UiO **Department of Technology Systems**

University of Oslo

Line features

Idar Dyrdal

Edges and lines

An edge is a place of rapid change of image intensity, colour or texture, representing:

- Boundaries of objects or image regions
- Shadow boundaries
- Creases
- .

Edge points and edge elements (*edgels*) can be attributed to:

- Curves/contours (open or closed)
- Straight line segments
- Piecewise linear contours

Edge operators (edge enhancement filters)

Edge pixels are found at extrema of the first derivative of the image intensity function.

Image gradient (noisy):

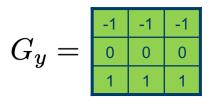
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Gradient magnitude:

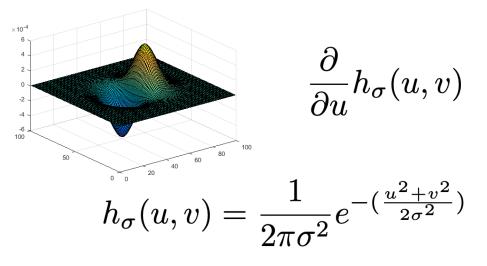
$$|\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Prewitt operator:

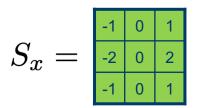
 $G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$



Derivative of Gaussian (smoother result):



Sobel operator:



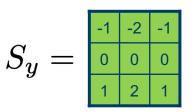


Image derivatives - Sobel

Gray level image

x-component

y-component

Gradient magnitude

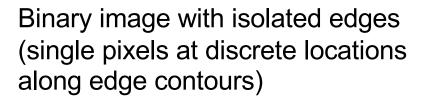
Gray level image

Gradient magnitude - Prewitt

Gradient magnitude - Sobel

Thinning and thresholding

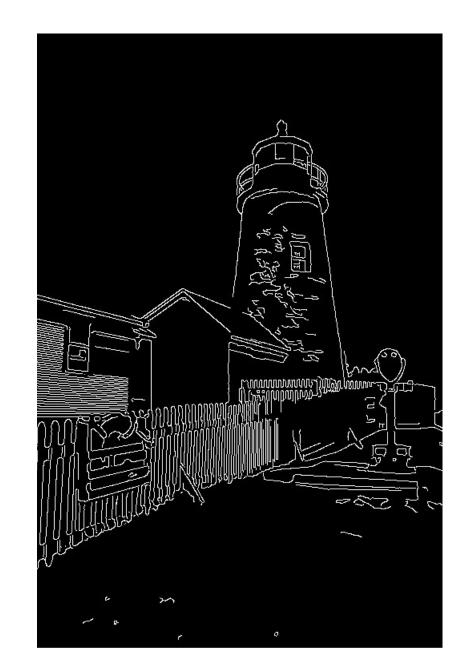
- Detection of local maxima (i.e. suppression of non-maxima) along the gradient (across edges)
- Thresholding



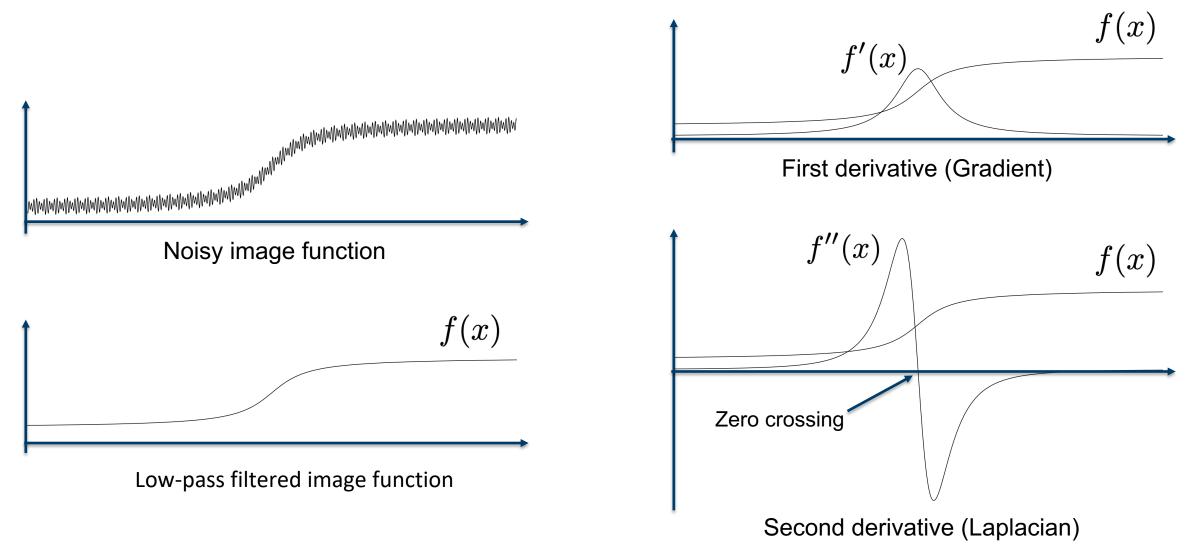
Edge enhanced image (Sobel)

