end{bmatrix}$$

 $\mathbf{b}_1 = \rho_1 - h(\mathbf{x}^0; \mathbf{l}_1) = 0.64 - 2.02 = -1.38$

Nonlinear least squares problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^n (h(\mathbf{x}; \mathbf{l}_i) - \rho_i)^2$$

Linearized problem at
$$\hat{\mathbf{x}}$$
:

$$\begin{split} \boldsymbol{\delta}^{*} &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^{n} \left(h(\hat{\mathbf{x}}; \mathbf{l}_{i}) + \mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_{i})} \boldsymbol{\delta} - \rho_{i} \right)^{2} \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^{n} \left(\mathbf{J}_{\hat{\mathbf{x}}}^{h(\hat{\mathbf{x}}; \mathbf{l}_{i})} \boldsymbol{\delta} - \{\rho_{i} - h(\hat{\mathbf{x}}; \mathbf{l}_{i})\} \right)^{2} \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \sum_{i=1}^{n} \left(\mathbf{A}_{i} \boldsymbol{\delta} - \mathbf{b}_{i} \right)^{2} \\ &= \operatorname*{argmin}_{\boldsymbol{\delta}} \left\| \mathbf{A} \boldsymbol{\delta} - \mathbf{b} \right\|^{2} \end{split} \mathbf{A} = \begin{bmatrix} 0.15 & 0.99 \\ 0.20 & 0.98 \\ -0.11 & 0.99 \\ -0.33 & 0.94 \\ 0 & 1.00 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -1.38 \\ -0.29 \\ -0.59 \\ -0.65 \\ 0.62 \end{bmatrix}$$

$$\mathbf{l}_{i} = \left\{ \begin{bmatrix} 1.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.50\\2.00 \end{bmatrix}, \begin{bmatrix} 2.00\\1.75 \end{bmatrix}, \begin{bmatrix} 2.50\\1.50 \end{bmatrix}, \begin{bmatrix} 1.80\\2.50 \end{bmatrix} \right\}$$
$$\rho_{i} = \left\{ 0.64, 1.23, 1.17, 1.47, 1.61 \right\}$$
$$\mathbf{x}^{0} = \begin{bmatrix} 1.80\\3.50 \end{bmatrix}$$

Linearized problem at \mathbf{x}^0 :

$\boldsymbol{\delta}^* = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \left\ \mathbf{A} \boldsymbol{\delta} - \mathbf{b} \right\ ^2$							
	0.15	0.99		[-1.38]			
	0.20	0.98		-0.29			
$\mathbf{A} =$	-0.11	0.99	b =	-0.59			
	-0.33	0.94		-0.65			
	0	1.00		0.62			

Linearized problem at \mathbf{x}^0 :

$\boldsymbol{\delta}^* = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \left\ \mathbf{A} \boldsymbol{\delta} - \mathbf{b} \right\ ^2$								
	0.15	0.99		[-1.38]				
	0.20	0.98		-0.29				
$\mathbf{A} =$	-0.11	0.99	b =	-0.59				
	-0.33	0.94		-0.65				
	0	1.00		0.62				

Solution to the normal equations $\mathbf{A}^T \mathbf{A} \mathbf{\delta}^* = \mathbf{A}^T \mathbf{b}$: 0.5

TEK5030

$$\boldsymbol{\delta}^* = \begin{bmatrix} -0.12\\ -0.47 \end{bmatrix} \qquad \mathbf{x}^1 = \mathbf{x}^0 + \boldsymbol{\delta}^* = \begin{bmatrix} 1.68\\ 3.03 \end{bmatrix}$$

47

Solving the nonlinear problem

We solve the nonlinear least-squares problem by iteratively solving the linearized system:

Data: An objective function $f(\underline{\mathcal{X}})$ and a good initial state estimate $\underline{\hat{\mathcal{X}}}^0$ **Result:** An estimate for the states $\underline{\hat{\mathcal{X}}}$

for
$$t = 0, 1, ..., t^{max}$$
 do
A, b \leftarrow Linearise $f(\hat{X})$ at \hat{X}^t
 $\underline{\tau} \leftarrow$ Solve the linearised problem $\mathbf{A}^{\top} \mathbf{A} \underline{\tau} = \mathbf{A}^{\top} \mathbf{b}$
 $\hat{X}^{t+1} \leftarrow \hat{X}^t \oplus \underline{\tau}$
if $f(\hat{X}^{t+1})$ is very small or $\hat{X}^{t+1} \approx \hat{X}^t$ then
 $\begin{vmatrix} \hat{X} \leftarrow \hat{X}^{t+1} \\ \mathbf{return} \end{vmatrix}$
end
end

Gauss-Newton actually approximates the Hessian of the objective $f(\underline{\mathcal{X}})$ at $\underline{\hat{\mathcal{X}}}$ as

$$\frac{\partial^2 f(\hat{\underline{X}})}{\partial \underline{\hat{X}} \partial \underline{\hat{X}}^T} = \left(\frac{\partial e(\underline{\hat{X}})}{\partial \underline{\hat{X}}}\right)^T \left(\frac{\partial e(\underline{\hat{X}})}{\partial \underline{\hat{X}}}\right) + \sum_{i=1}^m e_i(\underline{\hat{X}}_i) \left(\frac{\partial^2 e_i(\underline{\hat{X}}_i)}{\partial \underline{\hat{X}}_i \partial \underline{\hat{X}}_i^T}\right) = \mathbf{A}^T \mathbf{A} + \mathbf{Q} \approx \mathbf{A}^T \mathbf{A}$$

This approximation is good if we are near the solution and the objective is nearly quadratic.

