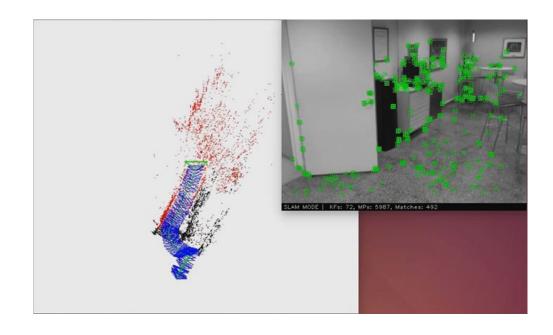
UiO Department of Technology Systems University of Oslo

Lecture 13 Visual SLAM and computer vision applications

Trym Vegard Haavardsholm



Today

- What is Visual SLAM?
- 2. Short-term, mid-term and long-term tracking
- 3. Mapping and sensor fusion with factor graphs
- 4. VSLAM backend strategies
- 5. VSLAM systems
- 6. Example application

Part I

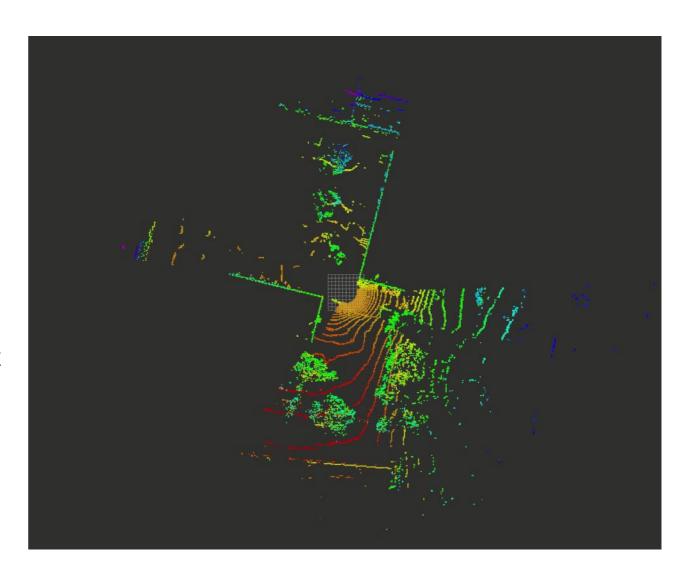
WHAT IS VISUAL SLAM?

Simultaneous localisation and mapping

Simultaneous localisation and mapping

Simultaneous

- estimation of the state of a robot using on-board sensors
- construction of a map of the environment that the sensors are perceiving

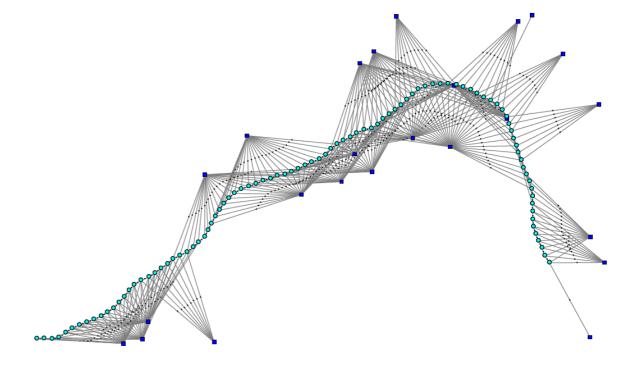


Simultaneous localisation and mapping

Simultaneous

- mapping:

 Continuously expanding
 and optimising a consistent map
 while exploring the environment
- localisation:
 Localisation within the map



Jing Dong "GTSAM 4.0 Tutorial" License CC BY-NC-SA 3.0

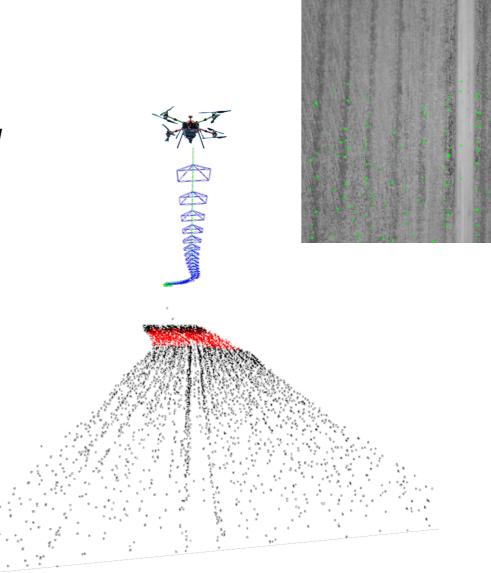
What is Visual SLAM?

Visual simultaneous localisation and mapping

Simultaneous

- mapping:

 Continuously expanding
 and optimising a consistent map
 while exploring the environment
- localisation (tracking):
 Localisation within the map
 (tracking the map in image frames)

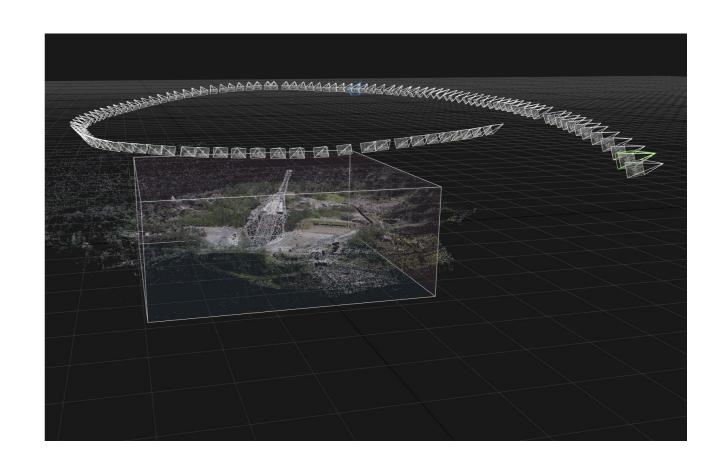


What is the map?

What is the map?

A model of the environment that lets us

- limit the localisation error by recognising previously visited areas
- (support other tasks, such as obstacle avoidance and path planning)

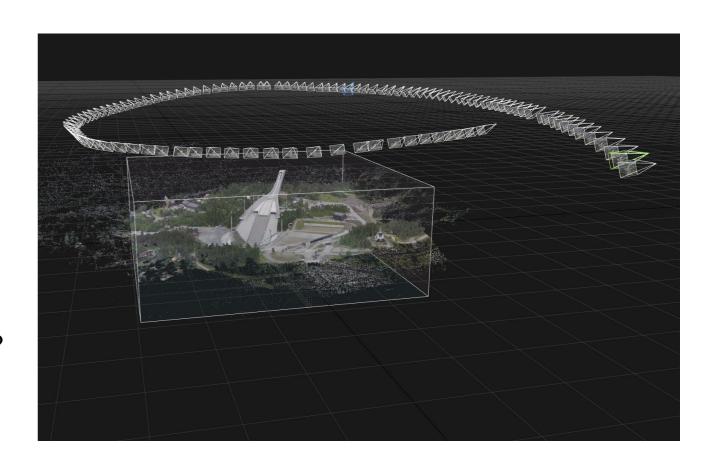


What is the map?

A model of the environment that lets us

- limit the localisation error by recognising previously visited areas
- (support other tasks, such as obstacle avoidance and path planning)

Maybe best left as auxiliary processing?



Feature-based metric maps

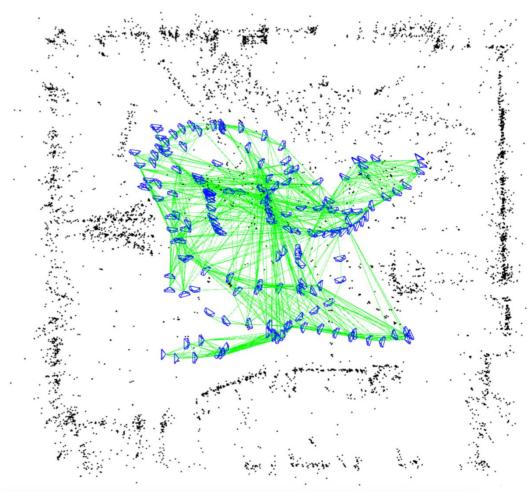


Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, *32*(6), 1309–1332

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–1163. https://doi.org/10.1109/TRO.2015.2463671

Dense metric maps

DTAM:

Dense Tracking and Mapping in Real-Time

Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, 32(6), 1309–1332

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense tracking and mapping in real-time. In 2011 International Conference on Computer Vision (pp. 2320–2327). IEEE

Dense metric maps

DTAM:

Dense Tracking and Mapping in Real-Time

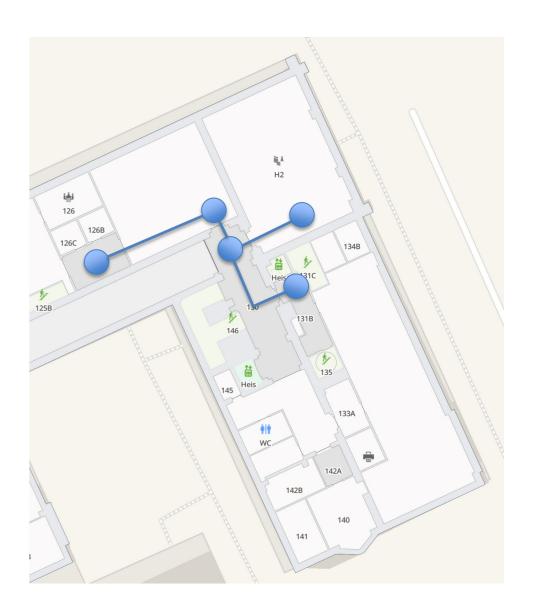
Representation example:

https://voxblox.readthedocs.io/en/latest/

Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, 32(6), 1309–1332

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense tracking and mapping in real-time. In 2011 International Conference on Computer Vision (pp. 2320–2327). IEEE

Topological maps



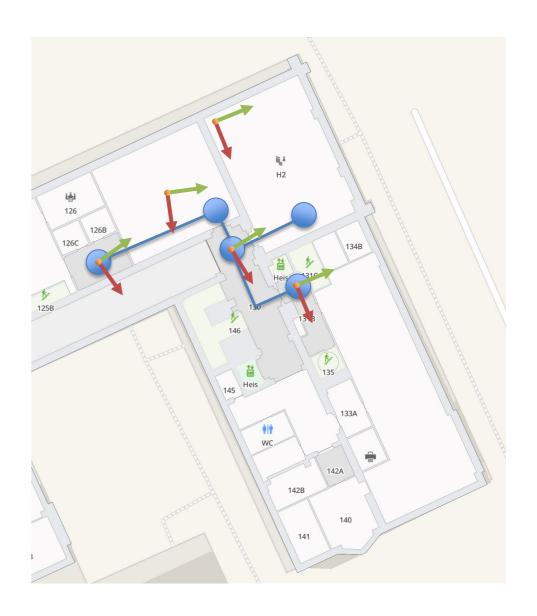
Topological maps

FABMAP

Image: YouTube: ORI - Oxford Robotics Institute

Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. The International Journal of Robotics Research, 27(6), 647–665

Topological-metric maps



Topological-metric maps

Visual Teach & Repeat

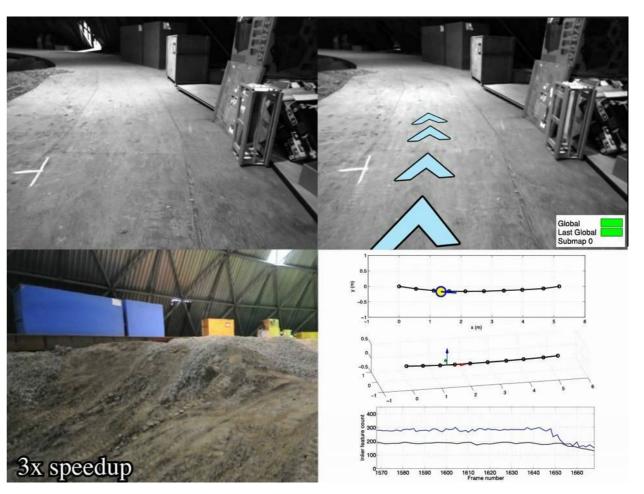
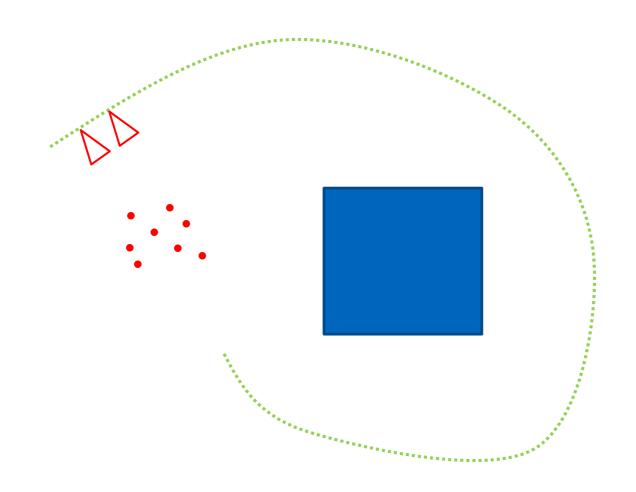


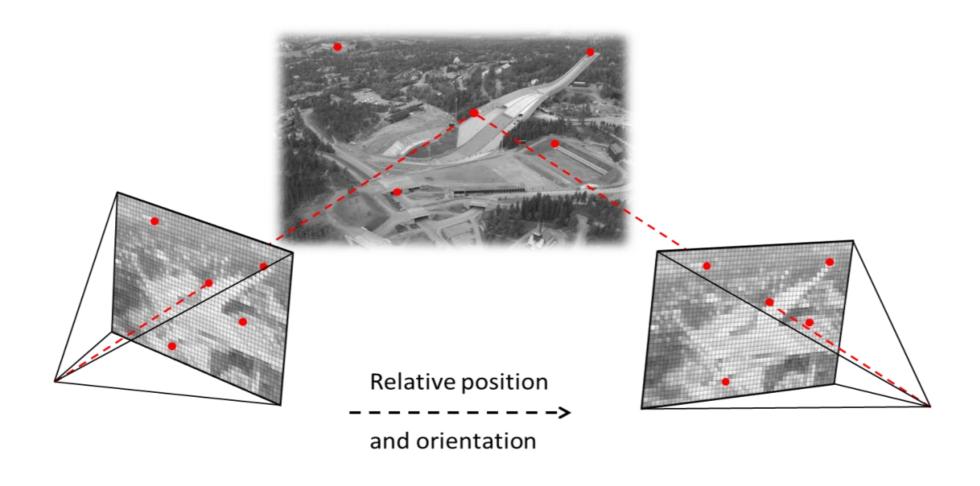
Image: YouTube: utiasASRL

Furgale P T and Barfoot T D. Visual Teach and Repeat for Long-Range Rover Autonomy. Journal of Field Robotics, special issue on Visual mapping and navigation outdoors, 27(5): 534-560, 2010.

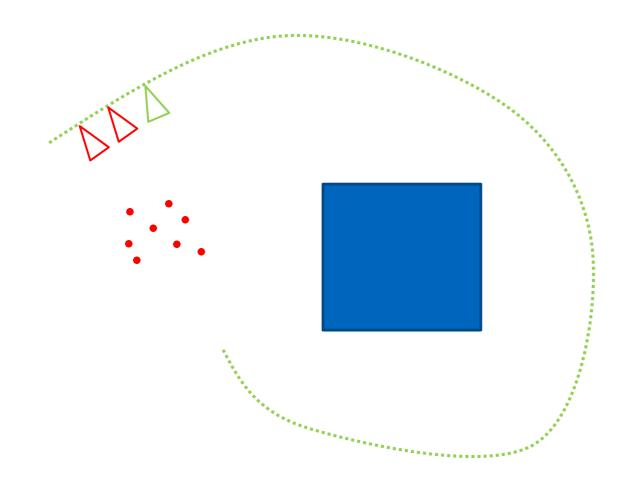
How do we build a map?



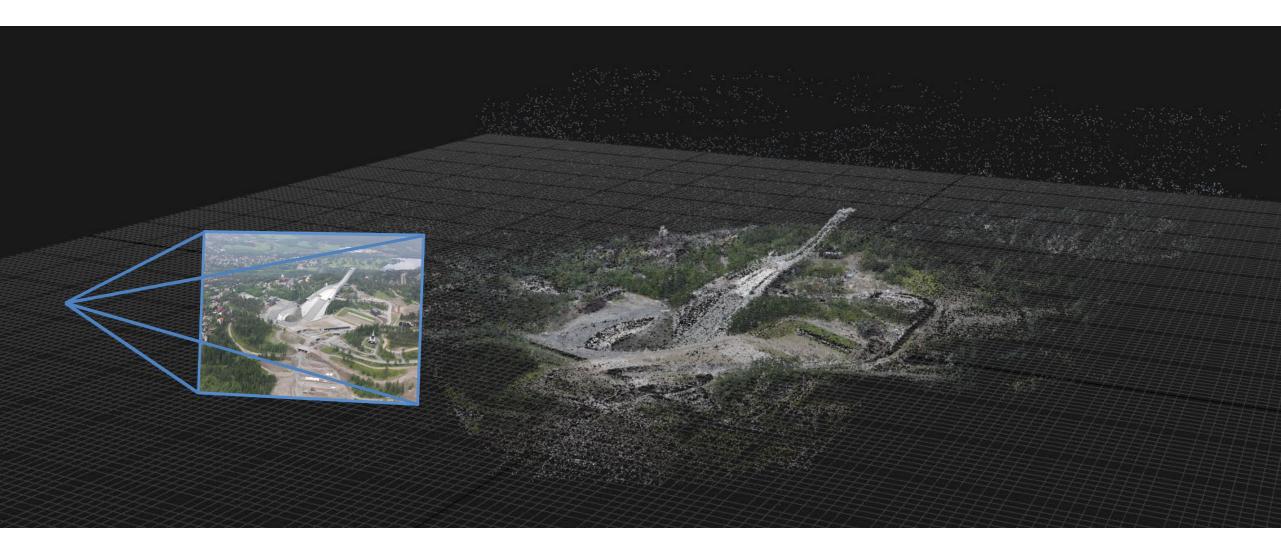
Relative pose and 3D from two views



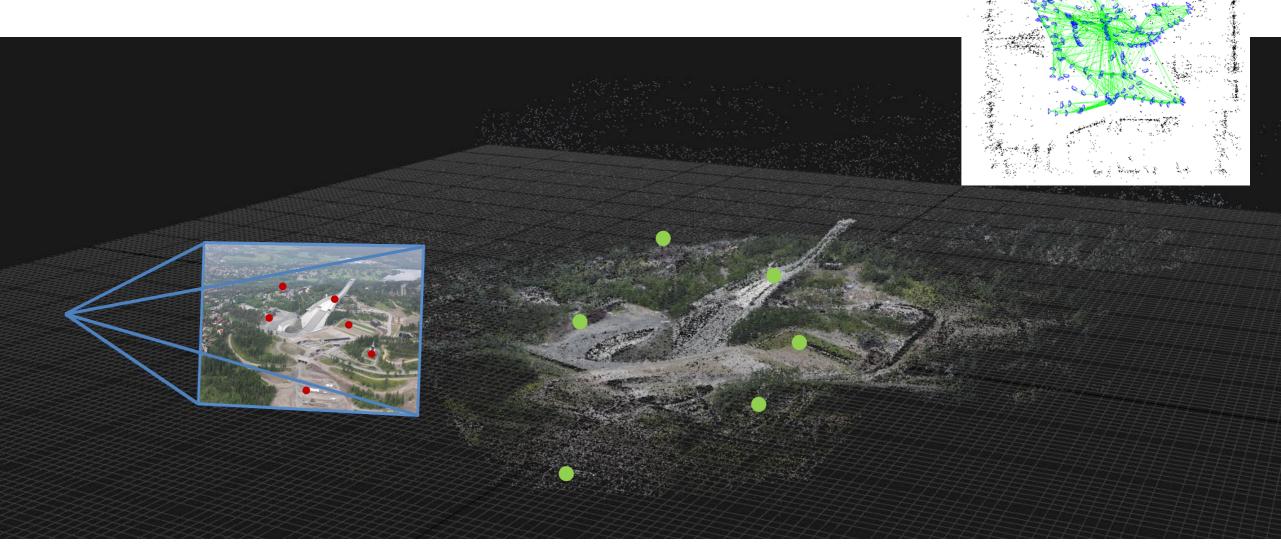
How do we track a map?



