UiO **Department of Technology Systems**

University of Oslo

Corner features

Trym Vegard Haavardsholm

2023

With illustrations from Rick Szeliski, S. Seitz. Svetlana Lazebnik, Derek Hoiem, Grauman&Leibe, James Hayes and Noah Snavely

Characteristics of good features

- Repeatability
- Distinctiveness

- Efficiency
- Locality

Consider a small window of pixels around a feature:

- How does the window change when you shift it?

"Flat" region: No change in all directions "Edge": No change along edge "Corner": Change in all directions

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Window function
$$w(x,y) =$$
 or or Gaussian

TEK5030

5

Simplifying the measure

Local first order Taylor Series expansion of I(x,y):

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

Local quadratic approximation of E(u,v):

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u,y+v) - I(x,y) \right]^2$$
$$\approx \sum_{x,y} w(x,y) \left[I_x u + I_y v \right]^2$$
$$= Au^2 + 2Buv + Cv^2$$

Simplifying the measure

Local quadratic approximation of the surface E(u,v):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

Interpreting the quadratic surface

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{x,y} w(x,y) I_x^2$$

$$B = \sum_{x,y} w(x,y) I_x I_y$$

$$C = \sum_{x,y} w(x,y) I_y^2$$
Horizontal edge:
$$I_x = 0$$
TEK 5030

11

Interpreting the quadratic surface

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{x,y} w(x,y) I_x^2$$

$$B = \sum_{x,y} w(x,y) I_x I_y$$

$$C = \sum_{x,y} w(x,y) I_y^2$$
Vertical edge:
$$I_y = 0$$

$$TEK5030$$

$$I = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

Simplifying the measure even further

Consider a horizontal "slice" of E(u,v):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = const$$

pse

This is the equation of an ellipse

Simplifying the measure even further

Consider a horizontal "slice" of E(u,v):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = const$$

This is the equation of an ellipse

- The ellipses indicate the rate and direction of change
- This is described by the eigenvalues of *M*

Simplifying the measure even further

Consider a horizontal "slice" of E(u,v):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = const$$

This is the equation of an ellipse

- The ellipses indicate the rate and direction of change
- This is described by the eigenvalues of *M*
- Describe the surface using the eigenvalues!

The eigenvalues and eigenvectors of *M*

The eigenvalues

$$\lambda = \frac{1}{2} \left[(A + C) \pm \sqrt{4B^2 + (A - C)^2} \right]$$

Once you know λ , you find the eigenvectors **x** by solving

$$\begin{bmatrix} A - \lambda & B \\ B & C - \lambda \end{bmatrix} \mathbf{x} = 0$$

The eigenvalues and eigenvectors of *M*

Describe the shift directions with the smallest and largest change in error:

- $-\mathbf{x}_{max}$ = direction of largest increase in *E*
- λ_{max} = amount of increase in direction \mathbf{x}_{max}
- $-\mathbf{x}_{min}$ = direction of smallest increase in *E*
- $-\lambda_{min}$ = amount of increase in direction \mathbf{x}_{min}

How are λ_{max} , \mathbf{x}_{max} , λ_{min} , \mathbf{x}_{min} relevant for feature detection?

- What is our feature scoring function?

How are λ_{max} , \mathbf{x}_{max} , λ_{min} , \mathbf{x}_{min} relevant for feature detection?

- What is our feature scoring function?

Want E(u, v) to be large for small shifts in all directions

- the minimum of E(u, v) should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue (λ_{min}) of M

This is more efficient than you think

- Compute the gradient *images*
- Compute the elements in M as three *images A*, *B* and *C*

$$M = w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$$

• Compute the *image* of smallest eigenvalues

$$\lambda = \frac{1}{2} \left[(A+C) - \sqrt{4B^2 + (A-C)^2} \right]$$

Putting together a corner detector

- 1. Compute the gradient image (using derivatives of Gaussians)
- 2. Compute the elements of *M* from the gradient image
- 3. Compute the smallest eigenvalues from the elements of M
- 4. Find points with large response (λ_{min} > threshold)

Putting together a corner detector

- 1. Compute the gradient image (using derivatives of Gaussians)
- 2. Compute the elements of *M* from the gradient image
- 3. Compute the smallest eigenvalues from the elements of M
- 4. Find points with large response (λ_{min} > threshold)
- 5. Choose points where λ_{min} is a local maximum as features

The Harris operator

A more efficient alternative to λ_{\min} :

$$f = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 = \det(M) - \alpha \operatorname{trace}(M)^2$$

- *α* = 0.06
- Very similar to λ_{\min} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"

The Harris operator

Harris operator

 λ_{\min}

The harmonic mean

A more efficient alternative to λ_{\min} :

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\det(M)}{\operatorname{trace}(M)}$$

• Smoother in the region where $\lambda_1 \approx \lambda_2$

Invariance and covariance

We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations

- Invariance: image is transformed and corner locations do not change
- Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

• Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Corner location is not covariant to scaling!

Scale robust corner detection

Find scale that gives local maximum of score *f*

- In both position and scale

Summary

- From characteristics of good features to a practical corner detector!
 - Go back and evaluate our resulting detector!
- Corner detector properties
- We will implement this corner detector in the next lab!

- Next lecture:
 - Blob detectors Distinct in space and scale

