UiO Department of Technology Systems University of Oslo

Multiple-view geometry

Thomas Opsahl

2023

- Epipolar geometry
 - The essential matrix $\mathbf{E}_{ba} = \left[\mathbf{t}_{ba}^b\right]_{\times} \mathbf{R}_{ba}$ Estimate from 5 or more correspondences $\mathbf{x}_n^a \leftrightarrow \mathbf{x}_n^{\prime b}$
 - The fundamental matrix $\mathbf{F}_{ba} = \mathbf{K}_b^{-T} \mathbf{E}_{ba} \mathbf{K}_a^{-1}$ Estimate from 7 or more correspondences $\mathbf{u}^a \leftrightarrow \mathbf{u}'^b$

- Epipolar geometry
 - The essential matrix $\mathbf{E}_{ba} = \left[\mathbf{t}_{ba}^b\right]_{\times} \mathbf{R}_{ba}$ Estimate from 5 or more correspondences $\mathbf{x}_n^a \leftrightarrow \mathbf{x}_n'^b$
 - The fundamental matrix $\mathbf{F}_{ba} = \mathbf{K}_b^{-T} \mathbf{E}_{ba} \mathbf{K}_a^{-1}$ Estimate from 7 or more correspondences $\mathbf{u}^a \leftrightarrow \mathbf{u}'^b$
- Pose from epipolar geometry
 - Decompose \mathbf{E}_{ba} into \mathbf{R}_{ba} and \mathbf{t}_{ba}^{b} (up to scale)

- Epipolar geometry
 - The essential matrix $\mathbf{E}_{ba} = \left[\mathbf{t}_{ba}^b\right]_{\times} \mathbf{R}_{ba}$ Estimate from 5 or more correspondences $\mathbf{x}_n^a \leftrightarrow \mathbf{x}_n'^b$
 - The fundamental matrix $\mathbf{F}_{ba} = \mathbf{K}_b^{-T} \mathbf{E}_{ba} \mathbf{K}_a^{-1}$ Estimate from 7 or more correspondences $\mathbf{u}^a \leftrightarrow \mathbf{u}'^b$
- Pose from epipolar geometry
 - Decompose \mathbf{E}_{ba} into \mathbf{R}_{ba} and \mathbf{t}_{ba}^{b} (up to scale)
- 3D structure from epipolar geometry
 - Triangulation by minimizing algebraic error

$$\begin{aligned}
\widetilde{\mathbf{u}}^{a} &= \mathbf{K}_{a} [\mathbf{R}_{aw} \quad \mathbf{t}_{aw}^{a}] \widetilde{\mathbf{x}}^{w} \\
\widetilde{\mathbf{u}}^{\prime b} &= \mathbf{K}_{b} [\mathbf{R}_{bw} \quad \mathbf{t}_{bw}^{b}] \widetilde{\mathbf{x}}^{w}
\end{aligned} \rightarrow \mathbf{A} \mathbf{x}^{w} = 0 \xrightarrow{SVD} \mathbf{x}^{w}$$

Triangulation by minimizing reprojection error

$$\varepsilon = \|\pi_a(\mathbf{T}_{aw} \cdot \mathbf{x}^w) - \mathbf{u}^a\|^2 + \|\pi_b(\mathbf{T}_{bw} \cdot \mathbf{x}^w) - \mathbf{u}'^b\|^2$$

$$\mathbf{K}_{a} \left[\begin{array}{c} \widetilde{\mathbf{u}}^{a} = \pi_{a}(\mathbf{T}_{aw}\widetilde{\mathbf{x}}^{w}) \\ \widetilde{\mathbf{u}}^{b} = \pi_{b}(\mathbf{T}_{bw}\widetilde{\mathbf{x}}^{w}) \end{array} \right] \rightarrow \mathbf{x}^{w}$$

Pixel correspondences (matching)

- Correspondences must satisfy the epipolar constraint
- Useful for reducing the number of mismatches
- Useful when searching for correspondences

Scene geometry (structure)

- Sparse scene geometry from triangulating correspondences
- Refine result by performing BA
- Dense scene geometry from stereo processing

Camera geometry (motion)

- Camera poses must satisfy the epipolar constraint
- We can decompose the essential matrix to find the relative pose between cameras
- Refine result by performing BA

Pixel correspondences (matching)

How does multi-view geometry constrain our pixel correspondences?

Image correspondences

 How do we deal with the problem of images not necessarily overlapping?

Scene geometry (structure)

 How does multi-view geometry impact the ability to estimate the 3D structure of the scene?

Camera geometry (motion)

 How does multi-view geometry impact the ability to estimate camera geometry?