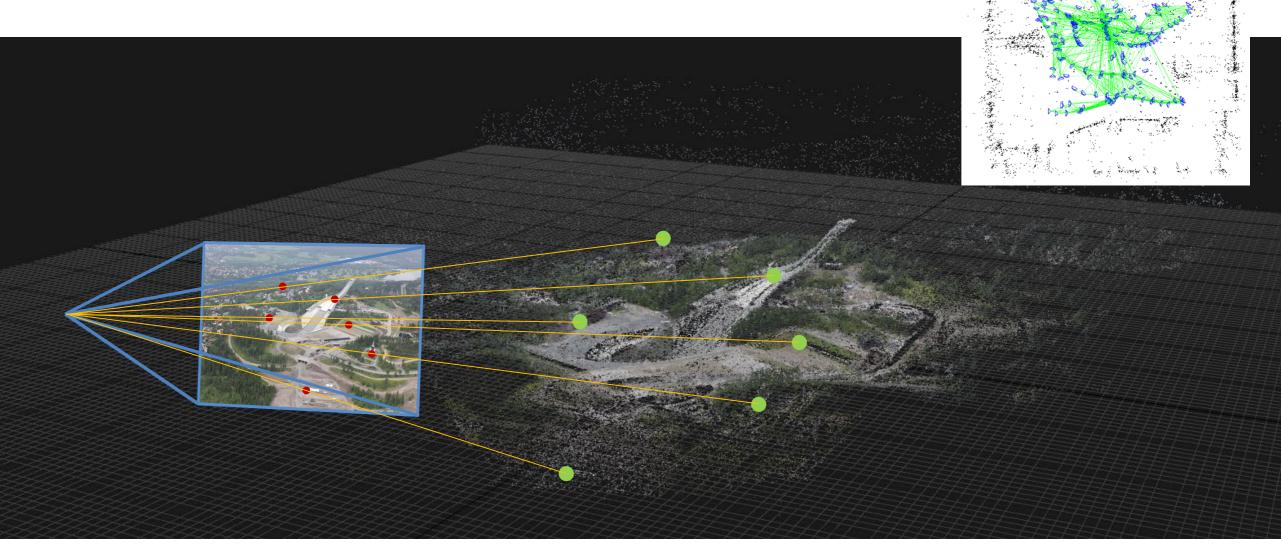
Pose from known 3D map



Pose from point correspondences



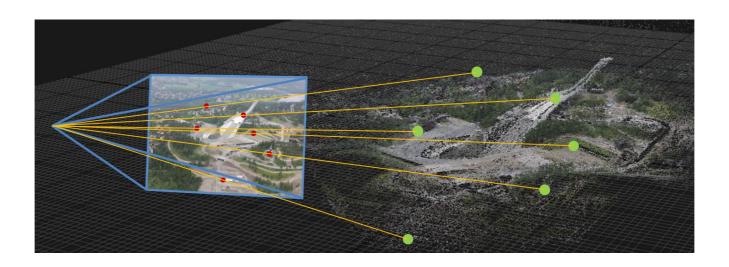
Pose from point correspondences

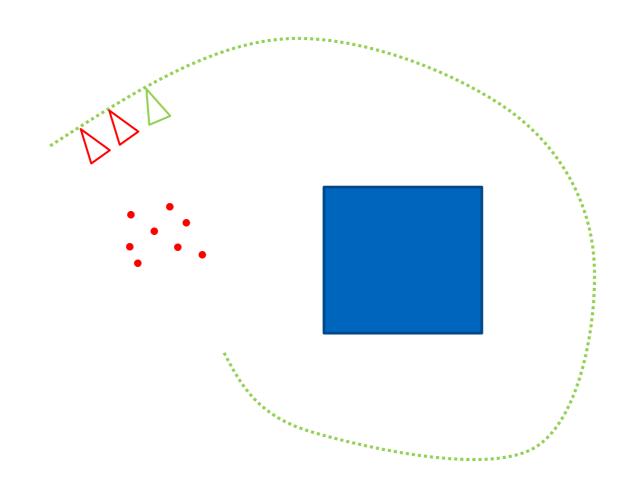


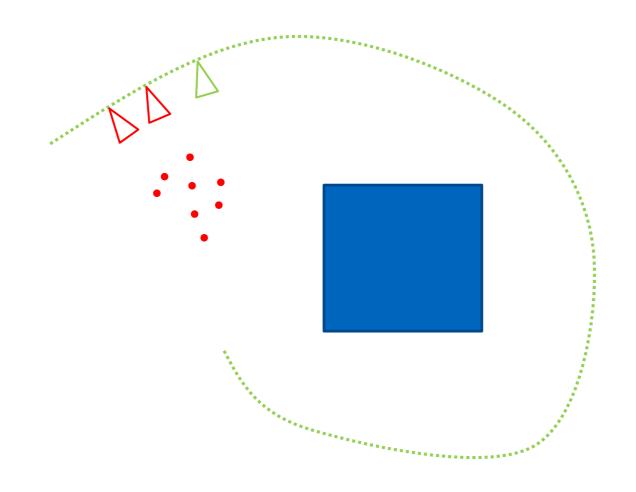
Pose from point correspondences

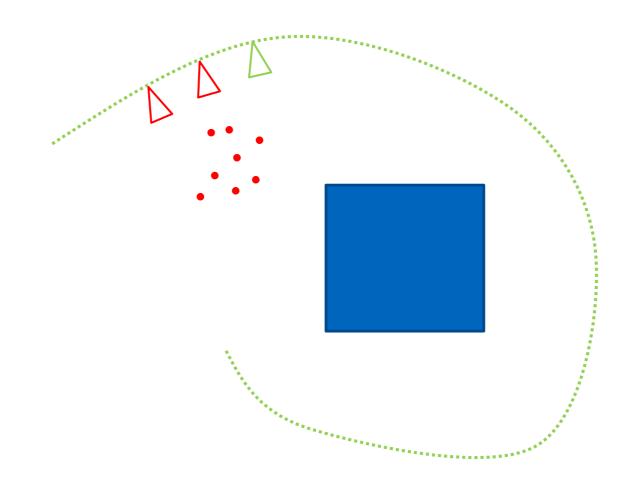
Minimise *geometric error*

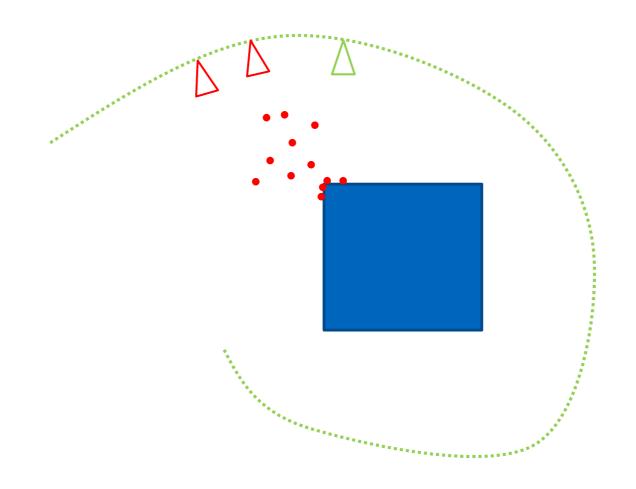
$$\mathbf{T}_{wc}^* = \underset{\mathbf{T}_{wc}}{\operatorname{argmin}} \sum_{i} \left\| \pi(\mathbf{T}_{wc}^{-1} \cdot \mathbf{x}_{i}^{w}) - \mathbf{u}_{i} \right\|^{2}$$

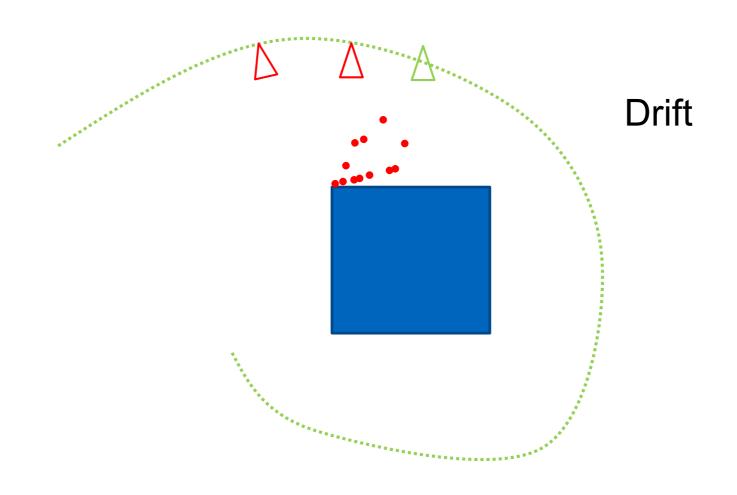


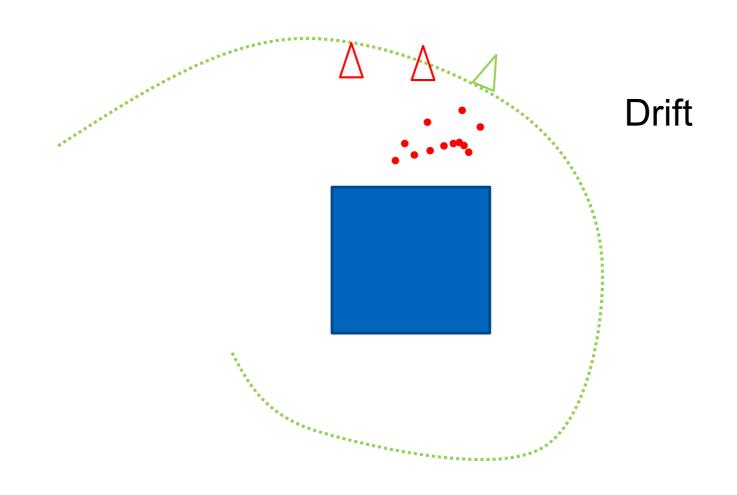


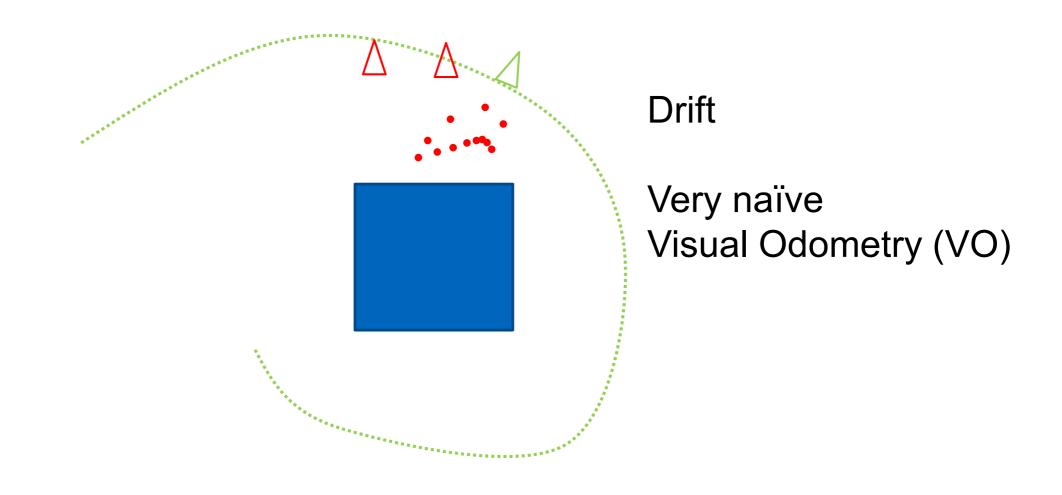


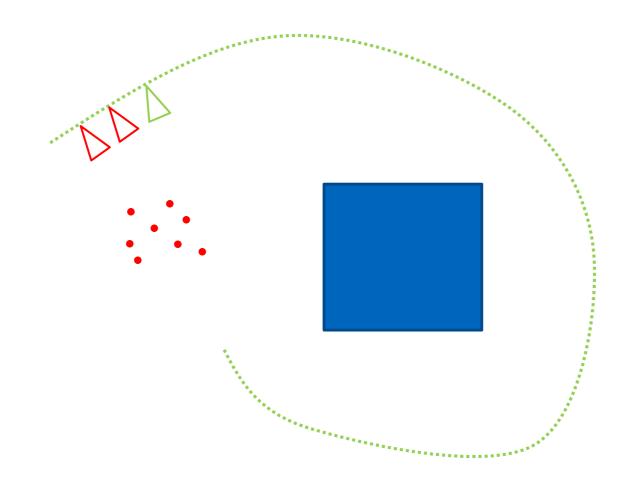


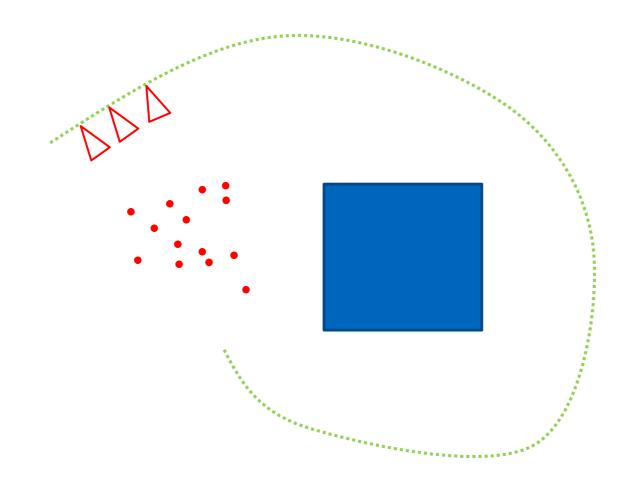


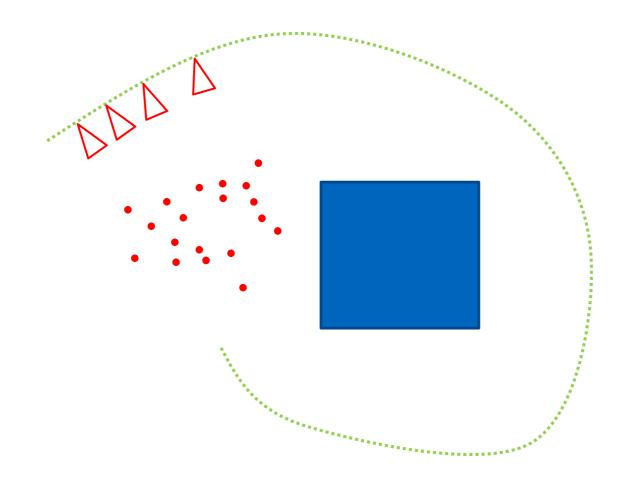


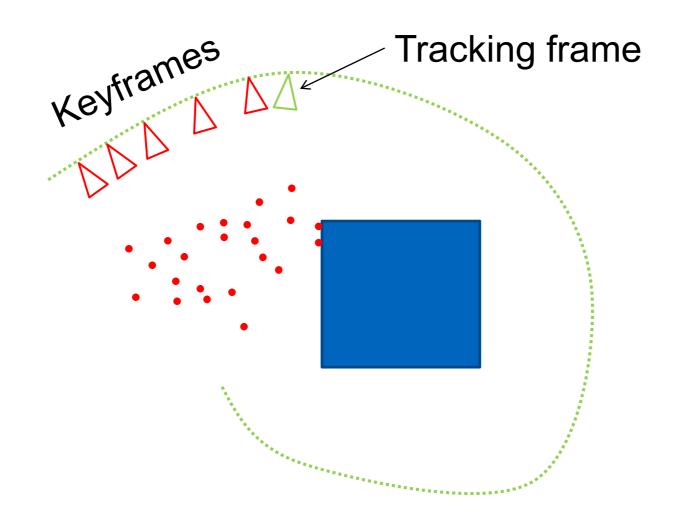








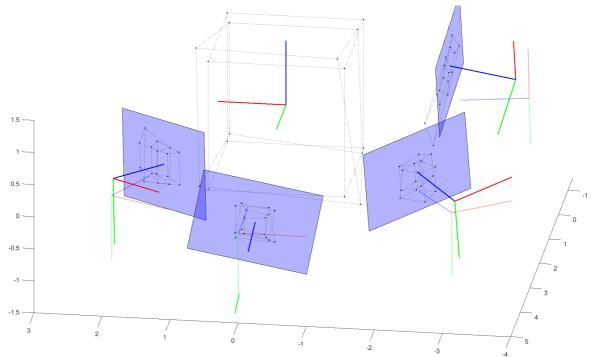




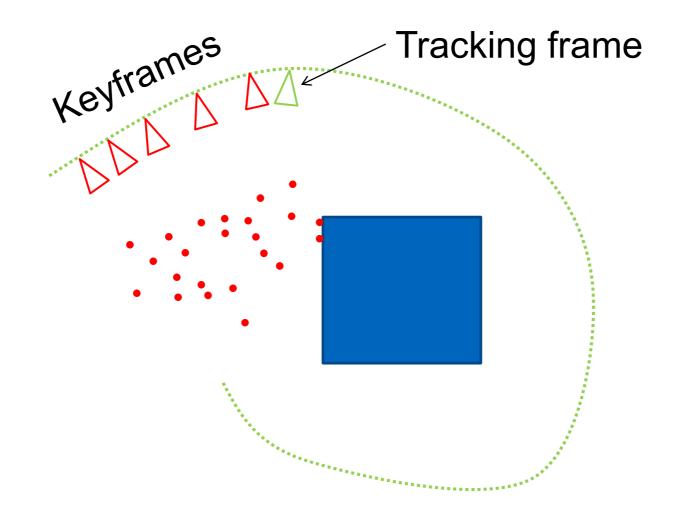
Full bundle adjustment

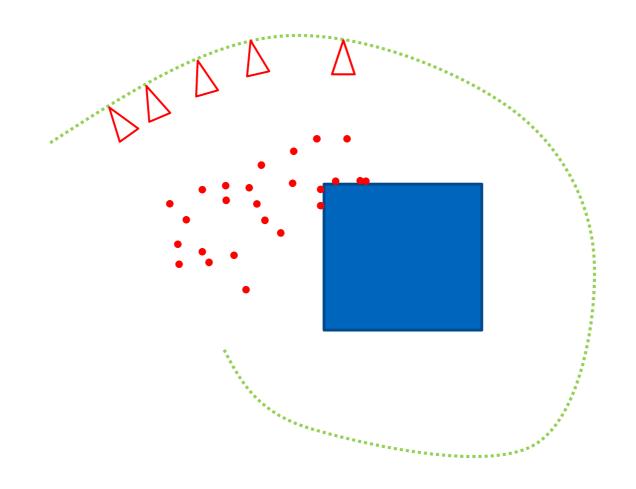
Minimise geometric error over the camera poses and world points

