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Machine learning (Pattern recognition)

« Recognition of individuals (instance recognition)
» Discrimination between classes (pattern recognition, classification)

Supervised learning Class labels

Classifier
(trained)

Training set Feature extractor

(e.g. images) (hand made)

Machine learning
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Pattern recognition in practice

Working applications of Image Pattern recognition:

Reading license plates, postal codes, bar codes
Character recognition

Automatic diagnosis of medical samples
Fingerprint recognition

Face detection and recognition
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Classification system
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Image features for object recognition
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Feature vector and feature space

g
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Training of classifiers

Decision
boundary

Learn a function to predict the class from Banana Set
the given features

Feature 2

-12 -10 -8 5 4

-2 0 2 4 6
Feature 1
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Classifiers and training methods

« Bayes (parametric) classifier

* Nearest-neighbors and K-nearest-
neighbors

« Parzen windows

» Linear and higher order discriminant
functions

* Neural nets

* Support Vector Machines (SVM)
» Decision trees

« Random forest
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Class conditional probability density functions

0.6

p(z|w)
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Bayesian decision theory

Overview

Class conditional densities:

p(x|w;), for each class wy,ws,...,w.

Prior probabilities:

P(w1), P(w2),...,P(we)

Posterior probabilities %ian b)y B(aye)s rule:
p(x|w;)P(w;
P(w;|x) = P =
' > =1 P(x|w;) P(w;)’

(a function of the measured feature vector = [x1, T2, ..., z4]").

1,...,c

Minimum error rate classification:

Assign the unknown object to the class with maximum posterior probability!
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DenSIty estimation Example — Gaussian distribution:

Parametric methods:
« Assume a given shape of the density function

« Use the training set to estimate the unknown
parameters.

Non-parametric (distribution free) methods:

« Point estimation of the density using the training
set directly

« Parzen windows

» Nearest neighbor estimation (leads directly to
the nearest-neighbor and k-nearest-neighbor  p(x|w;) =
classifiers).

d 1 €
(2m)2 |32
Parameters: p; and %;
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Parameter estimation

Y =E{(z—p)(x—pn)}=

|0d1 042 --- 0d4dd

Parameter estimates:

el

A

1 n
= — —_ —_ t
X - E: Tk )(xx — M)
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Discriminant functions

Estimate of the density in a given point:

Tlw;) = ~ exp |—=(x — ;)" 2,  (x — [
From Bayes rule: 0 Explosion
A plax|w; ) P(w; '
Blenla) — P P)

Examples of discriminant functions:

g;(x) =In P(w;|x) or g¢;(x)=Inp(xlw;)+ InP(w;)

Decision rule:

Choose the class with maximum discriminant function value.
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Quadratic classifier - example

PCA 2
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Linear classifier

Example:

Uncorrelated features and
common covariance matrices

\

Linear decision boundaries
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Linear classifier (contd.)

Discriminant function:

d
g(x) = w'e +wy = wo + szwz

=1
Can be rewritten as: - 1 7
L1 .
g(w) — [w()vwl)'“)wd] : =a'y
| Ld_

Decision rule (two-class case):

Decide w; if a*y > 0 and ws if a*y <0

TEKS5030
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Augmented feature space V2

W W i L W,
_.-H-.z.—-—-—l— > : ¥ Decision
T & boundary

Augmented weight vector and feature vector:

a=| . and y =

Normalized samples in augmented feature space.

TEK5030 '



Gradient descent

Find the minimum of a criterion function:

J(a) >0

Basic algorithm:

a, = arbitrary

arpi+1 — G — kaJ(ak), k = 1, 2, ......

Optimal step length (increment):

IvJ]*
Pr = SV IiDV] where D;; =

82 J(ak)
8aj8ak

TEKS5030 '
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Example

Perceptron criterion function:

Jp(a) = — Z a’y where Y = {y:a’y <0}
yey

The goal is to satisfy a set of inequalities:

a'ty’i >0 vyz < {y17y27 c e 7y’n}

TEKS5030
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Can be solved by gradient descent or by solving the normal equations.
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Linear least-squares optimization (contd.)

4

A

The criterion function may be written as

Js(a) = |le|* = [[Ya - b]

h - _
whnere yf bl
Y =]": and b=

Y bn_

Zero gradient of the criterion function leads to
a= YY)y

TEK5030 2!



Artificial Neural Network (ANN)

Used in Machine Learning and Pattern Recognition:
* Regression Input

« Classification /O Output

» Clustering

Hidden

Applications:
» Speech recognition O
» Recognition of handwritten text

* Image classification

Network types:
* Feed-forward neural networks
« Recurrent neural networks (RNN) Feed-forward ANN (non-linear classifier)

O
0
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Mark 1 Perceptron (Rosenblatt, 1957-59)

@ XW1
&—_
; “W2 [D _'@

TEKS5030

/7
/
Nucleus

Biological neuron

Dendrite Axon terminal

Node of
Ranvier

Schwann cell

Myelin sheath

(Credit: Quasar Jarosz, English Wikipedia)

23



Activation functions

« Sigmoid (logistic function):

1
=

« Hyperbolic tangent: ex —X
f(x) = tanh(x) = o °

e_x

« Rectified linear unit (ReLU):

f(x) = max(x,0)

TEKS5030
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Feed-forward neural network

Output layer

Hidden layer Hy

Hidden layer Hy

Input layer

TEKS5030

yi = f(z1)
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Rk — Z Wik ;
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Backpropagation
Error function (sample-by-sample measure
of difference between output and target

value):

E(w) =) (y —t)

[

Output layer

Hidden layer Ho Backpropagation:
« Compute the gradient of the error
function with respect to the weights,

using the chain rule.
Hidden layer Hy

« Adjust weights (gradient descent) level-
by-level.

