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Characteristics of good features
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• Repeatability
• Distinctiveness

• Efficiency
• Locality
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Local measure of feature distinctiveness 

Consider a small window of pixels around a feature:
– How does the window change when you shift it?
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“Flat” region:
No change in all directions

“Edge”:
No change along edge

“Corner”:
Change in all directions
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Local measure of feature distinctiveness 

Change in appearance of window w(x,y) for the shift [u,v]:
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Local measure of feature distinctiveness 

Change in appearance of window w(x,y) for the shift [u,v]:
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Examples from Holmenkollen
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Examples from Holmenkollen
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Examples from Holmenkollen
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Simplifying the measure

Local first order Taylor Series expansion of I(x,y):

Local quadratic approximation of E(u,v):
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Simplifying the measure

Local quadratic approximation of the surface E(u,v):
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Interpreting the quadratic surface
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Interpreting the quadratic surface
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Examples from Holmenkollen
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Examples from Holmenkollen
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Examples from Holmenkollen

15



TEK5030

Simplifying the measure even further

Consider a horizontal “slice” of E(u,v):

This is the equation of an ellipse
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Simplifying the measure even further

Consider a horizontal “slice” of E(u,v):

This is the equation of an ellipse
– The ellipses indicate 

the rate and direction of change
– This is described by

the eigenvalues of M
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Simplifying the measure even further

Consider a horizontal “slice” of E(u,v):

This is the equation of an ellipse
– The ellipses indicate 

the rate and direction of change
– This is described by

the eigenvalues of M
 Describe the surface

using the eigenvalues!
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The eigenvalues and eigenvectors of M

The eigenvalues

Once you know λ, you find the eigenvectors x by solving
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The eigenvalues and eigenvectors of M

Describe the shift directions with the smallest and largest change in error:

– xmax = direction of largest increase in E
– λmax = amount of increase in direction xmax

– xmin = direction of smallest increase in E
– λmin = amount of increase in direction xmin
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Local measure of feature distinctiveness 

How are λmax, xmax, λmin, xmin relevant for feature detection?
– What is our feature scoring function?
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Local measure of feature distinctiveness 

How are λmax, xmax, λmin, xmin relevant for feature detection?
– What is our feature scoring function?

Want E(u,v) to be large for small shifts in all directions
– the minimum of E(u,v) should be large, over all unit vectors [u v]
– this minimum is given by the smaller eigenvalue (λmin) of M
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Local measure of feature distinctiveness 
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Examples from Holmenkollen
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λmin = 0.4
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Examples from Holmenkollen
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λmin = 1.2
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Examples from Holmenkollen
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λmin = 272
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This is more efficient than you think

• Compute the gradient images

• Compute the elements in M 
as three images A, B and C

• Compute the image of smallest eigenvalues
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Putting together a corner detector

1. Compute the gradient image (using derivatives of Gaussians)
2. Compute the elements of M from the gradient image
3. Compute the smallest eigenvalues from the elements of M
4. Find points with large response (λmin > threshold)

28
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Putting together a corner detector

1. Compute the gradient image (using derivatives of Gaussians)
2. Compute the elements of M from the gradient image
3. Compute the smallest eigenvalues from the elements of M
4. Find points with large response (λmin > threshold)
5. Choose points where λmin is a local maximum as features
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Example from Holmenkollen
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The Harris operator

A more efficient alternative to λmin:

• α = 0.06

• Very similar to λmin but less expensive (no square root)
• Called the “Harris Corner Detector” or “Harris Operator”
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The Harris operator
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The harmonic mean

A more efficient alternative to λmin:

• Smoother in the region where λ1≈ λ2
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Invariance and covariance

We want corner locations to be invariant to photometric transformations
and covariant to geometric transformations

– Invariance: image is transformed and corner locations do not change

– Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations
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Corner detector properties
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Affine intensity change

• Only derivatives are used => invariance to intensity shift I → I + b
• Intensity scaling: I → a I
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Corner detector properties
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Image translation

• Derivatives and window function are shift-invariant
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Corner detector properties

37

Image rotation

• Ellipse rotates but its shape (i.e. eigenvalues) remains the same
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Corner detector properties
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Scaling
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Scale robust corner detection

Find scale that gives local maximum of score f
– In both position and scale
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Automatic scale selection
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Automatic scale selection
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Automatic scale selection
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Automatic scale selection

43



TEK5030

Automatic scale selection
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Automatic scale selection
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Automatic scale selection
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Summary

• From characteristics of good features to a practical corner detector!
– Go back and evaluate our resulting detector!

• Corner detector properties

• We will implement this corner detector in the next lab!

• Next lecture:
– Blob detectors – Distinct in space and scale
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