UiO : Department of Technology Systems
University of Oslo

Lecture 9.2
 Full bundle adjustment

Trym Vegard Haavardsholm

Bundle adjustment

Bundle Adjustment (BA)

Estimating the imaging geometry based on minimizing reprojection error

- Motion-only BA
- Structure-only BA
- Full BA

Bundle adjustment

Bundle Adjustment (BA)

Estimating the imaging geometry based on minimizing reprojection error

- Motion-only BA
- Structure-only BA
- Full BA

Nonlinear MAP estimation

We have seen how we can find the MAP estimate of our unknown states given measurements

$$
X^{M A P}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

Choose a suitable inital estimate $\underline{\mathcal{X}}^{0}$
by representing it as
a nonlinear least squares problem

$$
\underline{\mathcal{X}}^{*}=\underset{\underline{\mathcal{X}}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|h_{i}\left(\underline{\mathcal{X}}_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

The resulting estimate is the (joint) probability distribution

$$
\begin{array}{ll}
\underline{\hat{\mathcal{X}}} \sim N\left(\underline{\hat{\mathcal{X}}}, \hat{\Sigma}_{\underline{\hat{x}}}\right) & \underline{\hat{\mathcal{X}}}=\hat{\hat{\mathcal{X}}}^{*} \\
& \hat{\Sigma}_{\underline{\hat{x}}}=\left(\mathbf{A}_{\underline{\hat{x}}^{*}}^{T} \mathbf{A}_{\underline{\hat{x}}^{*}}\right)^{-1}
\end{array}
$$

$\mathbf{A}, \mathbf{b} \leftarrow$ Linearize at $\hat{\mathcal{X}}^{t}$

$$
\underline{\tau}^{*} \leftarrow \text { Solve } \underset{\tau}{\operatorname{argmin}}\|\mathbf{A} \underline{\boldsymbol{\tau}}-\mathbf{b}\|^{2}
$$

$$
\hat{\underline{\chi}}^{+1+1} \leftarrow \hat{\underline{\chi}}^{\prime} \oplus \underline{\underline{\tau}}^{\circ}
$$

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{j}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}\right\|^{2}
$$

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{j}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}\right\|^{2}
$$

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{j}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}\right\|^{2}
$$

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{j}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

$$
\mathbf{x}_{j}^{w^{*}}=\underset{\mathbf{x}_{j}^{w *}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

$$
\mathbf{x}_{j}^{w^{*}}=\underset{\mathbf{x}_{j}^{w *}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

$$
\mathbf{x}_{j}^{w^{*}}=\underset{\mathbf{x}_{j}^{w *}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Pose and structure estimation by minimizing reprojection error

Minimize geometric error over the camera poses and world points
This is also sometimes called Full Bundle Adjustment

Pose and structure estimation by minimizing reprojection error

Given:

Measurements:

- Correspondences $\mathbf{u}_{j}^{i} \leftrightarrow \mathbf{x}_{j}^{w}$ with measurement noise $\boldsymbol{\Sigma}_{i j}$

States we wish to estimate:

- Camera poses $\mathbf{T}_{w c_{i}}$ and world points \mathbf{x}_{j}^{w}

Initial estimates:

- Pairwise two-view constraints (from the essential matrix)
- Triangulated points

Applying the MAP framework

For simplicity,

we pre-calibrate to normalized image coordinates (and propagate the noise)

This gives us the measurement prediction function

$$
h_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)=\pi_{n}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)
$$

and measurement error function

$$
e_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)=\pi_{n}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{x}_{n j}^{i}
$$

Applying the MAP framework

Since the measurement prediction function is a function of two variables, we linearize it at the current state estimates as

$$
\begin{aligned}
h_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right) & =h_{i j}\left(\hat{\mathbf{T}}_{w c_{i}} \oplus \boldsymbol{\xi}_{i}, \hat{\mathbf{x}}_{j}^{w}+\delta \mathbf{x}_{j}\right) \\
& \approx h_{i j}\left(\hat{\mathbf{T}}_{w c_{i}}, \hat{\mathbf{x}}_{j}^{w}\right)+\mathbf{J}_{\hat{\mathbf{T}}_{w c_{i}}}^{h_{i j}} \boldsymbol{\xi}_{i}+\mathbf{J}_{\hat{\mathbf{x}}_{j}^{w}}^{h_{i j}} \delta \mathbf{x}_{j}
\end{aligned}
$$

These measurement Jacobians are given in earlier lectures on motion-only BA and structure-only BA.