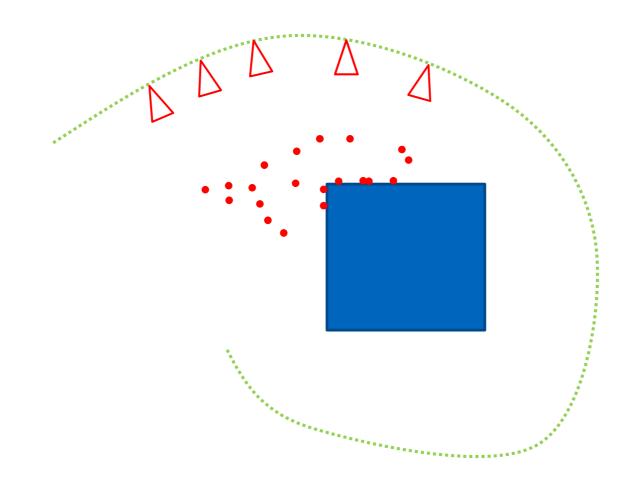
$$\left\{\mathbf{T}_{wc_i}^*, \mathbf{x}_j^{w*}\right\} = \underset{\mathbf{T}_{wc_i}, \mathbf{x}_j^w}{\operatorname{argmin}} \sum_{i} \sum_{j} \left\| \pi_i (\mathbf{T}_{wc}^{-1} \cdot \mathbf{x}_j^w) - \mathbf{u}_j^i \right\|^2$$

