UiO Separtment of Technology Systems

University of Oslo

Introduction to TEK5030 – Computer Vision

19.01.2024

Trym Vegard Haavardsholm (<u>trym.haavardsholm@its.uio.no</u>) Idar Dyrdal (<u>idar.dyrdal@its.uio.no</u>) Thomas Opsahl (<u>thomasoo@its.uio.no</u>) Ragnar Smestad (<u>ragnarsm@its.uio.no</u>)

Today

- A quick introduction to computer vision
- About the course

- Lab: An introduction to OpenCV
 - Processing live video streams with OpenCV!

«An image is worth more than a thousand words»

«An image is worth more than a thousand words»

How can we extract this information?

It is easy to calculate with images!

It is easy to calculate with images!

How fast can a machine crunch pixel values?

Floating point operations (FP32) per second (FLOPS)

(theoretical peak)

The difference between neighbouring pixels

The difference between neighbouring pixels

Horisontal differences

Vertical differences

Edges and corners

Significant corners

Significant corners

Significant corners

Example: Coregistering images

Application: Underwater visual mapping from HUGIN AUV

Extracting geometric information from images

TEK5030

Visual navigation

TEK5030

3D reconstruction from images

A detailed 3D surface in colors!

Recognise the shape of a ship

Many millions of learned parameters

Millions of images

Many millions of learned parameters

Millions of images

Many millions of learned parameters

Many millions of learned parameters

Sarlin, P. E., Detone, D., Malisiewicz, T., & Rabinovich, A. (2020). SuperGlue: Learning Feature Matching with Graph Neural Networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4937–4946.

https://psarlin.com/superglue/

TEK5030

Sarlin, P. E., Detone, D., Malisiewicz, T., & Rabinovich, A. (2020). SuperGlue: Learning Feature Matching with Graph Neural Networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4937–4946.

https://psarlin.com/superglue/

TEK5030

The study of how a <u>machine</u> can <u>interpret and understand its surroundings</u> from <u>images</u>

The study of how a <u>machine</u> can <u>interpret and understand its surroundings</u> from <u>images</u>

"Enabling computers to see"

The study of how a <u>machine</u> can <u>interpret and understand its surroundings</u> from <u>images</u>

- "Enabling computers to see"
- Image analysis
- Robotic vision
- > Perception
- Spatial AI

Computer vision is an *inverse problem*!

The *forward* imaging process

The *inverse* analysis process

TEK5030

About the course

Course sites

- The semester page ٠
 - Course plan
 - Lecture slides and videos
 - Lab exercises
- **Canvas** ٠
 - Course overview
 - Zoom links
 - Project deliveries
- **Discourse** ۲
 - Announcements
 - Questions _
 - Discussions _

Dato

«Flipped classroom»

- Purpose
 - Get as much as possible out of a day at Kjeller
- Online
 - Pre-recorded lectures most weeks
- Fridays 09:15-12:00
 - ~20 min lecture summary and questions
 - ~2.5 hours programming lab

	Lecture 3.2.0 Introduction to keypoin ures
	UNIK4690 \$
1 2	##include "opencv2/highgui.hpp" ##include <iostream></iostream>
3 4 ►	int main()
6	<pre>cv::VideoCapture input_stream(0);</pre>
8	<pre>if (!input_stream.isOpened()) </pre>
10 11 12	<pre>std::cerr << "Could not open camera\n"; return EXIT_FAILURE; }</pre>
13 14 15	<pre>const std::string window title = "Lab 0: Introduction to OpenCV"; cv::namedWindow(window_title, cv::WINDOW_NORMAL);</pre>
17	cv::Mat frame;
19 20	while(true)
21 22	input_stream >> frame;
23 24	<pre>if (frame.empty()) { break; }</pre>
25 26 27	<pre>cv::imshow("cam", frame);</pre>
28 29 30	<pre>if (cv::waitKey(15) >= 0) { break; } }</pre>
31 32 33 1 34	<pre>return EXIT_SUCCESS; -}</pre>

Student projects

- Develop a working computer vision system that does something interesting
 - Big: More than a month
 - Approved/Not approved
- Project topic of your own choice
- Preferably in groups of up to 3 persons

Student projects

- Develop a working computer vision system that does something interesting
 - Big: More than a month
 - Approved/Not approved
- Project topic of your own choice
- Preferably in groups of up to 3 persons

Exam

- Written or oral exam
- Mid-June

TEK5030

Feedback

- We encourage feedback during the course
 - We are open to making adjustments!
- Please fill out and deliver the course evaluation form after the course!
- Any feedback or questions now?

