UiO **Department of Technology Systems**

University of Oslo

Introduction to Machine Learning

Idar Dyrdal

Machine learning (Pattern recognition)

- Recognition of individuals (instance recognition)
- Discrimination between classes (pattern recognition, classification)

Pattern recognition in practice

Working applications of Image Pattern recognition:

- Reading license plates, postal codes, bar codes
- Character recognition
- Automatic diagnosis of medical samples
- Fingerprint recognition
- Face detection and recognition
- ...

Classification system

Image features for object recognition

Feature vector and feature space

TEK5030

Training of classifiers

Learn a function to predict the class from the given features

Decision

boundary

Banana Set

Classifiers and training methods

- Bayes (parametric) classifier
- Nearest-neighbors and K-nearestneighbors
- Parzen windows
- Linear and higher order discriminant functions
- Neural nets
- Support Vector Machines (SVM)
- Decision trees
- Random forest

Class conditional probability density functions

Bayesian decision theory

Overview

Class conditional densities:

 $p(\boldsymbol{x}|\omega_i)$, for each class $\omega_1, \omega_2, \ldots, \omega_c$

Prior probabilities:

$$P(\omega_1), P(\omega_2), \ldots, P(\omega_c)$$

Posterior probabilities given by Bayes rule: $P(\omega_i | \boldsymbol{x}) = \frac{p(\boldsymbol{x} | \omega_i) P(\omega_i)}{\sum_{j=1}^{c} p(\boldsymbol{x} | \omega_j) P(\omega_j)}, i = 1, \dots, c$

(a function of the measured feature vector $\boldsymbol{x} = [x_1, x_2, \dots, x_d]^t$).

Minimum error rate classification:

Assign the unknown object to the class with maximum posterior probability!

Density estimation

Example – Gaussian distribution:

Parametric methods:

- Assume a given shape of the density function
- Use the training set to estimate the unknown parameters.

Non-parametric (distribution free) methods:

- Point estimation of the density using the training set directly
- Parzen windows
- Nearest neighbor estimation (leads directly to the nearest-neighbor and k-nearest-neighbor classifiers).

$$p(\boldsymbol{x}|\omega_i) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_i|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i)\right]$$

Parameters: $\boldsymbol{\mu}_i$ and Σ_i

Parameter estimation

$$\Sigma = E\{(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^t\} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \vdots & \vdots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix}$$
Parameter estimates:

$$\hat{\boldsymbol{\mu}} = \boldsymbol{m} = \frac{1}{n} \sum_{k=1}^n \boldsymbol{x}_k$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{k=1}^n (\boldsymbol{x}_k - \boldsymbol{m})(\boldsymbol{x}_k - \boldsymbol{m})^t$$

Discriminant functions

Estimate of the density in a given point:

$$\hat{p}(\boldsymbol{x}|\omega_{i}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\hat{\Sigma}_{i}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{i})^{t} \hat{\Sigma}_{i}^{-1}(\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{i})\right]$$

From Bayes rule:

$$\hat{P}(\omega_i | \boldsymbol{x}) = \frac{\hat{p}(\boldsymbol{x} | \omega_i) P(\omega_i)}{\sum_{j=1}^{c} \hat{p}(\boldsymbol{x} | \omega_j) P(\omega_j)}$$

Examples of discriminant functions:

$$g_i(\boldsymbol{x}) = \ln \hat{P}(\omega_i | \boldsymbol{x})$$
 or $g_i(\boldsymbol{x}) = \ln \hat{p}(\boldsymbol{x} | \omega_i) + \ln P(\omega_i)$
Decision rule:

Choose the class with maximum discriminant function value.

TEK5030

Quadratic classifier - example

Linear classifier

Example:

Uncorrelated features and common covariance matrices U Linear decision boundaries

Linear classifier (contd.)

Discriminant function:

$$g(\boldsymbol{x}) = \boldsymbol{w}^{t}\boldsymbol{x} + w_{0} = w_{0} + \sum_{i=1}^{d} w_{i}x_{i}$$

Can be rewritten as:
$$g(\boldsymbol{x}) = [w_{0}, w_{1}, ..., w_{d}] \begin{bmatrix} 1\\x_{1}\\\vdots\\x_{d} \end{bmatrix} = \boldsymbol{a}^{t}\boldsymbol{y}$$

Decision rule (two-class case):

Decide
$$\omega_1$$
 if $\boldsymbol{a}^t \boldsymbol{y} > 0$ and ω_2 if $\boldsymbol{a}^t \boldsymbol{y} \leq 0$

Gradient descent

Find the minimum of a criterion function:

$$J(\boldsymbol{a}) \ge 0$$

Basic algorithm:

$$oldsymbol{a}_1 = ext{arbitrary}$$

 $oldsymbol{a}_{k+1} = oldsymbol{a}_k -
ho_k
abla J(oldsymbol{a}_k), \ k = 1, 2, \dots$