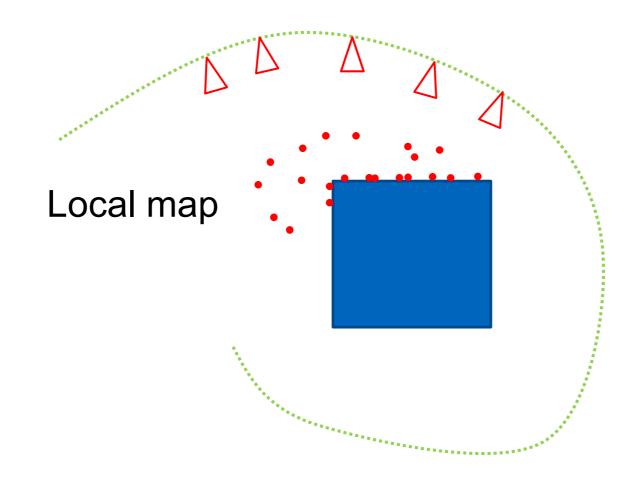


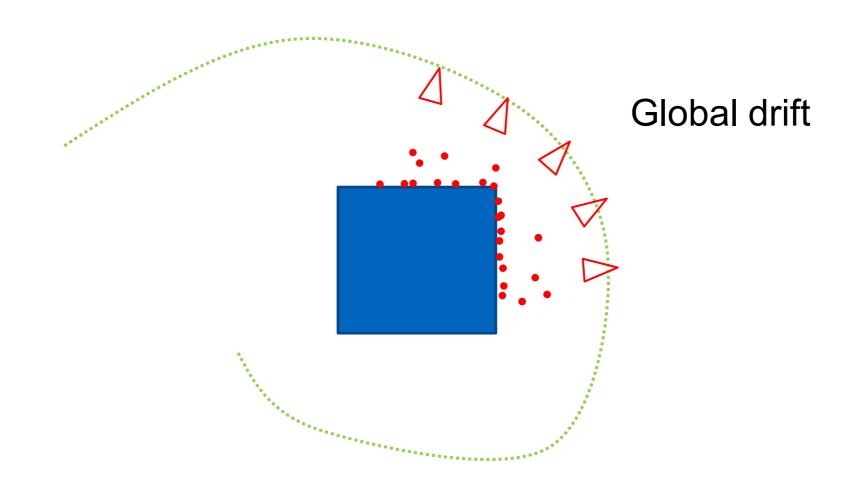
Multi-view mapping

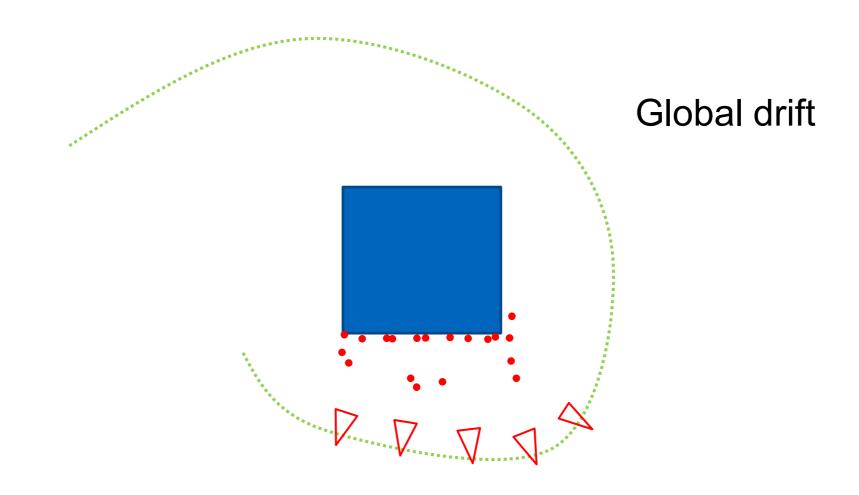


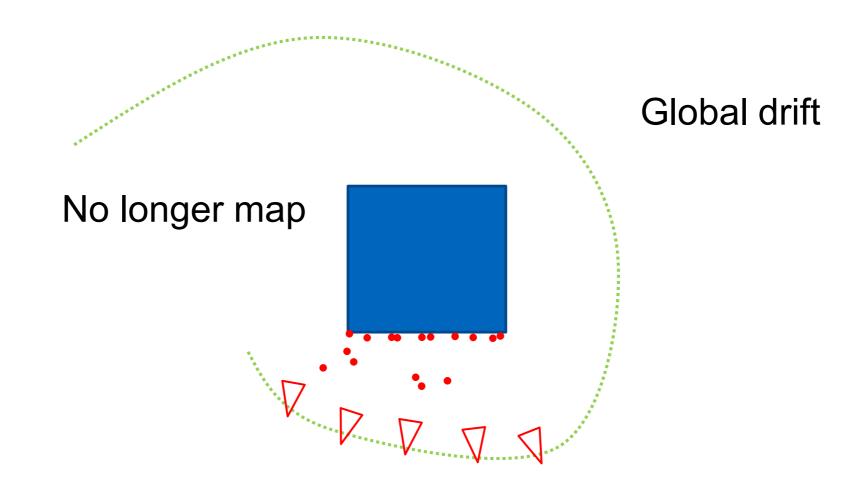


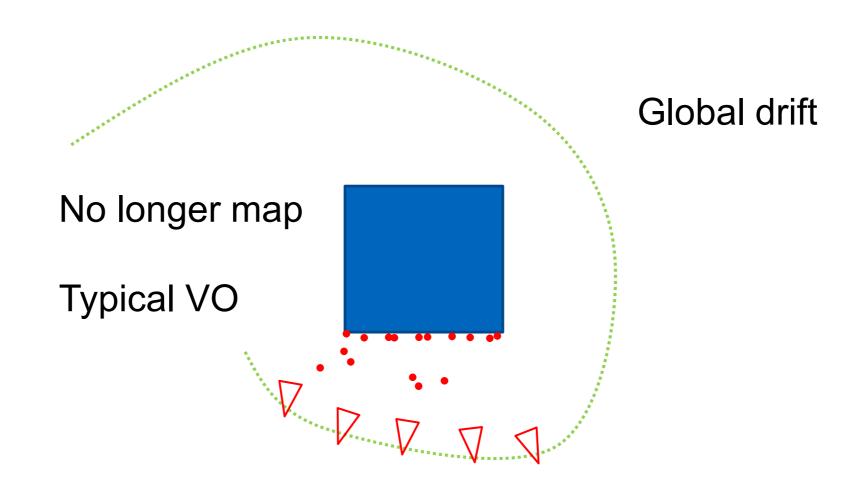


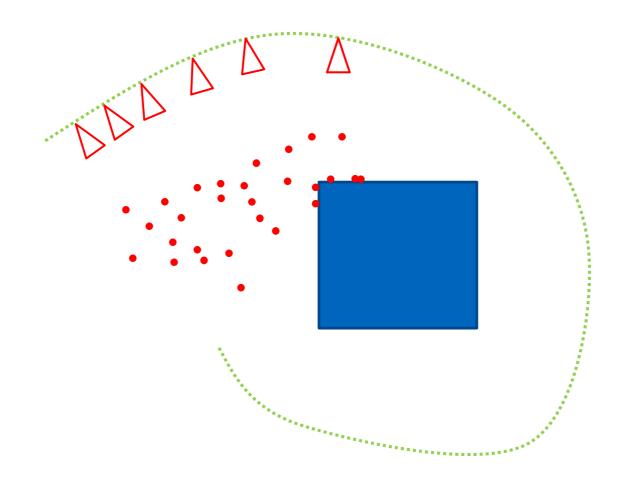


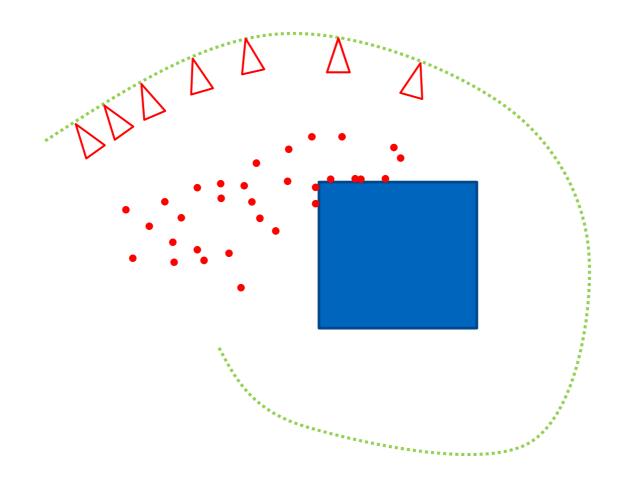


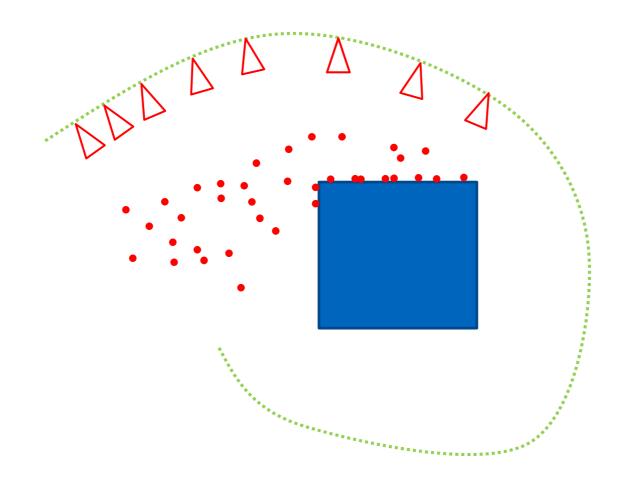


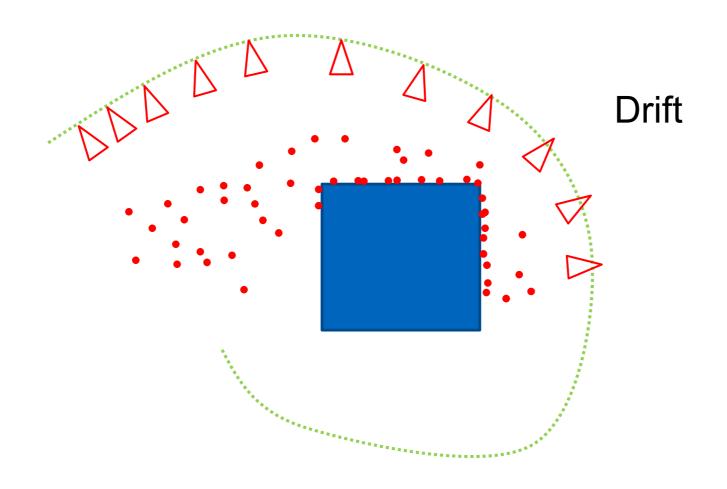


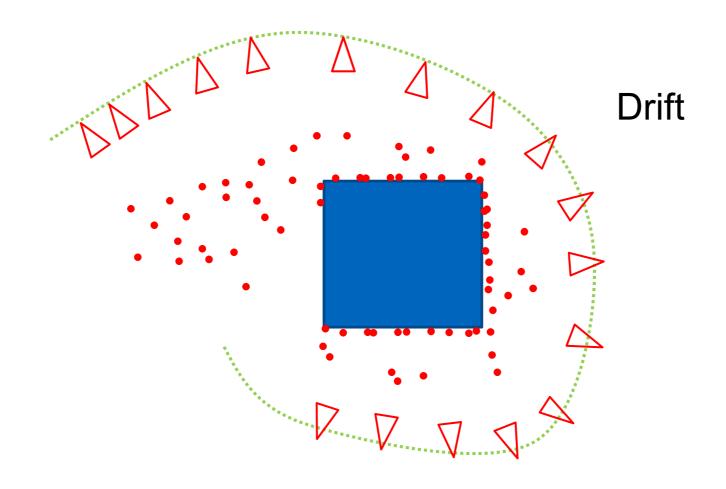


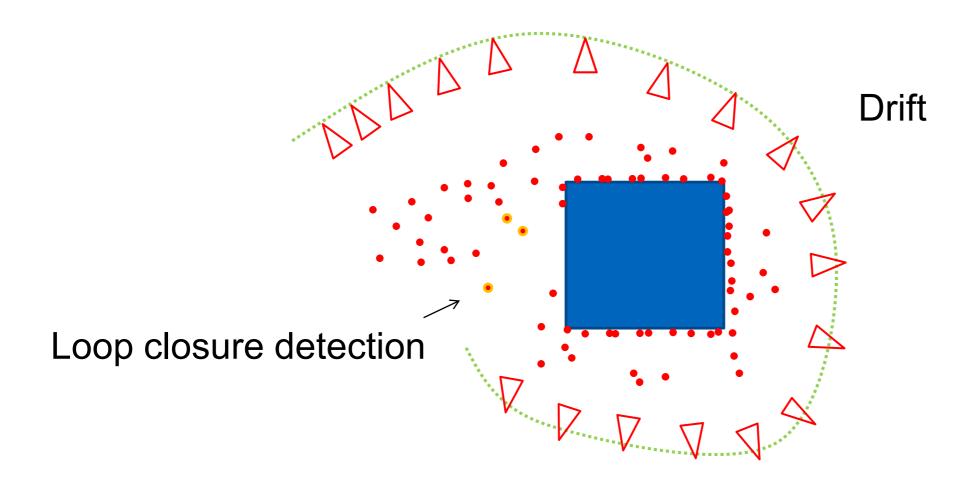


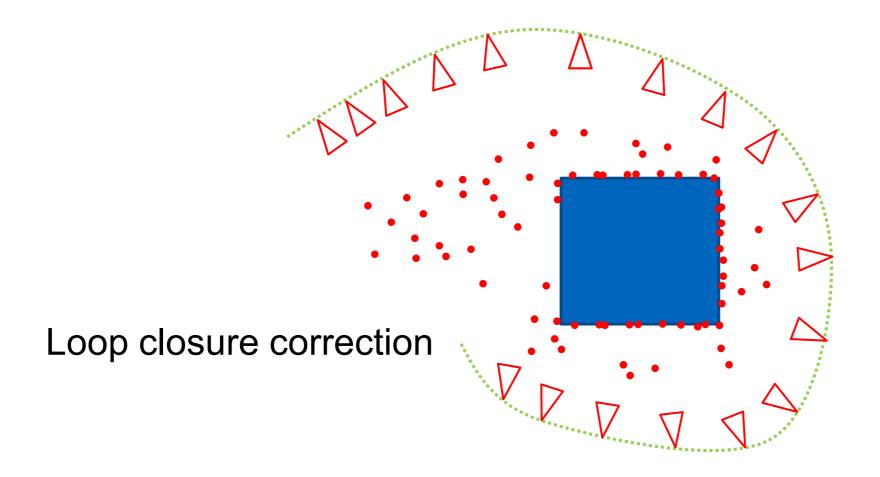


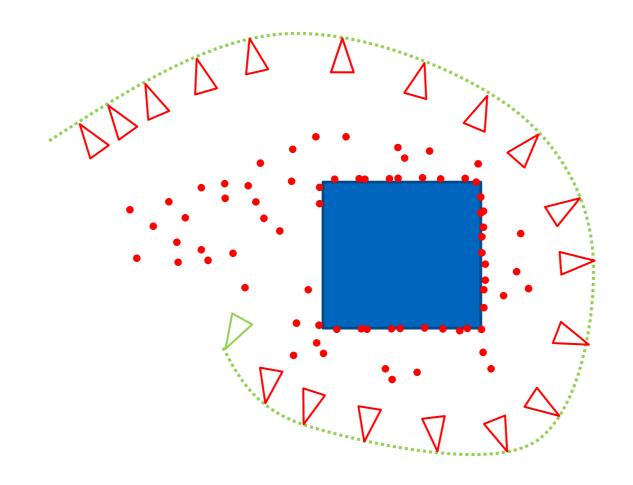




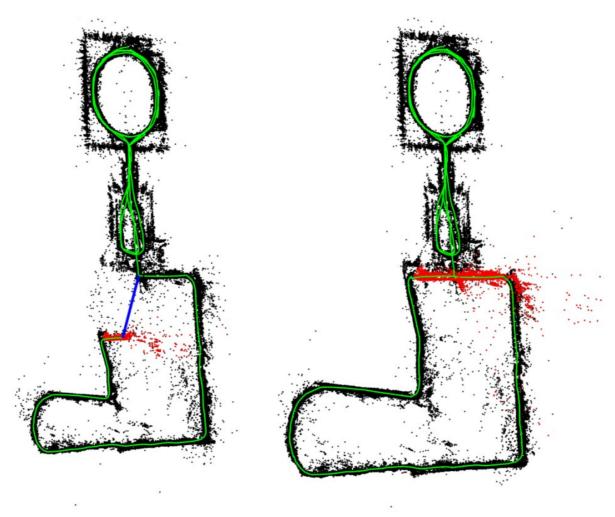






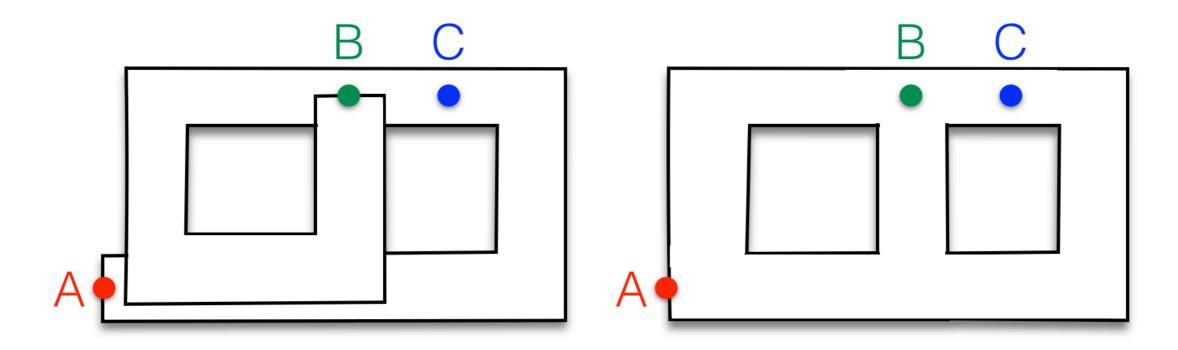


Visual SLAM vs visual odometry



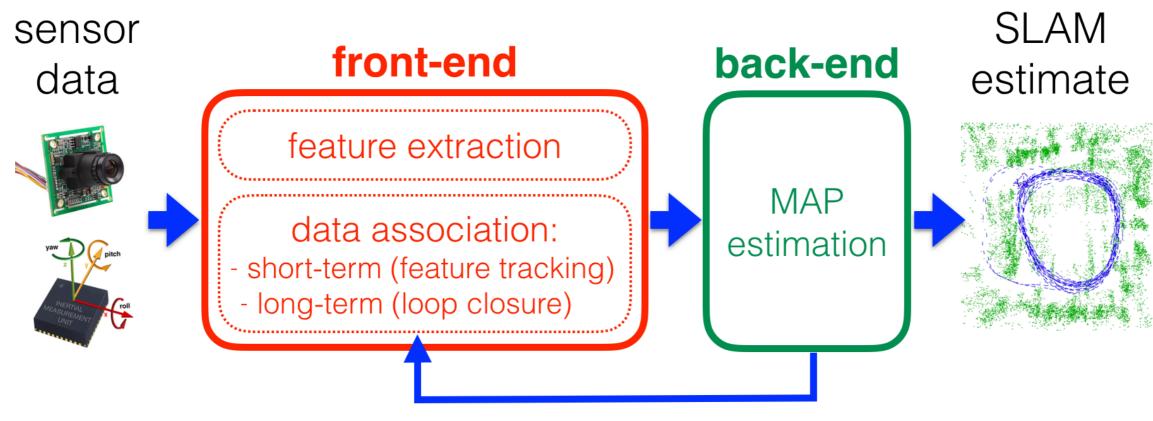
Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–1163

Visual SLAM vs visual odometry



Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, 32(6), 1309–1332

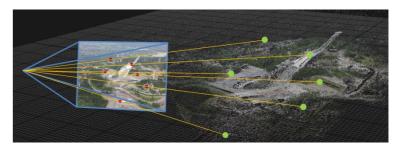
Components of SLAM



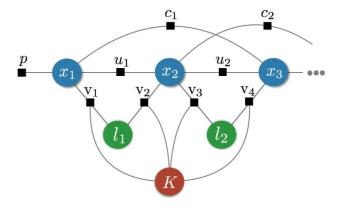
Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, *32*(6), 1309–1332

Components of VSLAM

- Short-term tracking
 - Pose estimation given the local map
 - Keyframe proposals
- Mid-term tracking
 - Loop closure detection in the local map
- Long-term tracking
 - Loop closure detection in the global map
- Mapping
 - Building and optimising the map over keyframes both locally and globally
 - Data fusion

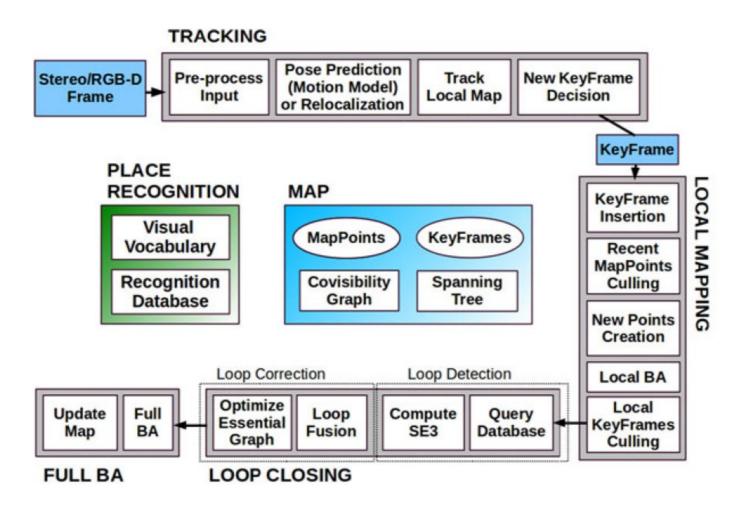


Lowry, S. et al. (2016). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32(1), 1–19.



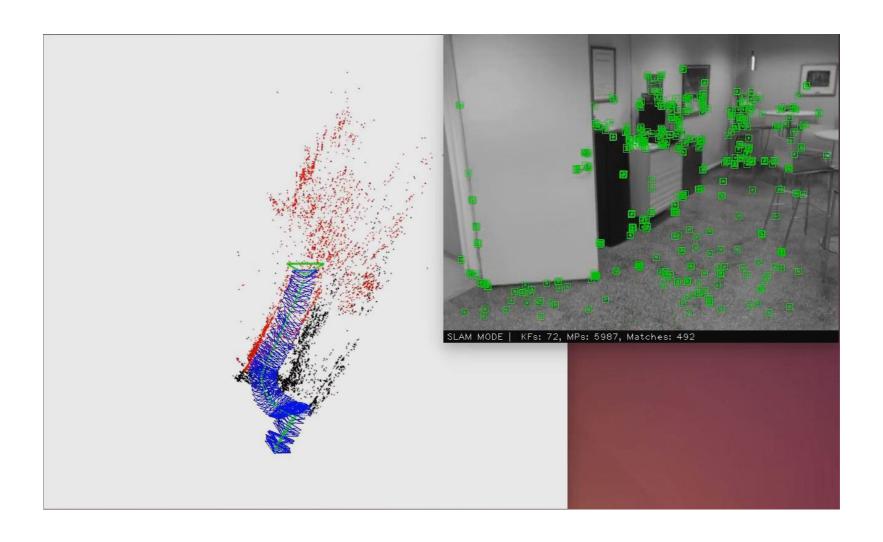
Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, 32(6), 1309–1332

Example: ORB-SLAM 2



R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras," IEEE Trans. Robot., pp. 1-8, 2017.

Example: ORB-SLAM 2



Part II

SHORT-TERM, MID-TERM AND LONG-TERM TRACKING

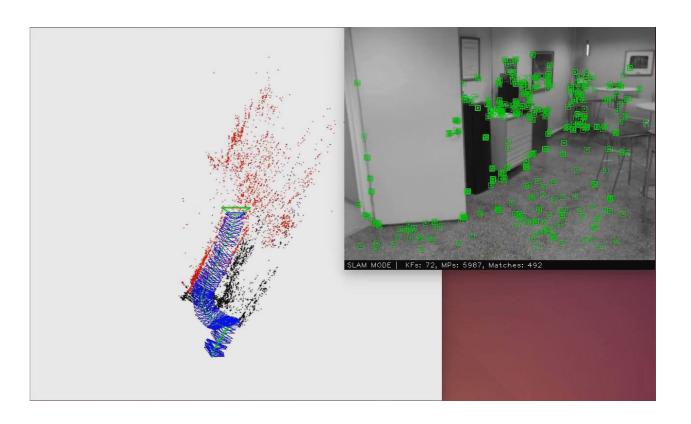
Tracking the map in VSLAM

We track the map for localisation

Estimate the camera pose relative to the map for each frame

and for building a consistent map

Detect loop closures



Tracking the map in VSLAM

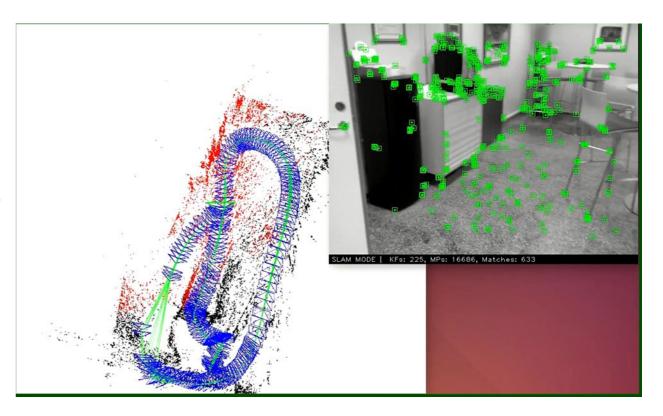
We track the map for localisation

Estimate the camera pose relative to the map for each frame

and for building a consistent map

Detect loop closures

These tasks have different requirements, challenges and opportunities



Short-term tracking for pose estimation

Requires:

- High tracking rate
- Precise pose estimate

Challenges:

- Fast correspondence search
- Many correspondences

Opportunities:

- A simple motion model often results in a good prediction for the next pose
- Conditions are almost the same, few changes
- ➤ It is often possible to significantly restrict the search for correspondences

Mid-term tracking for loop closure detection

Requires:

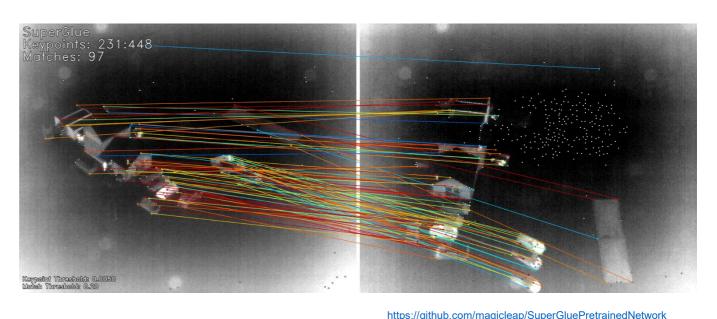
- Tracks across many views after a significant motion
- Relatively high tracking rate (keyframe rate)

Challenges:

- Different viewpoints
- Occlusions
- Several candidate keyframes

Opportunities:

- Do not need to run in frame rate
- We are close to previous keyframes
- We can restrict our search and exploit longer processing time



Sarlin, P. E., Detone, D., Malisiewicz, T., & Rabinovich, A. (2020). SuperGlue: Learning Feature Matching with Graph Neural Networks.

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4937–4946.

Long-term tracking for loop closure detection

Requires:

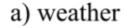
- Tracks across many views after a significant time
- Global search

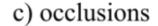
Additional challenges:

- Changing conditions
- Changing scene
- A very large amount of candidate keyframes

Opportunities:

We can exploit even longer processing time

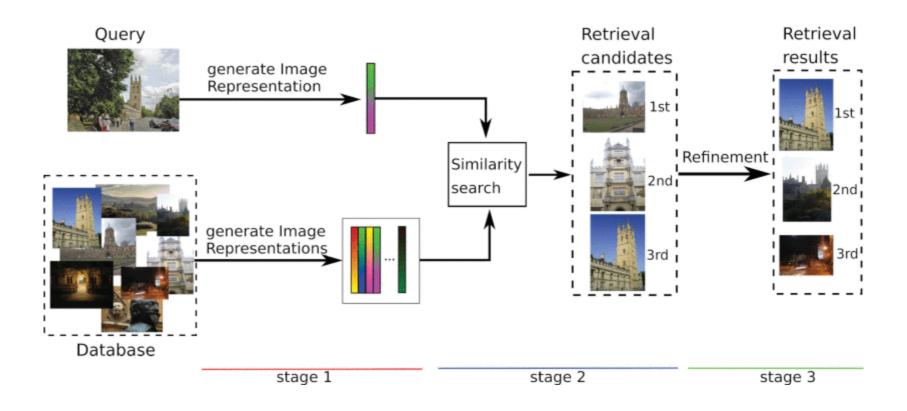




d) day/night

"A Survey on Deep Visual Place Recognition," C. Masone and B. Caputo, IEEE Access, vol. 9, pp. 19516-19547, 2021

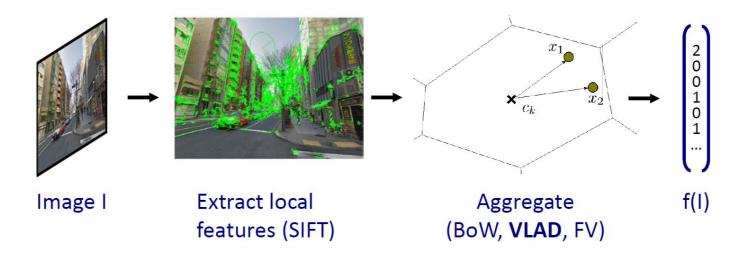
Image retrieval



"A Survey on Deep Visual Place Recognition," C. Masone and B. Caputo, IEEE Access, vol. 9, pp. 19516-19547, 2021

Image retrieval architectures

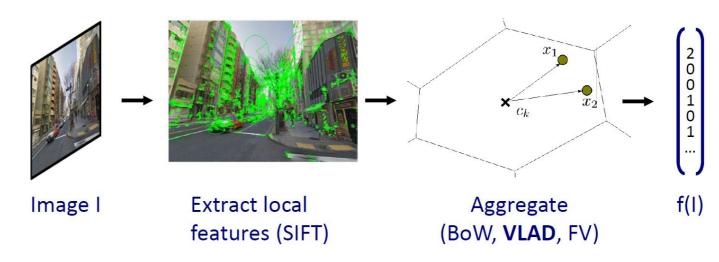
Classical approach



"Cross-weather-time, long term Visual Geo-Localization", R. Kumar, CVPR 2021 tutorial on Cross-view and Cross-modal Visual Geo-Localization

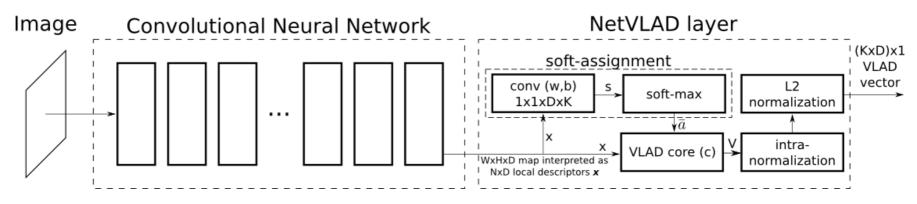
Image retrieval architectures

Classical approach



"Cross-weather-time, long term Visual Geo-Localization", R. Kumar, CVPR 2021 tutorial on Cross-view and Cross-modal Visual Geo-Localization

Trained end-to-end



Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2018). NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1437–1451

https://www.di.ens.fr/willow/research/netvlad/

Supplementary material

"Visual Place Recognition: A Survey", Lowry, S. et al., IEEE Transactions on Robotics, 32 (1), pp 1–19, 2016 https://ieeexplore.ieee.org/document/7339473

"A Survey on Deep Visual Place Recognition,"

C. Masone and B. Caputo, IEEE Access, vol. 9, pp. 19516-19547, 2021 doi: 10.1109/ACCESS.2021.3054937.

"Cross-weather-time, long term Visual Geo-Localization"

R. Kumar, CVPR 2021 tutorial on Cross-view and Cross-modal Visual GeoLocalization

https://www.sri.com/computer-vision/cvpr-2021-tutorial-on-cross-view-and-cross-modal-visual-geo-localization/

Part III

MAPPING AND SENSOR FUSION WITH FACTOR GRAPHS

Maximum a posteriori inference

Interested in the unknown state variables X, given the measurements Z.

