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Nonlinear MAP inference for state estimation

We want to solve state estimation problems 
based on measurements and corresponding measurement models

Let 𝑋𝑋 be the set of all unknown state variables, 
and 𝑍𝑍 be the set of all measurements.

We are interested in estimating the unknown state variables 𝑋𝑋, given the measurements 𝑍𝑍.
The Maximum a Posteriori estimate is given by:
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Nonlinear MAP inference for state estimation

Measurement model:

Measurement prediction function:

Measurement error function:

Objective function:
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It turns out that the nonlinear least squares solution
to this problem is the MAP estimate!

This results in the nonlinear least squares problem:
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Example:
Range-based localization
States: Our location

Measurements: Range to landmarks

Measurement model:
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100 runs, 𝜎𝜎𝑖𝑖 = 0.1
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What happens when we 
ignore measurement noise? 
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100 runs, 𝜎𝜎1, … ,𝜎𝜎4 = 0.1,𝜎𝜎5 = 0.3
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100 runs, 𝜎𝜎1, … ,𝜎𝜎4 = 0.1,𝜎𝜎5 = 0.3
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What happens when we 
ignore measurement noise? 

We need to weight each
measurement according to
their uncertainty!
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Weighted nonlinear least squares

We can rewrite the Mahalanobis norms as

Hence, we can eliminate the covariances
by weighting the Jacobian and the prediction error:

This is a form of whitening,
which eliminates the units of the measurements
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Weighted nonlinear least squares

The objective function in the weighted least squares problem is now given by
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100 runs, 𝜎𝜎1, … ,𝜎𝜎4 = 0.1,𝜎𝜎5 = 0.3
Unweighted
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Taking measurement noise
into account 
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100 runs, 𝜎𝜎1, … ,𝜎𝜎4 = 0.1,𝜎𝜎5 = 0.3
Covariance weighted (whitened)
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Estimating uncertainty in the MAP estimate

The Hessian at the solution for the weighted problem
is the inverse of the covariance matrix (the information matrix)!

Using our approximated Hessian, 
we obtain a first order approximation of the true covariance for all states
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Simple example:
Two landmarks
(No noise added to measurements)

1𝜎𝜎 covariance contours
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10 runs, 𝜎𝜎1, … ,𝜎𝜎4 = 0.1,𝜎𝜎5 = 0.3

1𝜎𝜎 covariance contours
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Example:
Range-based localization
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Summary

We have seen how we can find the MAP estimate
of our unknown states given measurements

by representing it as 
a nonlinear least squares problem

The resulting estimate is the (joint) probability distribution
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