Optimal step length (increment):

$$\rho_k = \frac{\|\nabla J\|^2}{\nabla J^t D \nabla J} \quad \text{where} \quad D_{ij} = \frac{\partial^2 J(\boldsymbol{a}_k)}{\partial a_j \partial a_k} \quad \text{are the components of matrix } D$$

$$\mathsf{TEK5030}$$

18

Example

Perceptron criterion function:

$$J_p(\boldsymbol{a}) = -\sum_{\boldsymbol{y}\in\mathcal{Y}} \boldsymbol{a}^t \boldsymbol{y} \quad ext{where } \mathcal{Y} = \{ \boldsymbol{y}: \boldsymbol{a}^t \boldsymbol{y} \leq 0 \}$$

The goal is to satisfy a set of inequalities:

$$oldsymbol{a}^toldsymbol{y}_i > 0 \; orall oldsymbol{y}_i \in \{oldsymbol{y}_1, oldsymbol{y}_2, \dots, oldsymbol{y}_n\}$$

Linear least-squares optimization

Solve a set of linear equations

$$oldsymbol{a}^{t}oldsymbol{y}_{i}=b_{i} \quad ext{where } b_{i}>0, \quad i=,1,\ldots,n \quad ext{(positive margins)}$$

Find the minimum of a least-squares criterion function

$$J_s(\boldsymbol{a}) = \sum_{i=1}^n (\boldsymbol{a}^t \boldsymbol{y}_i - b_i)^2$$

Can be solved by gradient descent or by solving the normal equations.

TEK5030

Linear least-squares optimization (contd.)

The criterion function may be written as $J_s(a) = \|e\|^2 = \|Ya - b\|^2$ where $Y = \begin{bmatrix} \boldsymbol{y}_1^t \\ \vdots \\ \boldsymbol{u}^t \end{bmatrix} \quad \text{and} \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ a Zero gradient of the criterion function leads to

 $\boldsymbol{a} = (Y^{t}Y)^{-1}Y^{t}\boldsymbol{b}$

Artificial Neural Network (ANN)

Used in Machine Learning and Pattern Recognition:

- Regression
- Classification
- Clustering
- ...

Applications:

- Speech recognition
- Recognition of handwritten text
- Image classification
- ...

۰

. . .

Network types:

- Feed-forward neural networks
- Recurrent neural networks (RNN)

Feed-forward ANN (non-linear classifier)

Mark 1 Perceptron (Rosenblatt, 1957-59)

Biological neuron

(Credit: Quasar Jarosz, English Wikipedia)

Activation functions

• Sigmoid (logistic function):

$$f(x) = \frac{1}{1 + e^{-x}}$$

• Hyperbolic tangent:

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• Rectified linear unit (ReLU):

$$f(x) = \max(x, 0)$$

Feed-forward neural network

Backpropagation

Output layer w_k Hidden layer H_2 K w_{ik} Hidden layer H_1 w_{ii} Input layer

Error function (sample-by-sample measure of difference between output and target value):

$$E(\boldsymbol{w}) = \sum_{l} (y_l - t_l)^2$$

Backpropagation:

- Compute the gradient of the error function with respect to the weights, using the chain rule.
- Adjust weights (gradient descent) levelby-level.

tį

Gradient descent

• • •									MATLAB R	2019b							
но	ME	PLOTS		APPS									K 🖻 🛱 <) e 🗗 🕐 (⑦ Q Searc	1 Documentatior	n 🌲
Design App	Get More Apps	install App	Package App	signa Analy	al Classification zer Learner	Deep Network	eural Net Clustering	eu ral Net Fitting	Neural Net Pattern Re	Neural Net Time Series	Regression Learner	Distribution Fitter	Audio Labeler	Filter Builder	Filter Designer	•	
	FIL	.E								APPS							

🔶 🔁 🔀 📄 / 🕨 Users 🕨 ffi 🕨 Desktop

Current Folder 💿	Command Window 🕤	Workspace	
Name 🔺	New to MATLAB? See resources for <u>Getting Started</u> .	Name 🔺	Value
	$f_{\chi} >>$		
Dettil			
* Ready			

Welcome to the Neural Network Pattern Recognition app.

Solve a pattern-recognition problem with a two-layer feed-forward network.

Introduction -

In pattern recognition problems, you want a neural network to classify inputs into a set of target categories.

For example, recognize the vineyard that a particular bottle of wine came from, based on chemical analysis (wine_dataset); or classify a tumor as benign or malignant, based on uniformity of cell size, clump thickness, mitosis (cancer_dataset).

The Neural Pattern Recognition app will help you select data, create and train a network, and evaluate its performance using cross-entropy and confusion matrices.

A two-layer feed-forward network, with sigmoid hidden and softmax output neurons (patternnet), can classify vectors arbitrarily well, given enough neurons in its hidden layer.

The network will be trained with scaled conjugate gradient backpropagation (trainscg).

To continue, click [Next].

🧼 Neural Network Start

Welcome

🙆 Cancel

Neural Pattern Recognition (nprtool)

et Data from Workspace			Summary No inputs selected			
Inputs:	(none)		No inputs selected.			
Target data defining des O Targets:	sired network output.		No targets selected.			
Samples are:	💿 💷 Matrix columns	○ [=] Matrix rows				
Want to try out this tool	with an example data set?					
Want to try out this tool	with an example data set? Load Example Data Set					
Want to try out this tool	with an example data set? Load Example Data Set targets, then click [Next].					