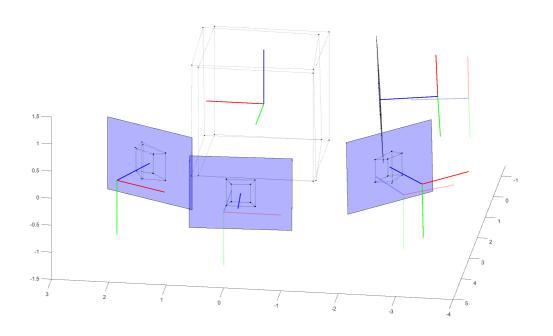
The most often used estimator for *X* is the MAP estimate:

$$X^{\text{MAP}} = \underset{X}{\operatorname{argmax}} p(X \mid Z)$$

$$= \underset{X}{\operatorname{argmax}} \frac{p(Z \mid X)p(X)}{p(Z)}$$

$$= \underset{X}{\operatorname{argmax}} l(X; Z)p(X)$$

$$l(X; Z) \propto p(Z \mid X)$$



Maximum a posteriori inference

Measurement model:

$$\mathbf{z}_i = h_i(X_i) + \eta, \qquad \eta \sim N(\mathbf{0}, \mathbf{\Sigma}_i)$$

Measurement prediction function:

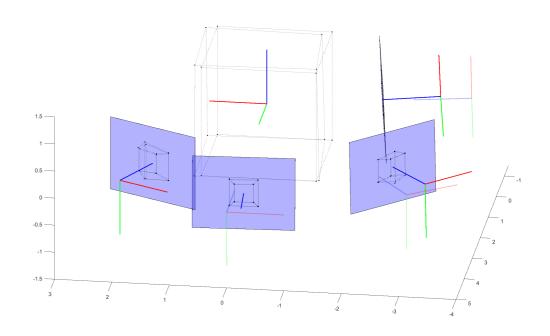
$$\hat{\mathbf{z}}_i = h_i(X_i)$$

Measurement likelihood:

$$p(\mathbf{z}_i \mid X_i) \propto l(X_i; \mathbf{z}_i) = \exp\left(-\frac{1}{2} \|h_i(X_i) - \mathbf{z}_i\|_{\Sigma_i}^2\right)$$

MAP estimate:

$$X^{\text{MAP}} = \underset{X}{\operatorname{argmin}} \sum_{i} \|h_{i}(X_{i}) - \mathbf{z}_{i}\|_{\Sigma_{i}}^{2}$$



$$\left\{\mathbf{T}_{wc_i}^*, \mathbf{x}_j^{w*}\right\} = \underset{\mathbf{T}_{wc_i}, \mathbf{x}_j^w}{\operatorname{argmin}} \sum_{i} \sum_{j} \left\| \pi_i (\mathbf{T}_{wc_i}^{-1} \cdot \mathbf{x}_j^w) - \mathbf{u}_j^i \right\|^2$$

Maximum a posteriori inference

Measurement model:

$$\mathbf{z}_i = h_i(X_i) + \eta, \qquad \eta \sim N(\mathbf{0}, \Sigma_i)$$

Measurement prediction function:

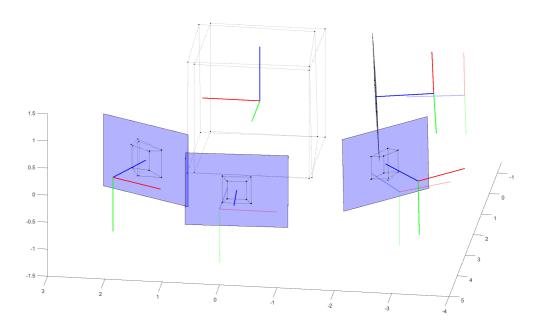
$$\hat{\mathbf{z}}_i = h_i(X_i)$$

Measurement likelihood:

$$p(\mathbf{z}_i \mid X_i) \propto l(X_i; \mathbf{z}_i) = \exp\left(-\frac{1}{2} \|h_i(X_i) - \mathbf{z}_i\|_{\Sigma_i}^2\right)$$

MAP estimate:

$$X^{\text{MAP}} = \underset{X}{\operatorname{argmin}} \sum_{i} \|h_{i}(X_{i}) - \mathbf{z}_{i}\|_{\Sigma_{i}}^{2}$$



Applying the MAP framework

This results in the linearised weighted least squares problem

$$\underline{\tau}^* = \underset{\underline{\tau}}{\operatorname{arg min}} \sum_{i=1}^k \sum_{j=1}^n \|\mathbf{P}_{ij}\boldsymbol{\xi}_i + \mathbf{S}_{ij}\delta\mathbf{x}_j - \mathbf{b}_{ij}\|^2
= \underset{\underline{\tau}}{\operatorname{arg min}} \|\mathbf{A}\underline{\tau} - \mathbf{b}\|^2,$$

where

$$\begin{bmatrix} \mathbf{P}_{ij} = \mathbf{\Sigma}_{n\,ij}^{-1/2} \mathbf{J}_{\mathbf{T}_{wc_i}}^{h_{ij}} \\ \mathbf{S}_{ij} = \mathbf{\Sigma}_{n\,ij}^{-1/2} \mathbf{J}_{\mathbf{x}_j^w}^{h_{ij}} \\ \mathbf{b}_{ij} = \mathbf{\Sigma}_{n\,ij}^{-1/2} (\mathbf{x}_{n\,j}^i - h_{ij}(\mathbf{T}_{wc_i}, \mathbf{x}_j^w)), \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{S}_{11} & & & \\ \vdots & & \ddots & & \\ \mathbf{P}_{1n} & & & \mathbf{S}_{1n} & & \\ \vdots & & & \ddots & & \\ \mathbf{P}_{1n} & & & \mathbf{S}_{1n} & & \\ \vdots & & & \ddots & & \\ \mathbf{P}_{k1} & \mathbf{S}_{k1} & & & \\ \vdots & & \ddots & & \\ \mathbf{P}_{kn} & & \mathbf{S}_{kn} \end{bmatrix} \quad \boldsymbol{\tau} = \begin{bmatrix} \boldsymbol{\xi}_1 \\ \vdots \\ \boldsymbol{\xi}_k \\ \delta \mathbf{x}_1 \\ \vdots \\ \delta \mathbf{x}_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_{11} \\ \vdots \\ \mathbf{b}_{1n} \\ \vdots \\ \mathbf{b}_{k1} \\ \vdots \\ \mathbf{b}_{kn} \end{bmatrix}.$$

Measurement model:

$$\mathbf{z}_i = h_i(X_i) + \eta, \qquad \eta \sim N(\mathbf{0}, \Sigma_i)$$

Measurement prediction function:

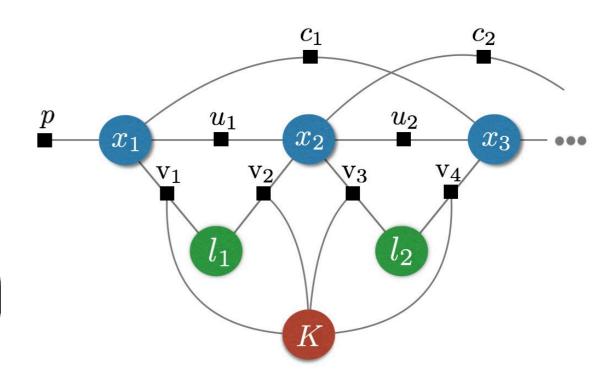
$$\hat{\mathbf{z}}_i = h_i(X_i)$$

Measurement likelihood:

$$p(\mathbf{z}_i \mid X_i) \propto l(X_i; \mathbf{z}_i) = \exp\left(-\frac{1}{2} \left\| h_i(X_i) - \mathbf{z}_i \right\|_{\Sigma_i}^2\right)$$

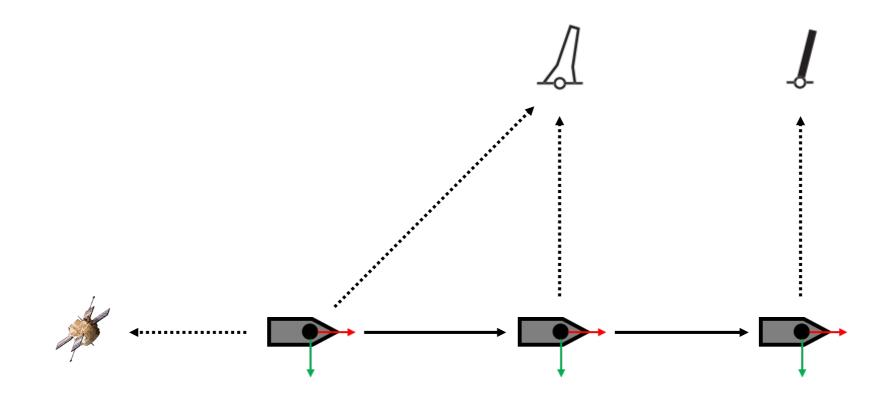
MAP estimate:

$$X^{\text{MAP}} = \underset{X}{\operatorname{argmin}} \sum_{i} \|h_{i}(X_{i}) - \mathbf{z}_{i}\|_{\Sigma_{i}}^{2}$$



Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, 32(6), 1309–1332

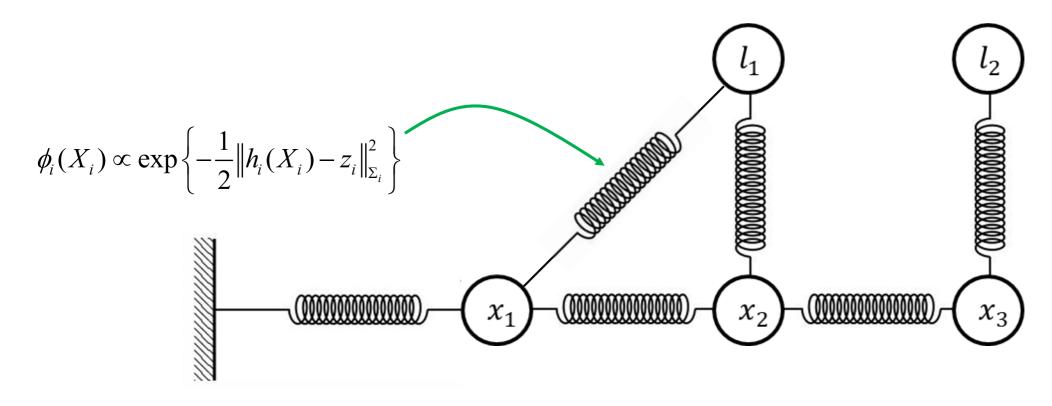
Simple SLAM example



https://github.com/tussedrotten/simple-factorgraph-example

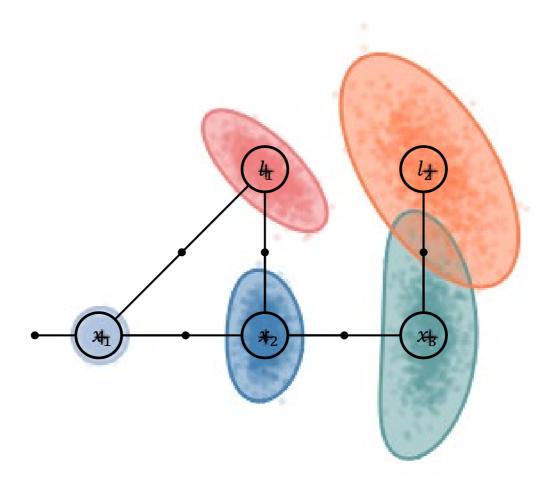
Simple SLAM example

Simple SLAM example



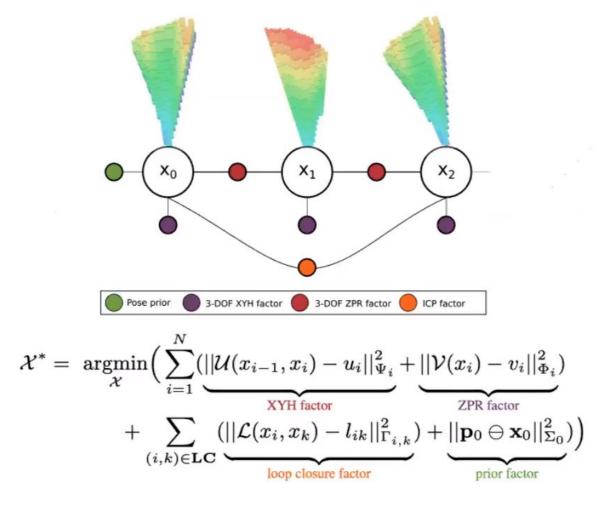
https://github.com/tussedrotten/simple-factorgraph-example

Simple SLAM example



https://github.com/tussedrotten/simple-factorgraph-example

Factor graphs make it easier to talk and think about state estimation!



S. Suresh, P. Sodhi, J. G. Mangelson, D. Wettergreen and M. Kaess, "Active SLAM using 3D Submap Saliency for Underwater Volumetric Exploration," 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 3132-3138, doi: 10.1109/ICRA40945.2020.9196939.

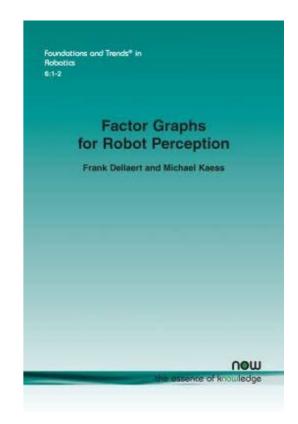
Supplementary material

Georgia Tech Smoothing and Mapping library

- https://gtsam.org/
- https://github.com/borglab/gtsam

Tutorial: https://gtsam.org/tutorials/intro.html

Factor Graphs for Robot Perception by Frank Dellaert and Michael Kaess https://www.cc.gatech.edu/~dellaert/pubs/Dellaert17fnt.pdf



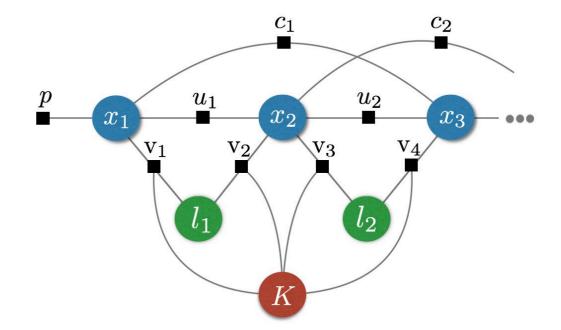
Part IV

VSLAM BACKEND STRATEGIES

Batch processing

De facto standard is to formulate the mapping problem as a **batch MAP estimation problem**!

- Generally more accurate
- Allows long-term loop-closure correction
- But the problem grows over time
 - → Real-time batch inference not feasible?



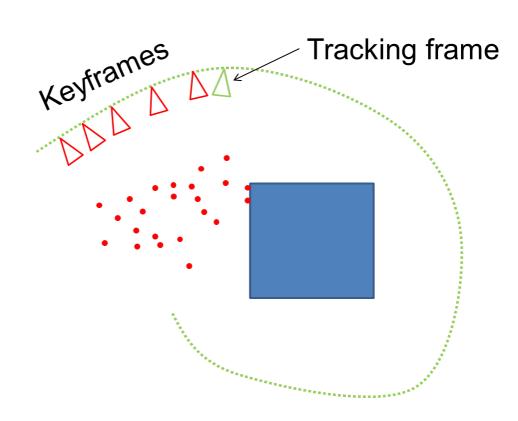
Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, 32(6), 1309–1332 Strasdat, H., Montiel, J. M. M., & Davison, A. J. (2012). Visual SLAM: Why filter? Image and Vision Computing, 30(2), 65–77

Full bundle adjustment over keyframes

Track every frame

Map with keyframes only

Parallel tracking and mapping with full bundle adjustment



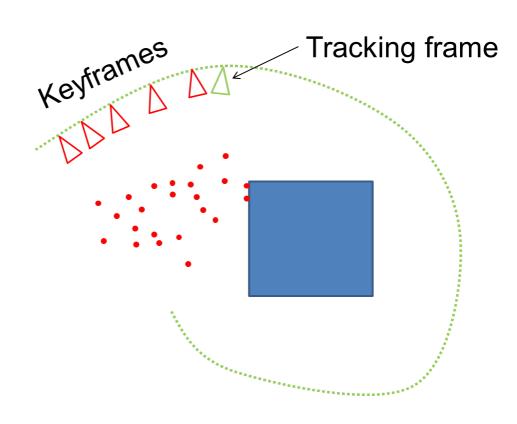
Full bundle adjustment over keyframes

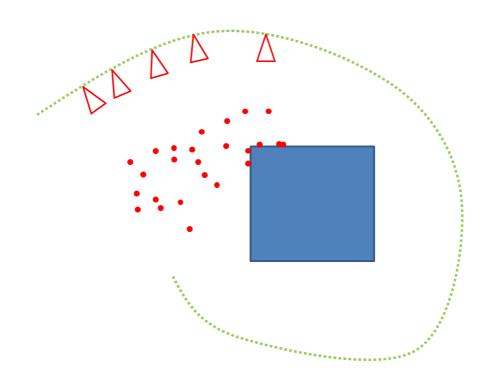
Track every frame

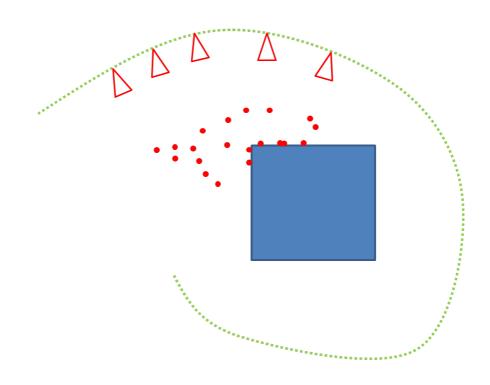
Map with keyframes only

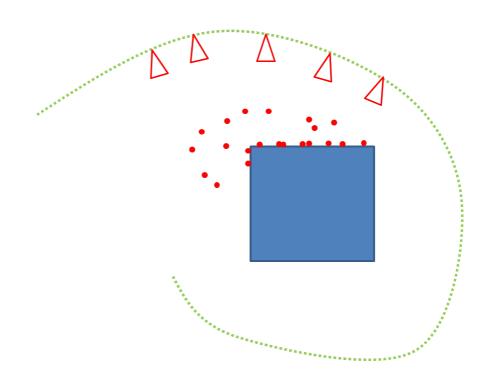
Parallel tracking and mapping with full bundle adjustment