Canny edge detector

- Calculates a gradient image using the derivative of a Gaussian filter (i.e. Sobel operator)
- Detects local maxima of the gradient
- Thresholding using two thresholds:
 - High threshold for detection of strong edges
 - Low threshold for detection of weak edges
- Only weak edges connected to strong edges are retained in the output image
- This method is less likely to be fooled by noise than other methods, and
- More likely to detect true weak edges



First and second derivatives



Laplacian operator

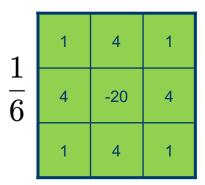
Gradient (in two dimensions):

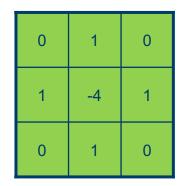
$$abla = egin{bmatrix} rac{\partial}{\partial x} \ rac{\partial}{\partial y} \end{bmatrix}$$

Laplacian:

$$\nabla \cdot \nabla = \nabla^2 = \frac{\partial^2}{\partial^2 x} + \frac{\partial^2}{\partial^2 y}$$

Discrete approximations (3 x 3 kernels):

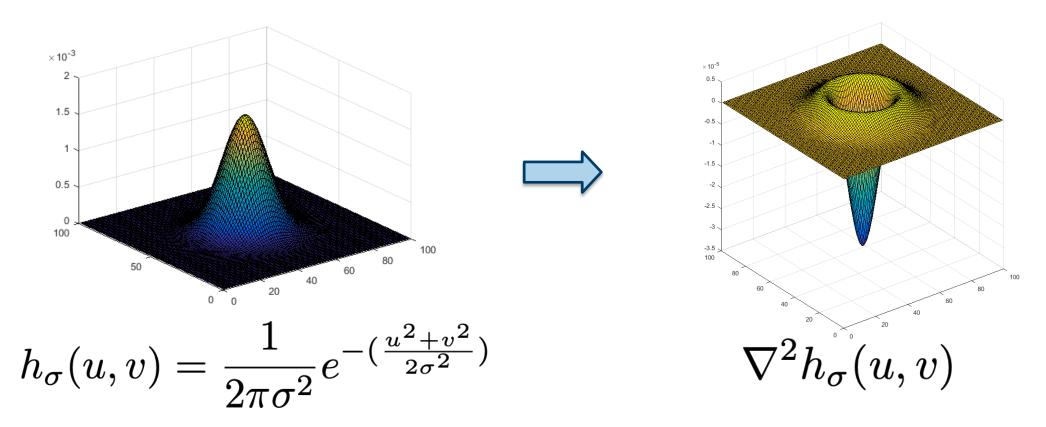




Laplacian of Gaussian (LoG)