	Pattern Recognition Data Set Choosei
data to Select a data set:	Description
Simple Classes Iris Flowers Breast Cancer	Filename: <u>wine_dataset</u> Pattern recognition is the process of training a neural network to assign
rgets: Types of Glass Thyroid Wine Vintage	network can be used to create a neural network that classifies
es are:	wines from three winerys in Italy based on constituents found through chemical analysis.
	LOAD <u>wine_dataset</u> .MAT loads these two variables: wineInputs - a 13x178 matrix of thirteen attributes of 178 wines.
	1. Alcohol 2. Malic acid
	3. Ash 4. Alcalinity of ash 5. Magnesium
o try c	7. Flavanoids 8. Nonflavanoid phenols
	👶 Import 🛛 🙆 Cancel

Neural Pattern Recognition (nprtool)

anut data to present to the net	work	Summary
Inputs:	winelnputs ᅌ	samples of 13 elements.
arget data defining desired net Targets:	work output. wineTargets 🗘	Targets 'wineTargets' is a 3×178 matrix, representing static data: 178 samples of 3 elements.
amples are:	💿 🍽 Matrix columns 🛛 🗐 Matrix rows	
ant to try out this tool with an	example data set?	
Load	Example Data Set	
To continue, click [Next].		

		Neural Pattern Re	cognition (nprtool)
 Validation and Set aside some sam Select Percentages Randomly divide up the 1 Training: Validation: Testing: 	d Test Data aples for validation and testing 78 samples: 70% 15% 15%	Neural Pattern Re 124 samples 27 samples 27 samples	 Explanation Three Kinds of Samples: Training: These are presented to the network during training, and the network is adjusted according to its error. Validation: These are used to measure network generalization, and to halt training when generalization stops improving. Testing: These have no effect on training and so provide an independent measure of the provide an
Change percentages if	Restore Defaults f desired, then click [Next] to Welcome	continue.	network performance during and after training.
		TEK	5030

	Neural Pattern Re	cognition (nprtool)		
Network ArchitectureSet the number of neurons in the pattern	recognition network's hidd	en layer.		
Hidden Layer		Recommendation		
Define a pattern recognition neural network. (pa	atternnet)	Return to this panel and change the number	r of neurons if the netwo	rk does
Number of Hidden Neurons:	10	not perform wen after training.		
Restore Defaults				
Input 13	Hidden Layer	Output Layer Output b J J		
Change settings if desired, then click [Net	xt] to continue.			
Reural Network Start Welcome			Sack Next	Cancel
	TEK	5030		

• Open a plot, retrain, or click [Next] to continue.

📢 Welcome

🙆 Cancel

Confusion (plotconfusion)

File Edit View Insert Tools Desktop Window Help

- N

1	43	0	0	100%
	34.7%	0.0%	0.0%	0.0%
2	0	47	0	100%
	0.0%	37.9%	0.0%	0.0%
3	0	0	34	100%
	0.0%	0.0%	27.4%	0.0%
	100%	100%	100%	100%
	0.0%	0.0%	0.0%	0.0%
	~	າ Target	ം t Class	

	Vali	dation Co	nfusion Ma	trix
1	5	2	0	71.4%
	18.5%	7.4%	0.0%	28.6%
t Class	0	13	0	100%
	0.0%	48.1%	0.0%	0.0%
Outpui	0	1	6	85.7%
3	0.0%	3.7%	22.2%	14.3%
	100%	81.2%	100%	88.9%
	0.0%	18.8%	0.0%	11.1%
	~	r	ი	
		Target	Class	

	1	Test Confu	sion Matri	x
1	11	0	0	100%
	40.7%	0.0%	0.0%	0.0%
class 5	0	8	0	100%
	0.0%	29.6%	0.0%	0.0%
Output	0	0	8	100%
5	0.0%	0.0%	29.6%	0.0%
	100%	100%	100%	100%
	0.0%	0.0%	0.0%	0.0%
	~	r	°5	
		Target	Class	

All Confusion Matrix				
1	59 33.1%	2 1.1%	0 0.0%	96.7% 3.3%
Output Class	0 0.0%	68 38.2%	0 0.0%	100% 0.0%
	0 0.0%	1 0.6%	48 27.0%	98.0% 2.0%
	100% 0.0%	95.8% 4.2%	100% 0.0%	98.3% 1.7%
	~	r	ი	
Target Class				

Summary

Machine learning:

- Pattern classification
- Training of classifiers (supervised learning)
- Parametric and non-parametric methods
- Discriminant functions
- Quadratic and linear classifiers
- Neural Networks.

Recommended reading:

• Szeliski 5.1 - 5.3

Additional reading:

- Szeliski 6.1 6.3
- R. O. Duda, P. E. Hart, D. G. Stork (2001). *Pattern classification* (2nd ed.). Wiley, New York. ISBN 0-471-05669-3.

Mark 1 Perceptron

(Credit: Cornell Aeronautical Laboratory)