Map still grows unbounded when exploring



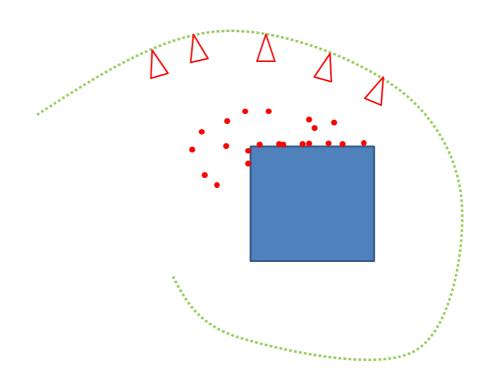




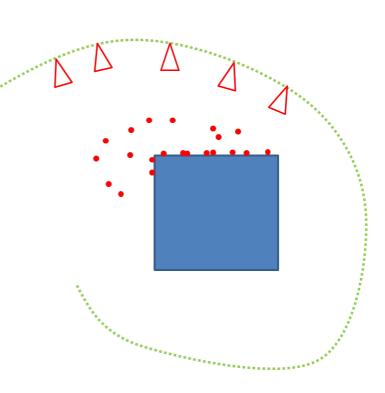


Perform BA over a **fixed-lag** of the last *n* keyframes

Constant-time operation



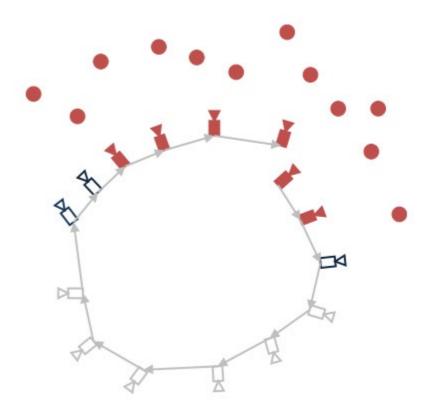
- Constant-time operation
- Marginalisation often results in dense Gaussian priors, hindering efficient inference
- Share part of the issues with filtering, such as consistency and build-up of linearisation errors
- Bounded in how far back in keyframes one may perform loop closures



Local bundle adjustment

Perform BA within an active window of keyframes with co-visible points

Keep keyframes at the boundary fixed



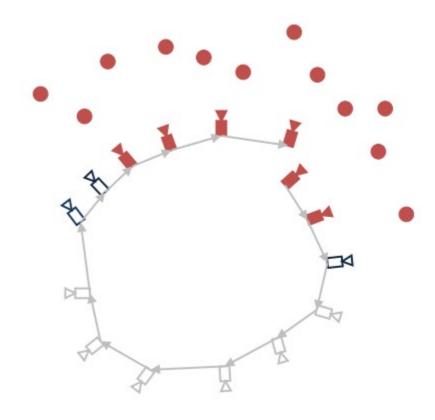
Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window optimisation for constant time visual SLAM. Proceedings of the IEEE International Conference on Computer Vision, 2352–2359

Local bundle adjustment

Perform BA within an active window of keyframes with co-visible points

Keep keyframes at the boundary fixed

~Constant-time operation



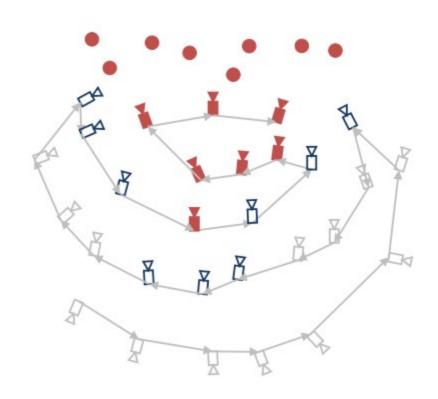
Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window optimisation for constant time visual SLAM. Proceedings of the IEEE International Conference on Computer Vision, 2352–2359

Local bundle adjustment

Perform BA within an active window of keyframes with co-visible points

Keep keyframes at the boundary fixed

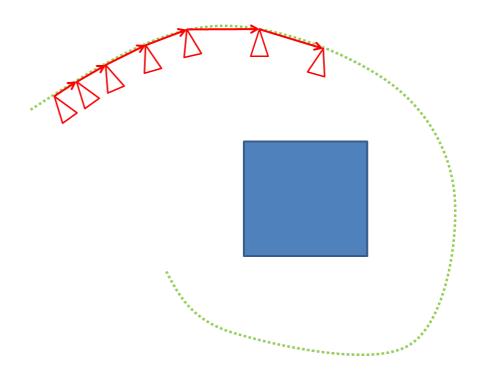
- ~Constant-time operation
- Loopy motion results in a large number of keyframes on the boundary
- Hampers convergence and accuracy



Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window optimisation for constant time visual SLAM. Proceedings of the IEEE International Conference on Computer Vision, 2352–2359

Pose graph

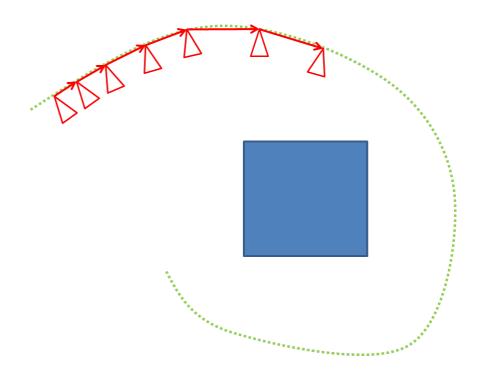
Marginalise out the points, keep only relative pose constraints between the keyframes



Pose graph

Marginalize out the points, keep only relative pose constraints between the keyframes

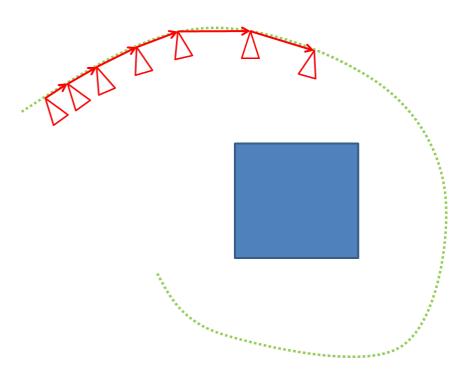
> Faster to optimise



Pose graph

Marginalize out the points, keep only relative pose constraints between the keyframes

- > Faster to optimise
- Approximation, since these constraints do not fully encode the nonlinear connections between frames and points
- Map still grows unbounded when exploring

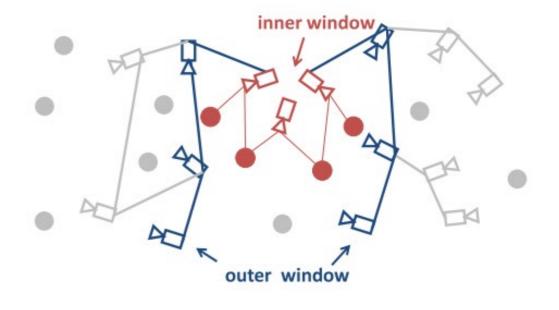


Double window optimisation

Inner window: Local bundle adjustment

Outer window: Pose graph based on co-visibility

Joint optimisation



Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window optimisation for constant time visual SLAM. Proceedings of the IEEE International Conference on Computer Vision, 2352–2359

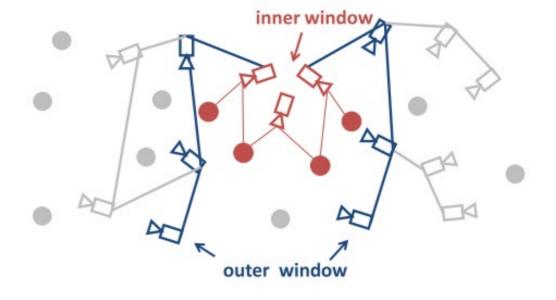
Double window optimisation

Inner window: Local bundle adjustment

Outer window: Pose graph based on co-visibility

Joint optimisation

- Locally Euclidean, globally topological
- ~Constant-time with fixed outer window



Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window optimisation for constant time visual SLAM. Proceedings of the IEEE International Conference on Computer Vision, 2352–2359

Double window optimisation

Inner window: Local bundle adjustment

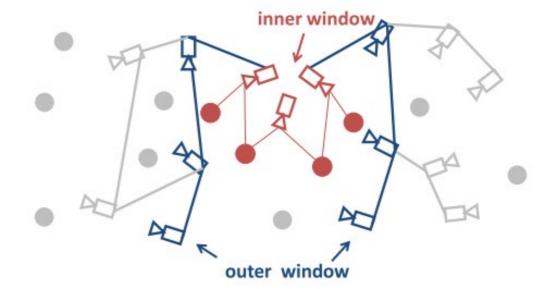
Outer window: Pose graph based on co-visibility

Joint optimisation

Locally Euclidean, globally topological

~Constant-time with fixed outer window

Examples: Video1, Video2



Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window optimisation for constant time visual SLAM. Proceedings of the IEEE International Conference on Computer Vision, 2352–2359

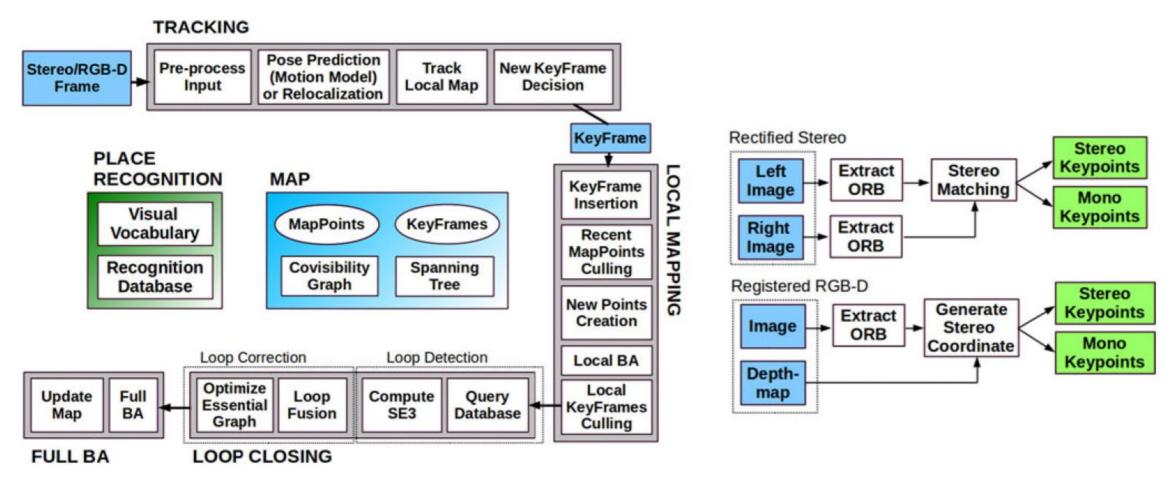
Part V

VSLAM SYSTEMS

	SLAM or VO	Pixels used	Data association	Estimation	Relocali- zation	Loop	Multi Maps	Mono	Stereo	Mono IMU	Stereo IMU	Fisheye	Accuracy	Robustness	Open source
Mono-SLAM [13], [14]	SLAM	Shi Tomasi	Correlation	EKF	-	-	-	√	-	-	-	-	Fair	Fair	[15] ¹
PTAM [16]–[18]	SLAM	FAST	Pyramid SSD	BA	Thumbnail	-	-	√	-	-	-	-	Very Good	Fair	[19]
LSD-SLAM [20], [21]	SLAM	Edgelets	Direct	PG	-	FABMAP PG	-	√	✓	-	-	-	Good	Fair	[22]
SVO [23], [24]	VO	FAST+ Hi.grad.	Direct	Local BA	-	-	-	√	✓	-	-	✓	Very Good	Very Good	[25] ²
ORB-SLAM2 [2], [3]	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	-	✓	✓	-	-	-	Exc.	Very Good	[26]
DSO [27]–[29]	VO	High grad.	Direct	Local BA	-	-	-	√	√	-	-	✓	Fair	Very Good	[30]
DSM [31]	SLAM	High grad.	Direct	Local BA	-	-	-	✓	-	-	-	-	Very Good	Very Good	[32]
MSCKF [33]–[36]	vo	Shi Tomasi	Cross correlation	EKF	-	-	-	✓	-	√	√	-	Fair	Very Good	[37] ³
OKVIS [38], [39]	VO	BRISK	Descriptor	Local BA	-	-	-	-	-	✓	✓	✓	Good	Very Good	[40]
ROVIO [41], [42]	VO	Shi Tomasi	Direct	EKF	-	-	-	-	-	√	√	✓	Good	Very Good	[43]
ORBSLAM-VI [4]	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	-	✓	-	✓	-	-	Very Good	Very Good	-
VINS-Fusion [7], [44]	VO	Shi Tomasi	KLT	Local BA	DBoW2	DBoW2 PG	✓	-	✓	✓	✓	√	Good	Exc.	[45]
VI-DSO [46]	VO	High grad.	Direct	Local BA	-	-	-	-	-	√	-	-	Very Good	Exc.	-
BASALT [47]	VO	FAST	KLT (LSSD)	Local BA	-	ORB BA	-	-	-	-	√	✓	Very Good	Exc.	[48]
Kimera [8]	vo	Shi Tomasi	KLT	Local BA	-	DBoW2 PG	-	-	-	-	✓	-	Good	Exc.	[49]
ORB-SLAM3 (ours)	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	✓	√	✓	✓	√	✓	Exc.	Exc.	[5]

C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM," in IEEE Transactions on Robotics, doi: 10.1109/TRO.2021.3075644.

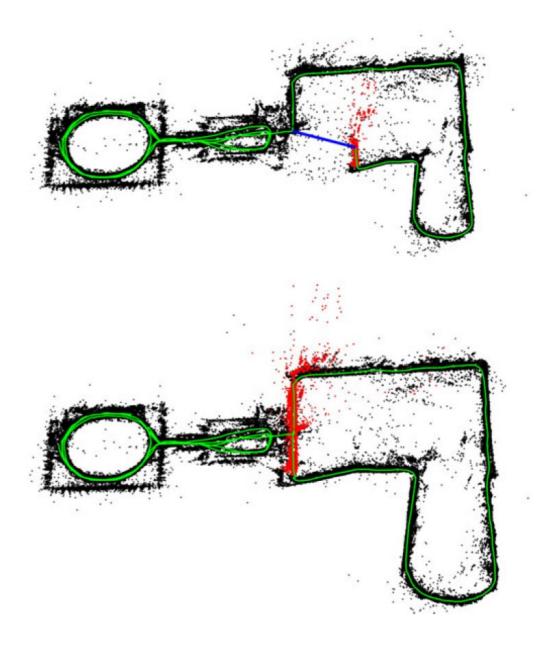
ORB-SLAM 2 system overview



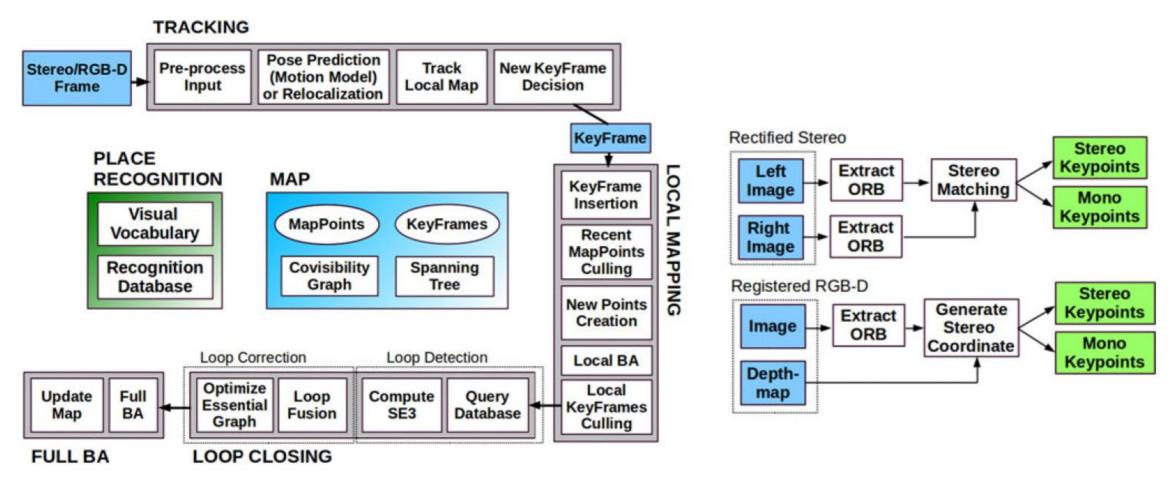
R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras," IEEE Trans. Robot., pp. 1–8, 2017.

