UiO Separtment of Technology Systems

University of Oslo

Blob features

Trym Vegard Haavardsholm

2023

With illustrations from Svetlana Lazebnik, Grauman&Leibe, S. Seitz, James Hays and Noah Snavely

Automatic scale selection

An alternative to corner feature score functions

The Laplacian of Gaussian (LoG)

Edges and blobs

Edges and blobs

TEK5030

Edges and blobs

Edges \rightarrow LoG returns ripples

Blobs \rightarrow LoG returns superposition of two ripples

The magnitude of the Laplacian response is maximum at the centre of the blob provided the scale of the Laplacian matches the scale of the blob

TEK5030

Selecting the characteristic scale

Scale-normalised Laplacian of Gaussian

Normalise to make the response independent of scale

Scale-normalized:
$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

TEK5030

Selecting the characteristic scale

We define the *characteristic scale*

as the scale that produces the peak scale-normalised Laplacian response

Scale selection

At what scale does the scale-normalised Laplacian achieve a maximum response to a binary circle of radius *r*?

Scale selection

We get the peak response when the zeros of the Laplacian are aligned with the circle

$$\sigma = r / \sqrt{2}.$$

The LoG blob detector

Find maxima and minima of the scale-normalised LoG operator in space and scale

maximum

The LoG blob detector

- 1. Convolve the image with scale-normalised LoG at different scales
- 2. Find maxima of squared LoG response in scale-space

sigma = 2

sigma = 2.5018

sigma = 3.1296

sigma = 3.9149

sigma = 4.8972

sigma = 6.126

sigma = 7.6631

sigma = 9.5859

sigma = 9.5859

sigma = 11.9912

TEK5030

24

sigma = 15

Efficient implementation

Approximate the normalised LoG with a Difference of Gaussians (DoG):

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

(Laplacian of Gaussians)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

Efficient implementation

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Efficient implementation

Detect local maxima and minima by comparing a pixel to its 26 neighbours in space and adjacent scales

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Summary – Keypoints

- Corner detectors
 - Distinct in space
 - Minimum eigenvalue, Harris
 - Properties
- Blob detectors
 - Distinct in space and scale
 - LoG, DoG, Lowe's
- Detected locations are often complementary
 - Combine methods!