Applying the MAP framework

This results in the linearized weighted least squares problem

$$
\begin{aligned}
\underline{\boldsymbol{\tau}}^{*} & =\underset{\underline{\boldsymbol{\tau}}}{\arg \min } \sum_{i=1}^{k} \sum_{j=1}^{n}\left\|\mathbf{P}_{i j} \boldsymbol{\xi}_{i}+\mathbf{S}_{i j} \delta \mathbf{x}_{j}-\mathbf{b}_{i j}\right\|^{2} \\
& =\underset{\boldsymbol{\tau}}{\arg \min }\|\mathbf{A} \underline{\boldsymbol{\tau}}-\mathbf{b}\|^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{P}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2} \mathbf{J}_{\mathbf{T}_{w c_{i}}}^{h_{i j}} \\
\mathbf{S}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2} \mathbf{J}_{\mathbf{x}_{j}}^{h_{i j}} \\
\mathbf{b}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2}\left(\mathbf{x}_{n j}^{i}-h_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)\right),
\end{aligned}
$$

$$
\begin{array}{cc}
& \mathbf{S}_{11} \\
& \\
& \\
\mathbf{P}_{k 1} & \mathbf{S}_{k 1} \\
\vdots & \\
\mathbf{P}_{k n} &
\end{array}
$$

$$
\left.\begin{array}{l}
\\
\mathbf{S}_{1 n} \\
\\
\mathbf{S}_{k n}
\end{array}\right]
$$

$$
\underline{\boldsymbol{\tau}}=\left[\begin{array}{c}
\boldsymbol{\xi}_{1} \\
\vdots \\
\boldsymbol{\xi}_{k} \\
\delta \mathbf{x}_{1} \\
\vdots \\
\delta \mathbf{x}_{n}
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{11} \\
\vdots \\
\mathbf{b}_{1 n} \\
\vdots \\
\mathbf{b}_{k 1} \\
\vdots \\
\mathbf{b}_{k n}
\end{array}\right]
$$

Linear least-squares

The measurement Jacobian A is a block sparse matrix.
For an example with two cameras and three points we have
$\mathbf{A}=\left[\begin{array}{lllll}\mathbf{P}_{11} & & \mathbf{S}_{11} & & \\ \mathbf{P}_{12} & & & \mathbf{S}_{12} & \\ \mathbf{P}_{13} & & & & \mathbf{S}_{13} \\ & \mathbf{P}_{21} & \mathbf{S}_{21} & & \\ & \mathbf{P}_{22} & & \mathbf{S}_{22} & \\ & \mathbf{P}_{23} & & & \mathbf{S}_{23}\end{array}\right] \quad \boldsymbol{\tau}=\left[\begin{array}{c}\boldsymbol{\xi}_{1} \\ \boldsymbol{\xi}_{2} \\ \delta \mathbf{x}_{1} \\ \delta \mathbf{x}_{2} \\ \delta \mathbf{x}_{3}\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}\mathbf{b}_{11} \\ \mathbf{b}_{12} \\ \mathbf{b}_{13} \\ \mathbf{b}_{21} \\ \mathbf{b}_{22} \\ \mathbf{b}_{23}\end{array}\right]$

Applying the MAP framework

The solution can be found by solving the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \underline{\boldsymbol{\tau}}^{*}=\mathbf{A}^{T} \mathbf{b}
$$

Choose a suitable inital estimate $\underline{\mathcal{X}}^{0}$
Since A is sparse,
a sparse solver should be used.

Example

TEK5030

Example

TEK5030

Example

TEK5030

Example

Example

Example

Example

Example

Why does this fail?