Loop correction

- Loop fusion
 - Fuse map points
 - Insert new edges in the co-visibility graph
- Essential graph optimization
 - Distribute the loop closing error along a pose graph over sim(3)
 - Transform each map point according to the correction of one of the keyframes that observes it



ORB-SLAM 2 system overview



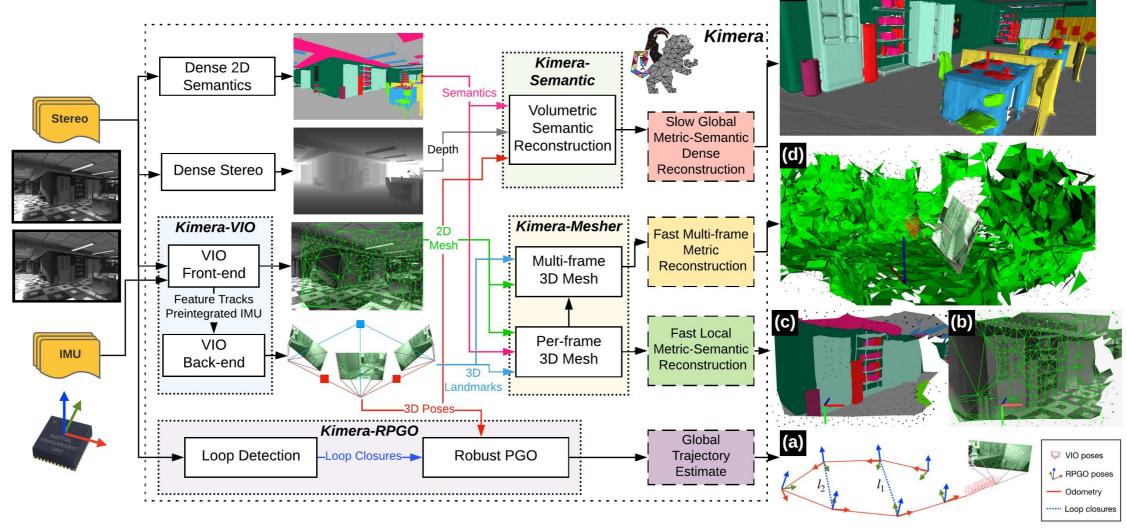
R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras," IEEE Trans. Robot., pp. 1–8, 2017.

ORB-SLAM 3 system overview



C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM," in IEEE Transactions on Robotics, doi: 10.1109/TRO.2021.3075644.

Kimera system overview



https://github.com/MIT-SPARK/Kimera

Part VI

EXAMPLE APPLICATION

Compact multimodal multispectral sensor system for tactical reconnaissance

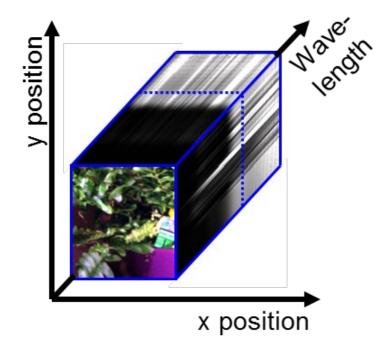
Trym Vegard Haavardsholm Thomas Opsahl Torbjørn Skauli Annette Stahl

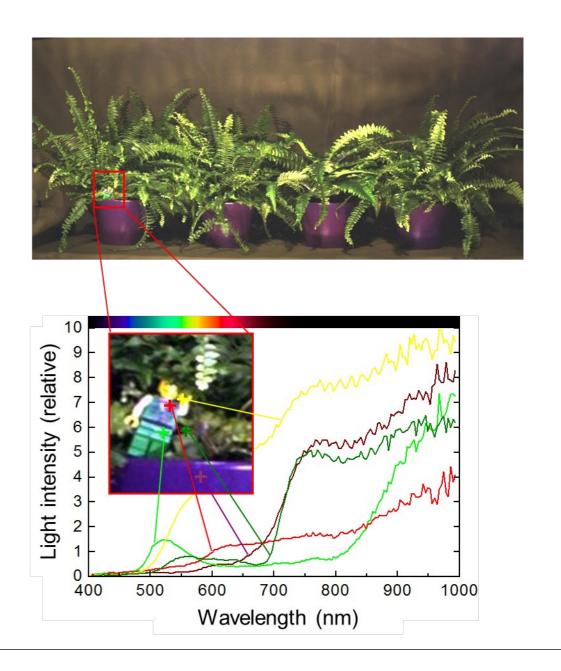
ONTNU

Norwegian University of Science and Technology Department of Engineering Cybernetics Robotic Vision Group

What is spectral imaging?

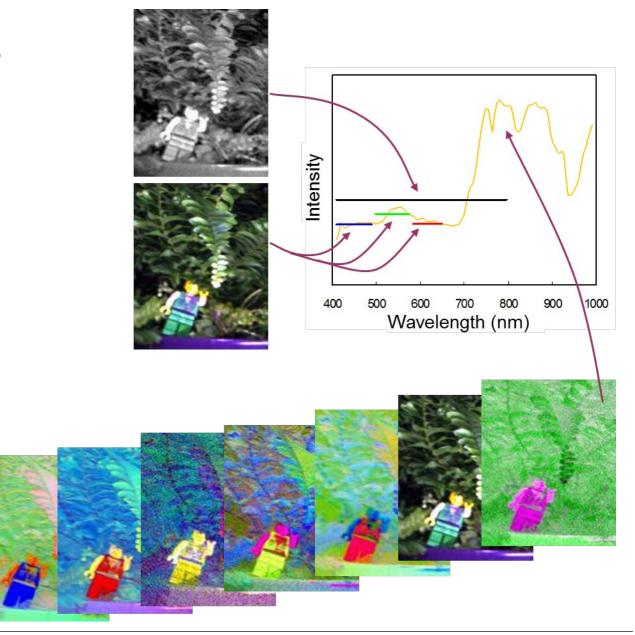
 Each pixel contains measurements from several spectral bands





Spectral taxonomy of cameras

- Monochromatic or broadband: one grey level value per pixel, no spectral information
- Multispectral:
 2 10 spectral bands,
 limited spectral information
- Hyperspectral: tens or hundreds of narrow and contiguous bands, detailed spectral information



Band image for selected wavelengths

Band image for selected wavelengths

Band image for selected wavelengths

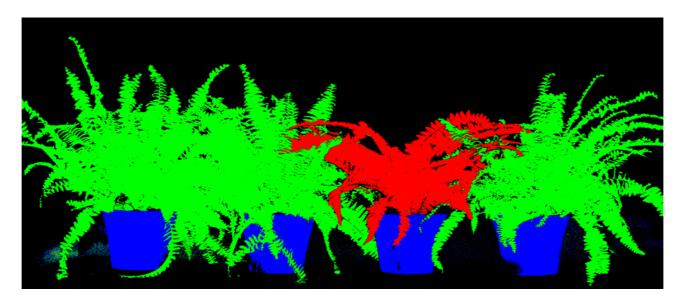
Band image for selected wavelengths

Band image for selected wavelengths

Spectral images can capture a lot of interesting information in each pixel

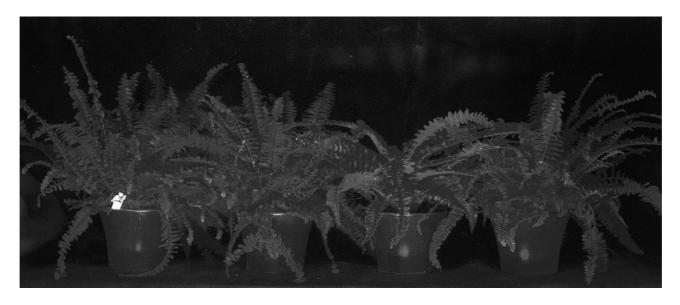
Band image for selected wavelengths

- Spectral images can capture a lot of interesting information in each pixel
 - Each pixel can be used directly as a feature vector for machine learning



Results from spectral classification

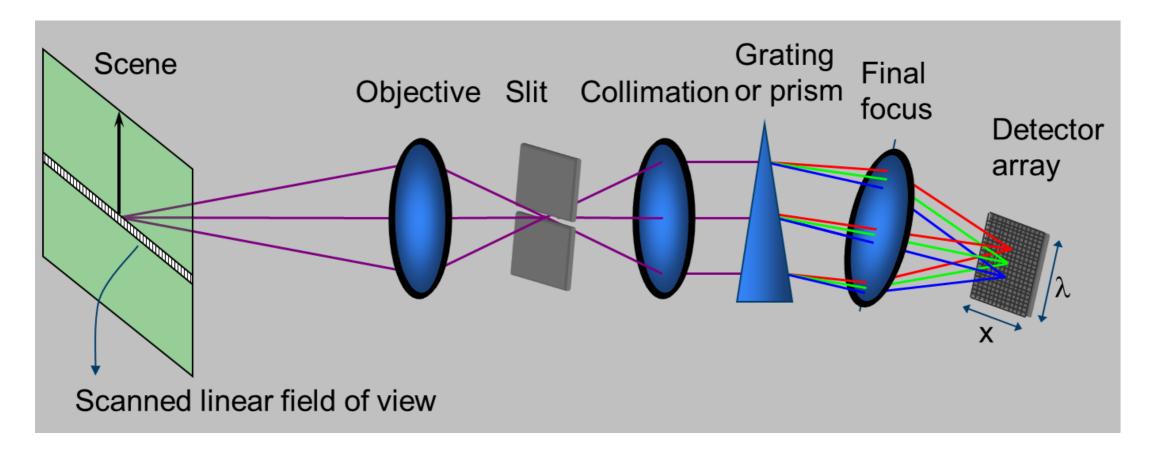
- Spectral images can capture a lot of interesting information in each pixel
 - Each pixel can be used directly as a feature vector for machine learning



Results from spectral anomaly detection

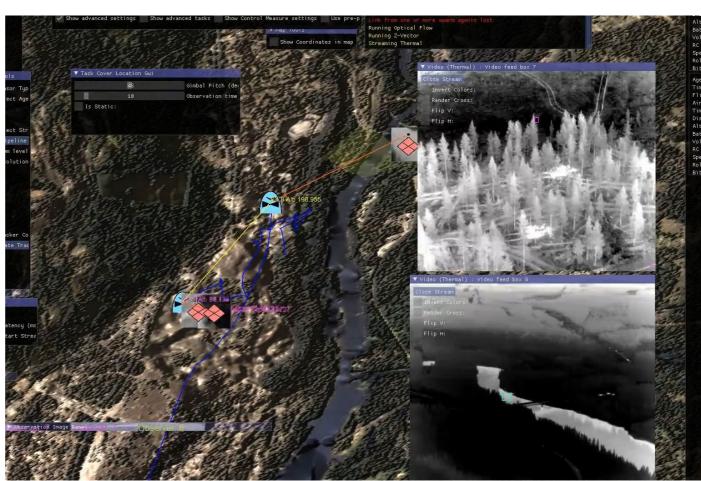
How do we capture spectral images?

A typical hyperspectral imaging sensor



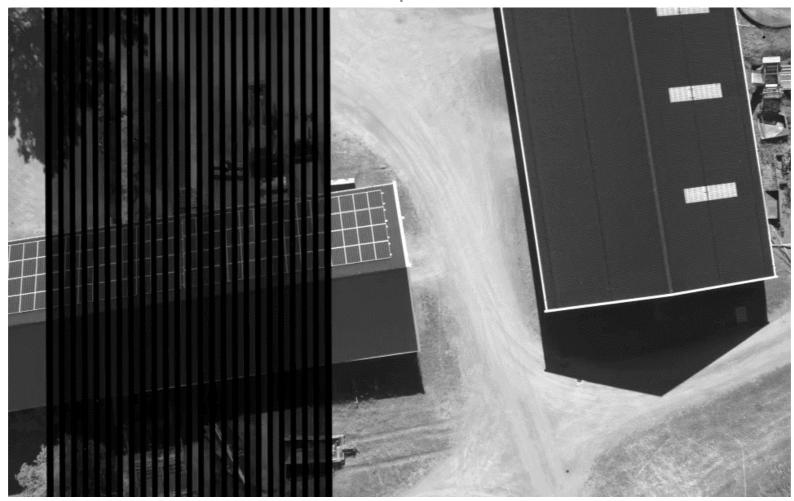
Tactical reconnaissance with small UAVs

How to exploit spectral signatures?



Can we stream a spectral image from this video?

1920 pixels



@ 80 FPS

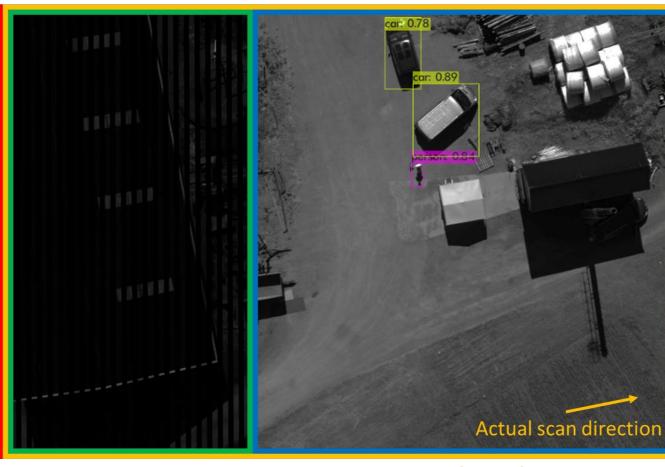
1200 pixels

... for real-time applications?

Spectral reconstruction

Filter area and monochromatic area in the raw image

Streaming spectral push broom image

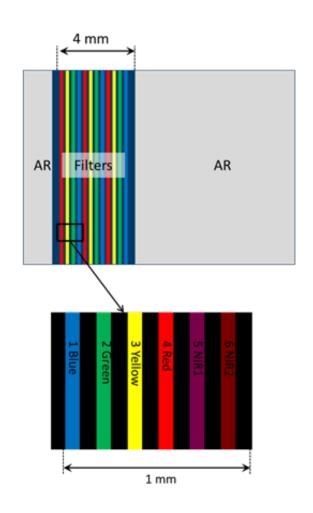


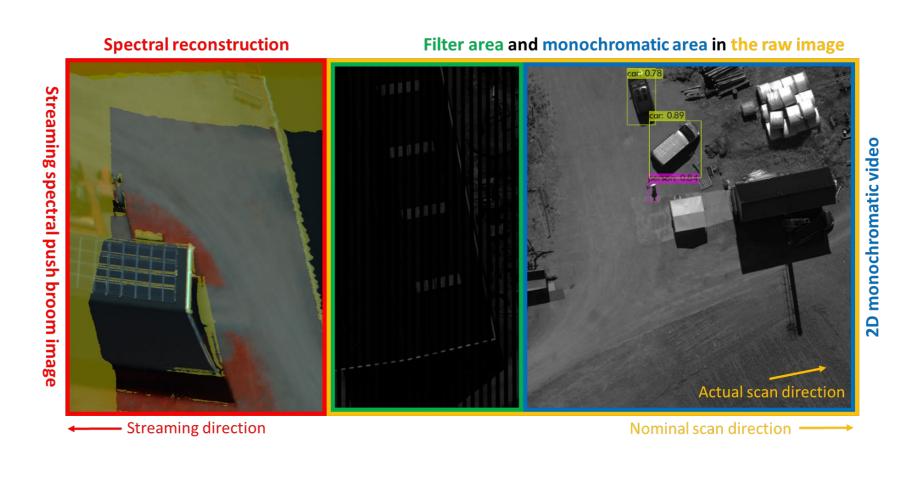
Streaming direction

Nominal scan direction ----

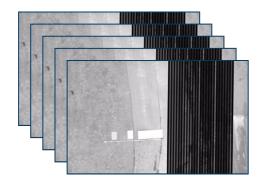
2D monochromatic video

Repeated spectral sampling for consistency testing



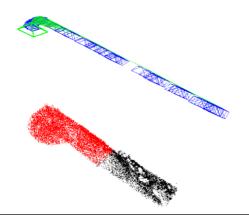


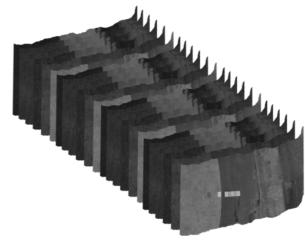
Spectral reconstruction



Raw image sequence

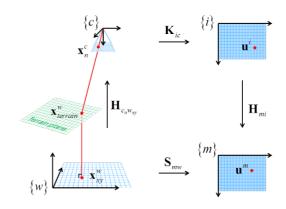
Image-based navigation (VSLAM)





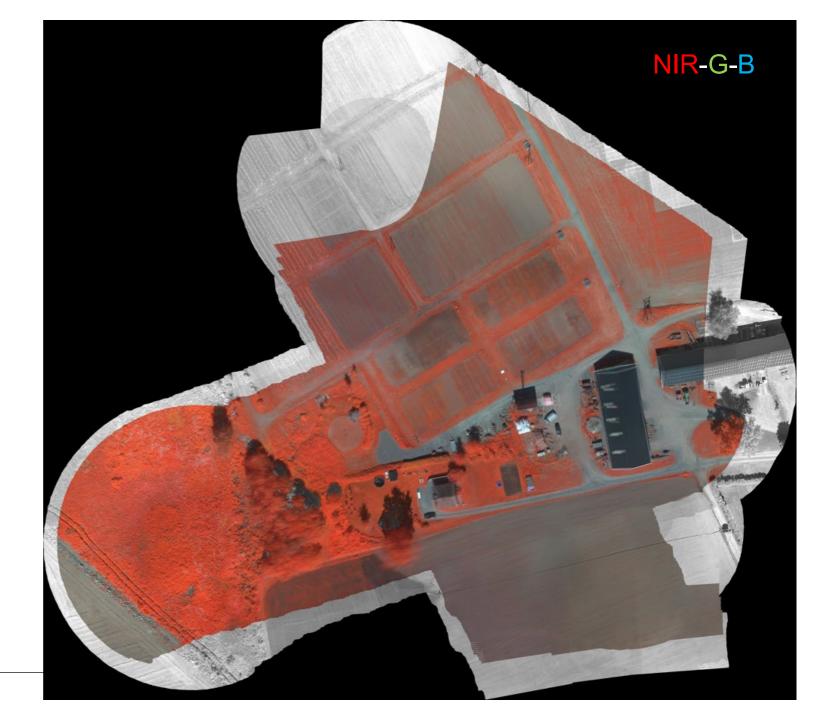
Filter mosaics

Filter alignment



Example result

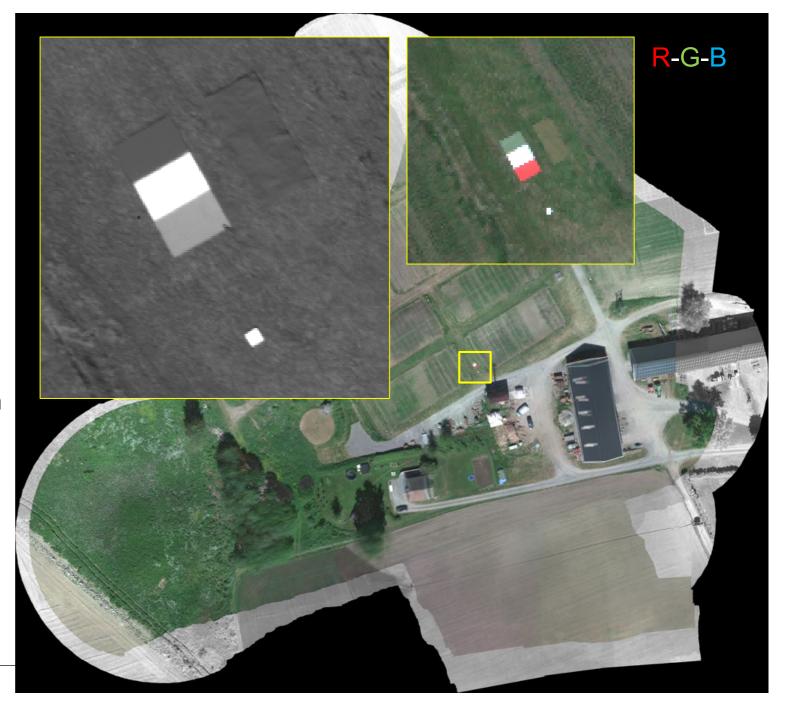
Example result



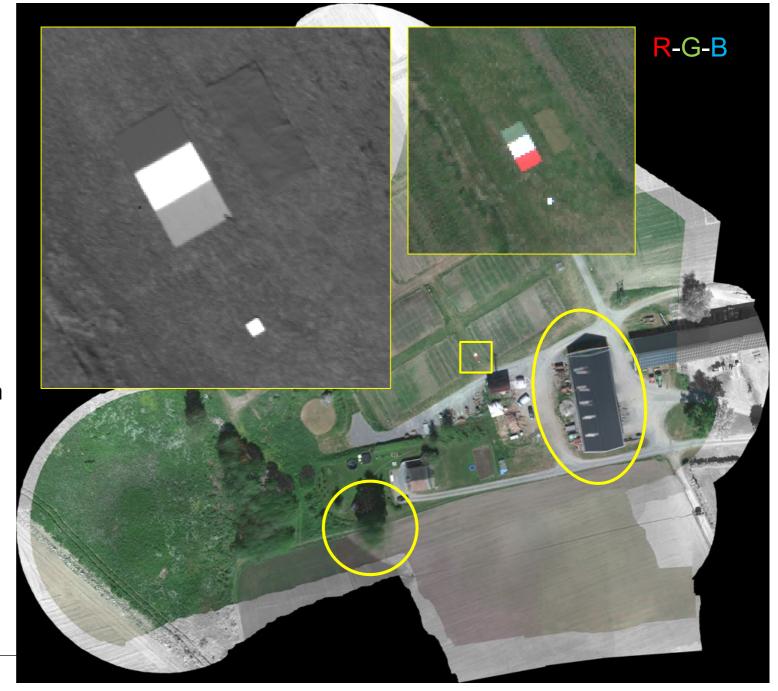
 VSLAM is slow and performs global updates