- Three cameras observe the same point x
- We have three two-view geometries

$$(\widetilde{\mathbf{u}}^2)^T \mathbf{F}_{21} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{31} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{32} \widetilde{\mathbf{u}}^2 = 0$$

Three-view

- Three cameras observe the same point x
- We have three two-view geometries

$$(\widetilde{\mathbf{u}}^2)^T \mathbf{F}_{21} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{31} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{32} \widetilde{\mathbf{u}}^2 = 0$$

Each point corresponds to two epipolar lines

Three-view

- Three cameras observe the same point x
- We have three two-view geometries

$$(\widetilde{\mathbf{u}}^2)^T \mathbf{F}_{21} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{31} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{32} \widetilde{\mathbf{u}}^2 = 0$$

Each point corresponds to two epipolar lines

Three-view

- Three cameras observe the same point x
- We have three two-view geometries

$$(\widetilde{\mathbf{u}}^2)^T \mathbf{F}_{21} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{31} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{32} \widetilde{\mathbf{u}}^2 = 0$$

Each point corresponds to two epipolar lines

- Three cameras observe the same point x
- We have three two-view geometries

$$(\widetilde{\mathbf{u}}^2)^T \mathbf{F}_{21} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{31} \widetilde{\mathbf{u}}^1 = 0$$
$$(\widetilde{\mathbf{u}}^3)^T \mathbf{F}_{32} \widetilde{\mathbf{u}}^2 = 0$$

- Each point corresponds to two epipolar lines
- We observe that we can estimate one of the points directly from the two others

$$\widetilde{\mathbf{u}}^3 = (\mathbf{F}_{31}\widetilde{\mathbf{u}}^1) \times (\mathbf{F}_{32}\widetilde{\mathbf{u}}^2)$$

- This observation indicates that the points u¹, u² and u³ are connected by some geometric constraint
- But it is not clear if this three-view constraint governs more than the three two-view constraints combined

- The difference between two-view geometry and three-view geometry becomes evident if we consider lines instead of points
- In two-view geometry no constraints are available for lines
- In three-view geometry, lines I¹ and I² in two views will in general generate a line I³ in a third view

- The three view geometry has an algebraic representation known as the trifocal tensor
 - $-3 \times 3 \times 3$ array with 18dof
- Describes the relationship between
 - Point-point-point
 - Point-point-line
 - Point-line-line
 - Point-line-point
 - Line-line-line

Multi-view constraints

- Two-view constraint: Fundamental matrix (homography for planar cases)
- Three-view constraint: Trifocal tensor
- Four-view constraint: Quadrifocal tensor
- After that it gets complicated...

Multi-view constraints

- For most applications, the two-view constraint is the goto constraint
 - Fundamental matrix
 - Homography
- Easy to estimate
- Easy to use
- Also useful for establishing correspondences between images

- Multi-view applications deal with image sets
- Establishing image correspondences can be very difficult and time consuming
- Simplifying factors
 - Ordered image set
 - Known camera model(s)
 - Known camera positions
 - Known camera orientations

Images from Noah Snavely

Trevi fountain, Rome

Establish image correspondences

Detect features

Images from Noah Snavely

Trevi fountain, Rome

Establish image correspondences

- Detect features
- Match features between all image pairs
- Refine matching by estimating F in a RANSAC scheme

TEK5030

Establish image correspondences

- Detect features
- Match features between all image pairs
- Refine matching by estimating F in a RANSAC scheme
- Graph of image connectivity

Establish image correspondences

- Detect features
- Match features between all image pairs
- Refine matching by estimating F in a RANSAC scheme
- Graph of image connectivity
- Establish connected components

Images from Noah Snavely

Multi-view geometry vs multi two-view geometry

The estimated geometry is generally more accurate since we can optimize over all views simultaneously

Full bundle adjustment (BA)

Estimate scene geometry and camera geometry by minimizing the total reprojection error

$$\left\{\mathbf{T}_{wc_i}^*, \mathbf{x}_j^*\right\} = \underset{\mathbf{T}_{wc_i}, \mathbf{x}_j}{\operatorname{argmin}} \sum_{i} \sum_{j} \left\| \pi_i \left(\mathbf{T}_{wc_i}^{-1} \cdot \mathbf{x}_j^w\right) - \mathbf{u}_j^i \right\|^2$$

Multi-view geometry vs multi two-view geometry

The estimated geometry is generally more accurate since we can optimize over all views simultaneously

Full bundle adjustment (BA)

Estimate scene geometry and camera geometry by minimizing the total reprojection error

$$\left\{\mathbf{T}_{wc_i}^*, \mathbf{x}_j^*\right\} = \underset{\mathbf{T}_{wc_i}, \mathbf{x}_j}{\operatorname{argmin}} \sum_{i} \sum_{j} \left\| \pi_i \left(\mathbf{T}_{wc_i}^{-1} \cdot \mathbf{x}_j^w\right) - \mathbf{u}_j^i \right\|^2$$

But we need initial estimates to solve BA!

Incremental Structure from Motion (SfM)

- Split images into groups of connected components
- For each component, start with two images
 - Many RANSAC inliers when estimating F
 - Few RANSAC inliers when estimating H
- Estimate camera geometry and scene geometry
 - Refine estimates by BA
- Add connected image
 - Estimate camera geometry
 - Expand scene geometry
 - Update all estimates with BA
- Merge components

TEK5030

Time-lapse reconstruction of Dubrovnik, Croatia

Summary

Pixel correspondences

Geometrical constraints: F and H most important

Image correspondences

- Feature matching + RANSAC estimate of F
- Image connectivity graph
- Connected components

Scene geometry & camera geometry

- Determine initial estimates based on two-view geometry
- Optimize geometry over all views
- For example incremental SfM

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications 2nd ed
 - Chapter 11 "Structure from motion and SLAM", in particular section 11.4 "Multi-frame structure from motion"

Other

- Snavely N., Seitz S. M., Modeling the World from Internet Photo Collections, 2007
- Agarwal S. et al., Building Rome in a Day, 2011
- Heinly J. et al., Recontstructing the World in Six Days, 2015