Gauss-Newton actually approximates the Hessian of the objective $f(\underline{\mathcal{X}})$ at $\underline{\hat{\mathcal{X}}}$ as

$$\frac{\partial^2 f(\hat{\underline{X}})}{\partial \underline{\hat{X}} \partial \underline{\hat{X}}^T} = \left(\frac{\partial e(\underline{\hat{X}})}{\partial \underline{\hat{X}}}\right)^T \left(\frac{\partial e(\underline{\hat{X}})}{\partial \underline{\hat{X}}}\right) + \sum_{i=1}^m e_i(\underline{\hat{X}}_i) \left(\frac{\partial^2 e_i(\underline{\hat{X}}_i)}{\partial \underline{\hat{X}}_i \partial \underline{\hat{X}}_i^T}\right) = \mathbf{A}^T \mathbf{A} + \mathbf{Q} \approx \mathbf{A}^T \mathbf{A}$$

This approximation is good if we are near the solution and the objective is nearly quadratic.

When the approximation is good:

- The update direction is good
- The update step length is good
- We obtain almost quadratic convergence to a local minimum

Gauss-Newton actually approximates the Hessian of the objective $f(\underline{\mathcal{X}})$ at $\underline{\hat{\mathcal{X}}}$ as

$$\frac{\partial^2 f(\hat{\underline{X}})}{\partial \underline{\hat{X}} \partial \underline{\hat{X}}^T} = \left(\frac{\partial e(\underline{\hat{X}})}{\partial \underline{\hat{X}}}\right)^T \left(\frac{\partial e(\underline{\hat{X}})}{\partial \underline{\hat{X}}}\right) + \sum_{i=1}^m e_i(\underline{\hat{X}}_i) \left(\frac{\partial^2 e_i(\underline{\hat{X}}_i)}{\partial \underline{\hat{X}}_i \partial \underline{\hat{X}}_i^T}\right) = \mathbf{A}^T \mathbf{A} + \mathbf{Q} \approx \mathbf{A}^T \mathbf{A}$$

This approximation is good if we are near the solution and the objective is nearly quadratic.

When the approximation is poor:

- The update direction is typically still decent
- The update step length may be bad
- The convergence is slower, and we may even diverge

Gauss-Newton optimization

TEK5030

Gauss-Newton optimization

TEK5030

Trust region

- The Gauss-Newton method is not guaranteed to converge because of the approximate Hessian matrix
- Since the update directions typically are decent, we can help with convergence by limiting the step sizes
 - More conservative towards robustness, rather than speed
- Such methods are often called **trust region methods**, and one example is **Levenberg-Marquardt**

The Levenberg–Marquardt algorithm

Data: An objective function $f(\underline{\mathcal{X}})$ and a good initial state estimate $\underline{\mathcal{X}}^0$ **Result:** An estimate for the states $\underline{\hat{\mathcal{X}}}$

 $\lambda \leftarrow 10^{-4}$ for $t = 0, 1, ..., t^{max}$ do $\mathbf{A}, \mathbf{b} \leftarrow \text{Linearise } f(\underline{\mathcal{X}}) \text{ at } \underline{\hat{\mathcal{X}}}^t$ $\underline{\boldsymbol{\tau}} \leftarrow \text{Solve the linearised problem } (\mathbf{A}^\top \mathbf{A} + \lambda \operatorname{diag}(\mathbf{A}^\top \mathbf{A}))\underline{\boldsymbol{\tau}} = \mathbf{A}^\top \mathbf{b}$ if $f(\hat{\mathcal{X}}^t \oplus \underline{\tau}) < f(\hat{\mathcal{X}}^t)$ then Accept update, increase trust region $\hat{\mathcal{X}}^{t+1} \leftarrow \hat{\mathcal{X}}^t \oplus \underline{\tau}$ $\lambda \leftarrow \lambda/10$ else Reject update, reduce trust region $\hat{\mathcal{X}}^{t+1} \leftarrow \hat{\mathcal{X}}^t$ $\lambda \leftarrow \lambda * 10$ end $\begin{array}{l} \text{if } f(\hat{\mathcal{X}}^{t+1}) \text{ is very small or } \hat{\mathcal{X}}^{t+1} \approx \hat{\mathcal{X}}^t \text{ then} \\ \mid \quad \hat{\mathcal{X}} \leftarrow \hat{\mathcal{X}}^{t+1} \end{array}$ return end end

Levenberg–Marquardt optimization

TEK5030

Levenberg–Marquardt optimization

TEK5030

Levenberg–Marquardt optimization - Slightly different initial estimate

4

3.5

3

 \mathbf{x}^{0}

TEK5030

4

Levenberg–Marquardt optimization - Slightly different initial estimate

Next: Take measurement noise into account!

Measurement model:

$$\mathbf{z}_i = h_i(\underline{\mathcal{X}}_i) + \eta_i, \quad \eta_i - N(\mathbf{0}, \underline{\Sigma}_i)$$

Measurement prediction function:

 $\hat{\mathbf{z}}_i = h_i(\underline{\mathcal{X}}_i)$

Measurement error function:

 $e_i(\underline{\mathcal{X}}_i) = h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i$

Objective function:

$$f(\underline{\mathcal{X}}) = \sum_{i=1}^{n} \left\| h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i \right\|^2$$

This results in the nonlinear least squares problem:

$$\underline{\mathcal{X}}^* = \underset{\underline{\mathcal{X}}}{\operatorname{argmin}} \sum_{i=1}^n \left\| h_i(\underline{\mathcal{X}}_i) - \mathbf{z}_i \right\|^2$$