Gaussian

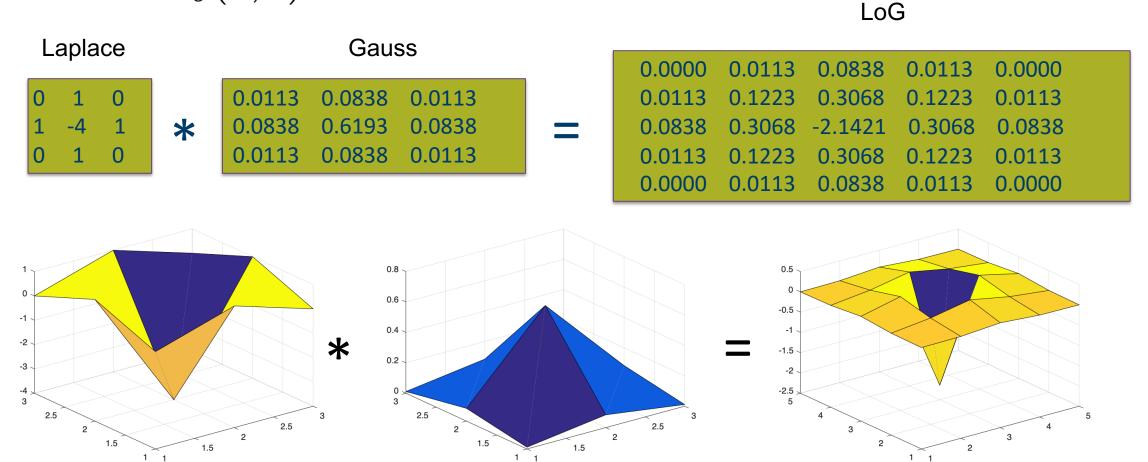
Laplacian of Gaussian



Edge pixels at zero-crossings in the LoG image!

Laplacian of Gaussian - example

$$\nabla^2 h_\sigma(u,v)$$



TEK5030

Examples - Laplacian and LoG

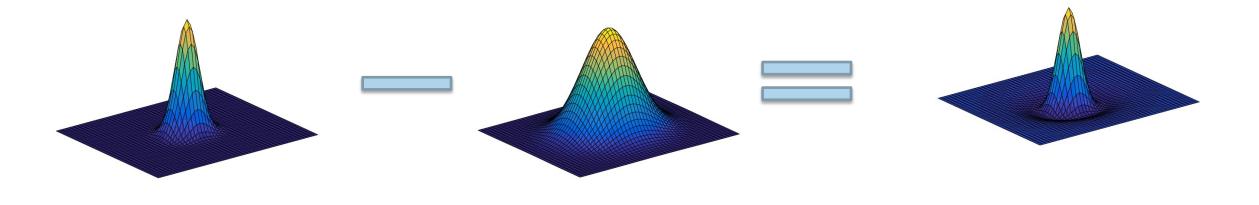
Laplace

TEK5030

Laplacian of Gaussian

Edge detection - Laplacian of Gaussian (LoG)

Difference of Gaussians (DoG)



Small variance

Large variance

DoG (approximation to LoG)