Input layer

26
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Gradient descent

TEKS5030
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[ NON ) MATLAB R2019b

HOME PLOTS APPS & SSNE 2 NEM C Search Documentation a
8 &
- "

I & & & & &) 0 vl

Design Get More Install Package Signal Classification Deep Neural Net  Neural Net | Neural Net | Neural Net Regression Distribution Audio Filter Builder Filter

App Apps App App Analyzer Learner Network ...  Clustering Fitting Pattern Re...; Time Series Learner Fitter Labeler Designer
FILE APPS

<= = = &= [/ » Users » ffi » Desktop
Current Folder ® Command Window @ Workspace

B Name 4 New to MATLAB? See resources for Getting Started. x il iName & alie

fx >>

Details A

+  Ready
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| NON ) Neural Pattern Recognition (nprtool)

% Welcome to the Neural Network Pattern Recognition app.
Solve a pattern-recognition problem with a two-layer feed-forward network.

Introduction

In pattern recognition problems, you want a neural network to classify
inputs into a set of target categories.

For example, recognize the vineyard that a particular bottle of wine came
from, based on chemical analysis ; or classify a tumor as
benign or malignant, based on uniformity of cell size, clump thickness,
mitosis

The Neural Pattern Recognition app will help you select data, create and

train a network, and evaluate its performance using cross-entropy and
confusion matrices.

é To continue, click [Next].

& Neural Network Start k¥4 Welcome

Neural Network

Hidden Layer Output Layer

Input

A two-layer feed-forward network, with sigmoid hidden and softmax
output neurons , can classify vectors arbitrarily well, given
enough neurons in its hidden layer.

The network will be trained with scaled conjugate gradient
backpropagation

# Back | ®p Next ) cancel

TEKS5030
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‘@0 @ Neural Pattern Recognition (nprtool)

S Select Data
® What inputs and targets define your pattern recognition problem?

Get Data from Workspace Summary
Input data to present to the network. No inputs selected.
b Inputs: (none) a

Target data defining desired network output.
@ Targets: (hone)

No targets selected.

Samples are: © [} Matrix columns [=] Matrix rows

Want to try out this tool with an example data set?

Load Example Data Set

0 Select inputs and targets, then click [Next].

& Neural Network Start K44 welcome @ Back WP Next &) cancel
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Select Data
What inputs and targets define vour pattern recoanition problem?

Get Data fro @

Input data t¢ Select a data set:

Pattern Recognition Data Set Chooser

Description

b Inputs:

Target data
@ Targets:

Samples are;

Want to try ¢

Simple Classes
Iris Flowers
Breast Cancer
Types of Glass
Thyroid

Filename: wine_dataset

Pattern recognition is the process of training a neural network to assign
the correct target classes to a set of input patterns. Once trained the
network can be used to classify patterns it has not seen before.

This dataset can be used to create a neural network that classifies
wines from three winerys in Italy based on constituents found through
chemical analysis.

LOAD wine_dataset.MAT loads these two variables:
winelnputs - a 13x178 matrix of thirteen attributes of 178 wines.

. Alcohol

. Malic acid

Ash

. Alcalinity of ash

. Magnesium

. Total phenols

. Flavanoids

. Nonflavanoid phenols

cONOUVIAWNK

% Import @ Cancel

Qg Loading d

ataset.

& Neural Network Start ki Welcome

48 Back B Next

@ Cancel

TEKS5030
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@ ® Neural Pattern Recognition (nprtool)

, Select Data
What inputs and targets define your pattern recognition problem?
Get Data from Workspace

Input data to present to the network.
& Inputs: winelnputs ﬁ

Target data defining desired network output.
@ Targets: wineTargets 2

Samples are: © [} Matrix columns [=] Matrix rows

Want to try out this tool with an example data set?

Load Example Data Set

$ To continue, click [Next].

& Neural Network Start 44 Welcome

Summary

Inputs 'winelnputs' is a 13x178 matrix, representing static data: 178
samples of 13 elements.

Targets 'wineTargets' is a 3x178 matrix, representing static data: 178
samples of 3 elements.

@™ Back W) Next &) cancel

TEKS5030
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&

Validation and Test Data

Set aside some samples for validation and testing.
Select Percentages

&% Randomly divide up the 178 samples:

W Training: 70% 124 samples
W Validation: 15% 27 samples
W Testing: 15% 27 samples

Restore Defaults

é Change percentages if desired, then click [Next] to continue.