- VSLAM is slow and performs global updates
- Reconstruction is slow, global and overwrites overlapping areas

- VSLAM is slow and performs global updates
- Reconstruction is slow, global and overwrites overlapping areas
- Global map has fixed, low resolution and is wasteful and cumbersome



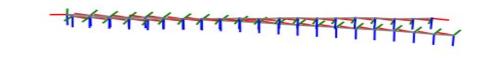
- VSLAM is slow and performs global updates
- Reconstruction is slow, global and overwrites overlapping areas
- Global map has fixed, low resolution and is wasteful and cumbersome
- Planar assumption results in many inconsistencies



Real-time pose and structure estimation

- IMU-aided visual odometry (VO)
 - Locally precise
 - Global drift
 - 3D mesh from local point cloud

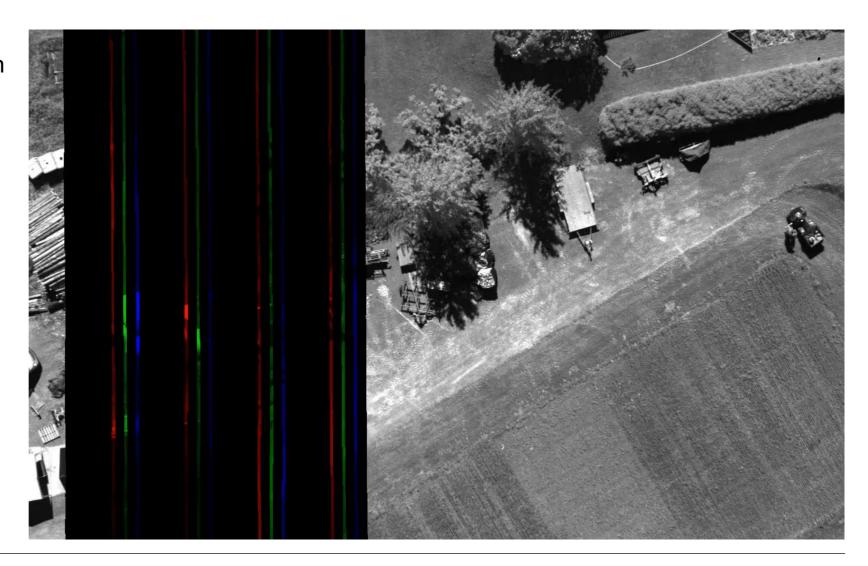
- INS based on IMU and GNSS
 - Less precise
 - Globally consistent
 - 3D digital elevation models





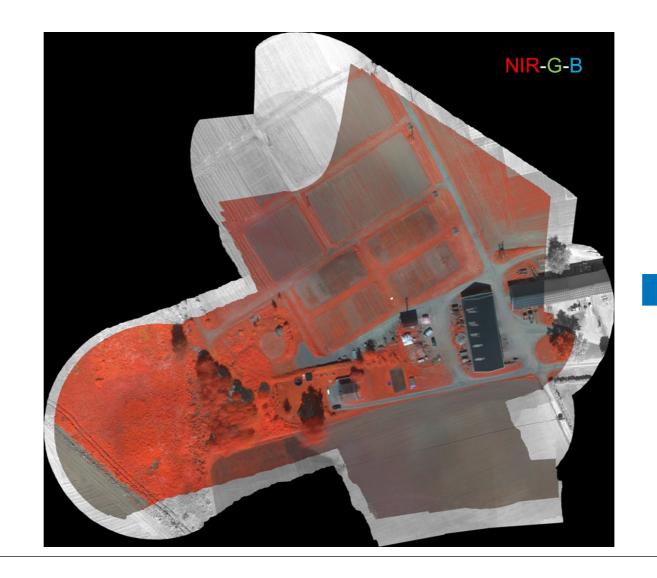
Locally consistent reconstruction in sensor perspective

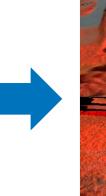
- Preserves sensor resolution
- Based on local consistency in pose and structure
- Robust to global drift and navigation failures



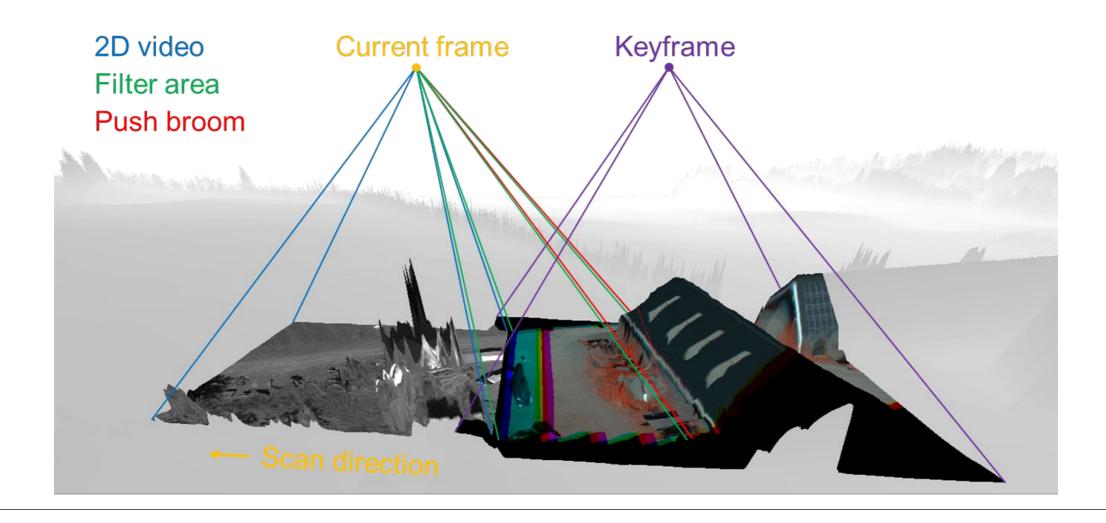
Emulated push broom image representation

- In sensor perspective
- "Standard" representation for spectral images
- Overlapping areas are not overwritten





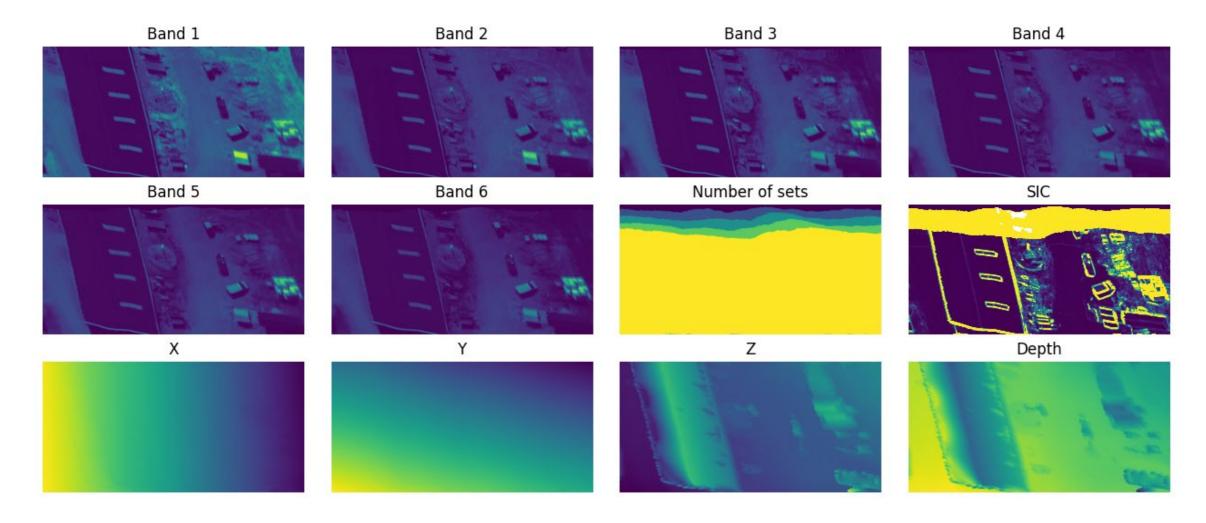
Emulated push broom imaging with full 3D structure



Emulated push broom imaging with OpenGL



Resulting push broom channels

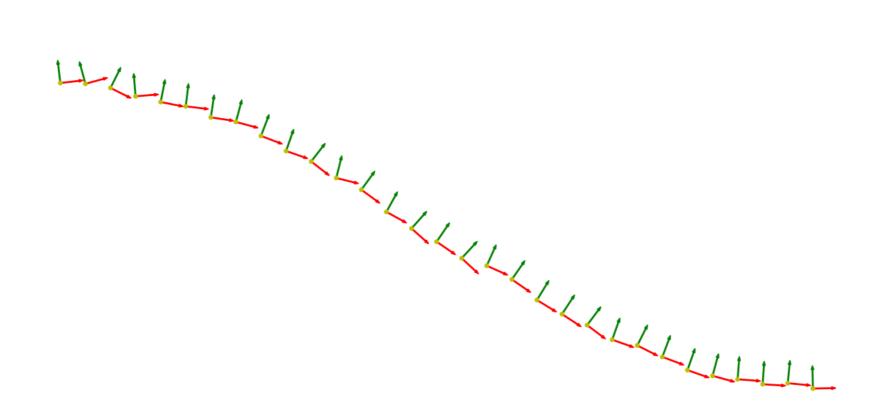


Local and global consistency

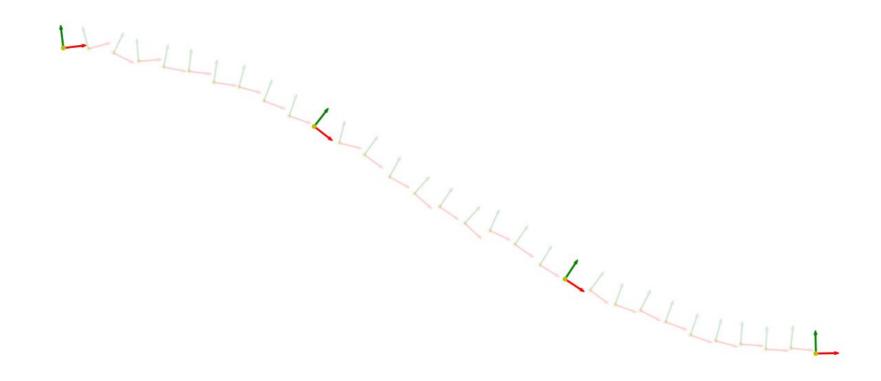
Raw image

Rectified image

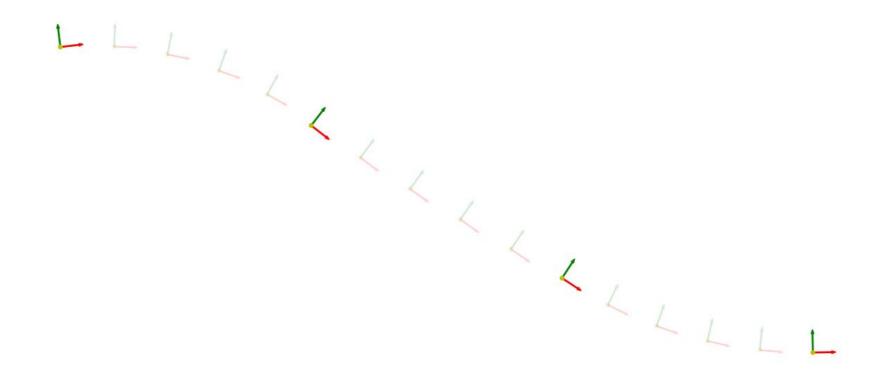
"Digitally stabilised" push broom image



"Digitally stabilised" push broom image

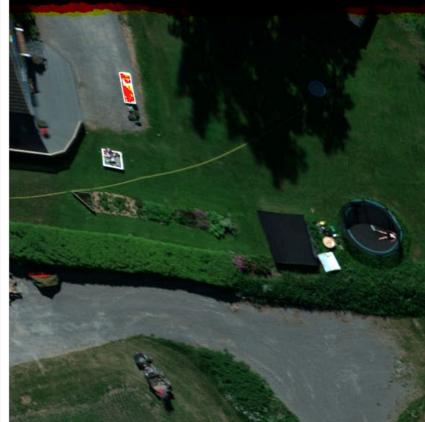


"Digitally stabilised" push broom image



"Digitally stabilised" push broom image – Example

Projected back into the original camera frames



Projected back into a smoothed, reduced set of virtual camera frames

INS + plane:

VSLAM + plane:

VO + local plane:

INS + DEM:

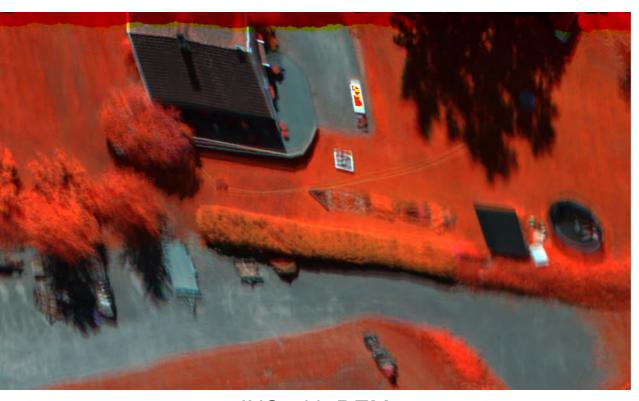
VSLAM + global mesh:

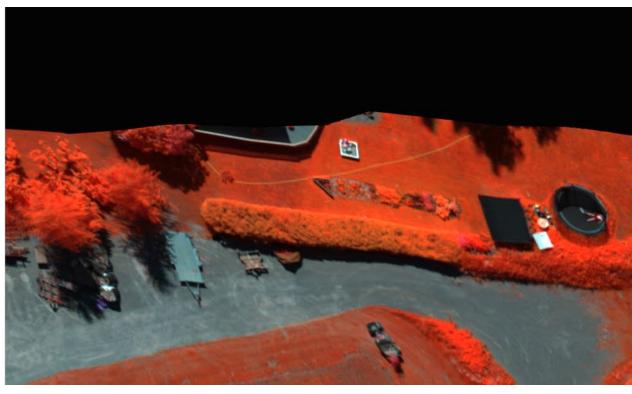
VO + local mesh:

INS + plane:

VSLAM + plane:

VO + local plane:





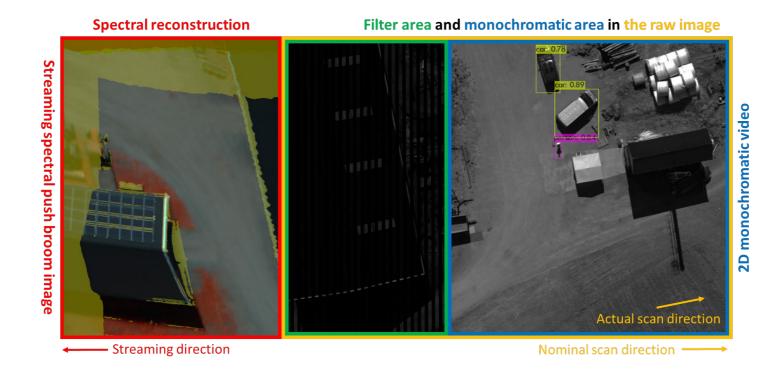
INS with DEM

VO with local meshes

Spectral reconstruction rate:

- 0.6× frame rate (26M vertices)
- 3× frame rate (up to ~100k vertices)

Summary



Multimodal multispectral sensor system for small UAVs in tactical applications:

- Streaming stabilised emulated push broom images
- Exploit precise local estimates of camera pose and full 3D structure
- Real-time performance with GPU implementation based on OpenGL

FFI turns knowledge and ideas into an effective defence