TEK5030

Gauge freedom

The solution is not uniquely determined!

- The Hessian is singular!
- We can apply any 7DOF similarity transform to the cameras without affecting the objective function

Gauge freedom

The solution is not uniquely determined!

- The Hessian is singular!
- We can apply any 7DOF similarity transform to the cameras without affecting the objective function

Possible solutions:

- Use Levenberg-Marquardt optimization
- Add priors on poses and points
- Fuse with other information, such as GPS and IMU

Adding priors

Prior on first pose and first point

$$
\mathbf{A}=\left[\begin{array}{lllll}
\mathbf{P}_{11} & & \mathbf{S}_{11} & & \\
\mathbf{P}_{12} & & & \mathbf{S}_{12} & \\
\mathbf{P}_{13} & & & & \mathbf{S}_{13} \\
& \mathbf{P}_{21} & \mathbf{S}_{21} & & \\
& \mathbf{P}_{22} & & \mathbf{S}_{22} & \\
& \mathbf{P}_{23} & & & \mathbf{S}_{23} \\
\mathbf{I}_{6 \times 6} & & & &
\end{array}\right] \quad \underline{\boldsymbol{\tau}}=\left[\begin{array}{c}
\boldsymbol{\xi}_{1} \\
\xi_{2} \\
\delta_{2} \\
\delta \mathbf{x}_{1} \\
\delta \mathbf{x}_{2} \\
\delta \mathbf{x}_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{11} \\
\mathbf{b}_{12} \\
\mathbf{b}_{13} \\
\mathbf{b}_{21} \\
\mathbf{b}_{22} \\
\mathbf{b}_{23} \\
\mathbf{b}_{23} \\
\mathbf{b}_{\xi \xi_{1} \text { pror }} \\
\mathbf{b}_{\delta \mathbf{x}_{1}}^{\text {pror }}
\end{array}\right] \quad \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

Example

TEK5030

Example

TEK5030

Example

TEK5030

Example

TEK5030

Adding priors

Prior on first pose and distance between first two points

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccccc}
\mathbf{P}_{11} & & \mathbf{S}_{11} & & \\
\mathbf{P}_{12} & & & \mathbf{S}_{12} & \\
\mathbf{P}_{13} & & & & \mathbf{S}_{13} \\
& \mathbf{P}_{21} & \mathbf{S}_{21} & & \\
& \mathbf{P}_{22} & & \mathbf{S}_{22} & \\
& \mathbf{P}_{23} & & & \mathbf{S}_{23} \\
\mathbf{I}_{6 \times 6} & & & &
\end{array}\right] \quad \underline{\boldsymbol{\tau}}=\left[\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\mathbf{D}_{12} \\
\delta \mathbf{x}_{2} \\
\delta \mathbf{x}_{2} \\
\delta \mathbf{x}_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{11} \\
\mathbf{b}_{12} \\
\mathbf{b}_{13} \\
\mathbf{b}_{21} \\
\mathbf{b}_{22} \\
\mathbf{b}_{23} \\
\mathbf{b}_{\xi_{1} \text { pror }} \\
\mathbf{b}_{d_{12}} \\
\\
\end{array}\right. \\
& \mathbf{b}_{\xi \xi_{1} \text { prior }}=-\left(\mathbf{T}_{w c_{1}} \ominus \mathbf{T}_{w c_{1}}^{\text {prior }}\right) \\
& \mathbf{b}_{d_{12}^{\text {pior }}}=-\left(\left\|\mathbf{x}_{2}^{w}-\mathbf{x}_{1}^{w}\right\|-d_{12}^{\text {prior }}\right) \\
& \text { Try to compute } \\
& \text { the Jacobian D! }
\end{aligned}
$$

Example

TEK5030

Supplementary material

- The compendium!
- Let me know if you would like to go through the derivations in greater detail!
- Python implementation of the bundle adjustment examples:
- https://github.com/ttk21/lab 05

Next lecture: Multiple-view stereo (for 3D reconstruction)

Next week: Visual SLAM

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309-1332