& Neural Network Start {44 welcome

Neural Pattern Recognition (nprtool)

Explanation

&% Three Kinds of Samples:

W Training:
These are presented to the network during training, and the network is
adjusted according to its error.

W Validation:

These are used to measure network generalization, and to halt training
when generalization stops improving.

W Testing:
These have no effect on training and so provide an independent measure of
network performance during and after training.

4™ Back W) Next &) cancel

TEKS5030
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[ NON ) Neural Pattern Recognition (nprtool)

Network Architecture

L Set the number of neurons in the pattern recognition network's hidden layer.
Hidden Layer Recommendation
Define a pattern recognition neural network. (patternnet) Return to this panel and change the number of neurons if the network does

not perform well after training.
Number of Hidden Neurons: 10

Restore Defaults

Neural Network

Hidden Layer Output Layer

Input

13

$ Change settings if desired, then click [Next] to continue.

& Neural Network Start k44 wWelcome @ Back | ®p Next | @ Cancel

TEKS5030
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Train Network

Train Network

Train using scaled conjugate gradient backpropagation. (trainscg)

V:] Train

Training automatically stops when generalization stops improving, as
indicated by an increase in the cross-entropy error of the validation
samples.

Notes

' Training multiple times will generate different results
due to different initial conditions and sampling.

@ Train network, then click [Next].

& Neural Network Start k4 welcome

Train the network to classify the inputs according to the targets.

Neural Pattern Recognition (nprtool)

Results
&% Samples =] CE
W Training: 124 =
W Validation: 27 -
W Testing: 27 —
Plot Confusion Plot ROC

Minimizing Cross-Entropy results in good
classification. Lower values are better. Zero means
no error.

Percent Error indicates the fraction of samples which
are misclassified. A value of 0 means no
misclassifications, 100 indicates maximum
misclassifications.

4@ Back

B Next

) %E

@ Cancel

TEKS5030
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o ® Neural Pattern Recognition (nprtool)

Train Network
Train the network to classify the inputs according to the targets.

Train Network

Train using scaled conjugate gradient backpropagation. (trainscg)

‘f{j Retrain

Training automatically stops when generalization stops improving, as
indicated by an increase in the cross-entropy error of the validation
samples.

Notes

% Training multiple times will generate different results
due to different initial conditions and sampling.

® Open a plot, retrain, or click [Next] to continue.

& Neural Network Start }dd welcome

Results

W Training:
W Validation:
W Testing:

&% Samples
124
27
27

Plot Confusion

=] CE (] %E
9.86550e-1 0
2.74688e-0 11.11111e-0
2.66457e-0 0

Plot ROC

Minimizing Cross-Entropy results in good
classification. Lower values are better. Zero means

no error.

Percent Error indicates the fraction of samples which

are misclassified. A value of 0 means no

misclassifications, 100 indicates maximum

misclassifications.

TEKS5030
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View

Insert

Tools

Confusion (plotconfusion)
Desktop Window Help

Training Confusion Matrix

43 0 0 100%
34.7% 0.0% 0.0% 0.0%
0 47 0 100%
0.0% 37.9% 0.0% 0.0%
0 0 34 100%
0.0% 0.0% 27.4% 0.0%
100% 100% 100% 100%
0.0% 0.0% 0.0% 0.0%
N @ L3
Target Class
Test Confusion Matrix
11 0 0 100%
40.7% 0.0% 0.0% 0.0%
0 8 0 100%
0.0% 29.6% 0.0% 0.0%
0 0 8 100%
0.0% 0.0% 29.6% 0.0%
100% 100% 100% 100%
0.0% 0.0% 0.0% 0.0%
N @V L3
Target Class

Output Class

Output Class

N

w

N

w

Validation Confusion Matrix

5 2 (1] 71.4%
18.5% 7.4% 0.0% 28.6%
0 13 0 100%
0.0% 48.1% 0.0% 0.0%
0 1 6 85.7%
0.0% 3.7% 22.2% 14.3%
100% 81.2% 100% 88.9%
0.0% 18.8% 0.0% 11.1%
N v ()
Target Class
All Confusion Matrix
59 2 (1] 96.7%
33.1% 1.1% 0.0% 3.3%
0 68 (1] 100%
0.0% 38.2% 0.0% 0.0%
V] 1 48 98.0%
0.0% 0.6% 27.0% 2.0%
100% 95.8% 100% 98.3%
0.0% 4.2% 0.0% 1.7%
N U D)
Target Class
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Summary

Mark 1 Perceptron

Machine learning:

 Pattern classification

* Training of classifiers (supervised learning)
« Parametric and non-parametric methods
 Discriminant functions

» Quadratic and linear classifiers

* Neural Networks.

Recommended reading:
« Szeliski 5.1 - 5.3

(Credit: Cornell Aeronautical Laboratory)

Additional reading:
« Szeliski 6.1 - 6.3

« R. O.Duda, P. E. Hart, D. G. Stork (2001). Pattern classification (2nd ed.). Wiley, New York.
ISBN 0-471-05669-3.

TEKS5030 %