Difference of Gaussians - approximation to LoG

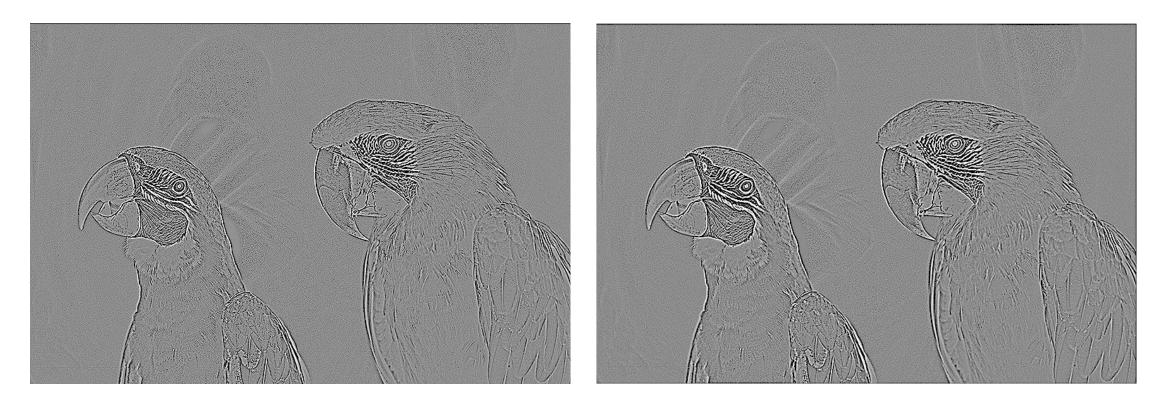
TEK5030

Another example

RGB original

Gray level

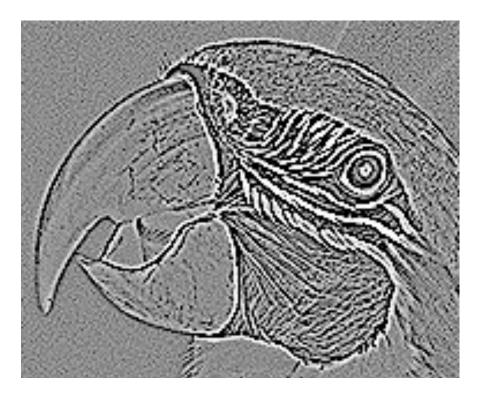
Laplace and LoG images



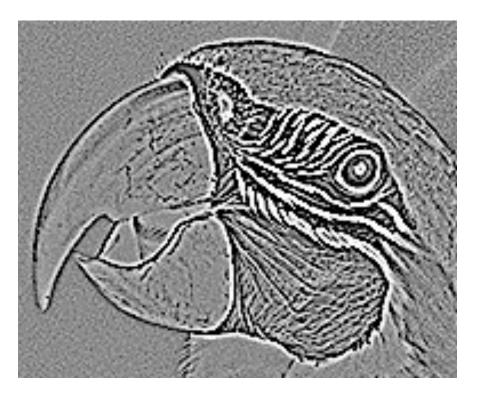
Laplace

LoG

Laplace and LoG images - details



Laplace

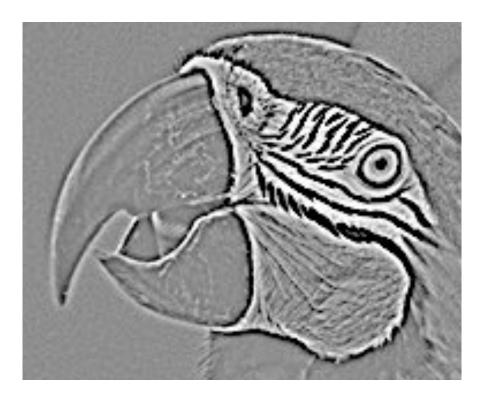


LoG

DoG images



3 x 3 Gaussian kernel



7 x 7 Gaussian kernel

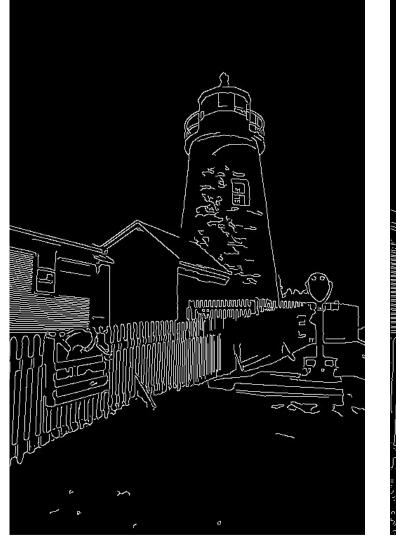
Edge images

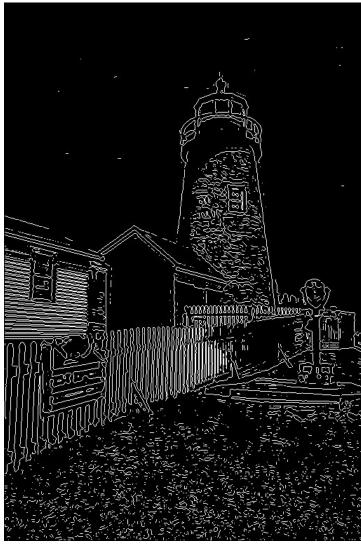
Binary images

Obtained by:

- Thresholding gradient images (e.g. Canny)
- Finding zero-crossings in Laplace og LoG images

How to connect these edge pixels to identify lines in the image?

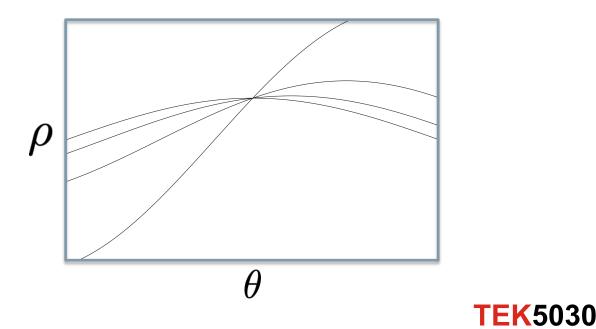


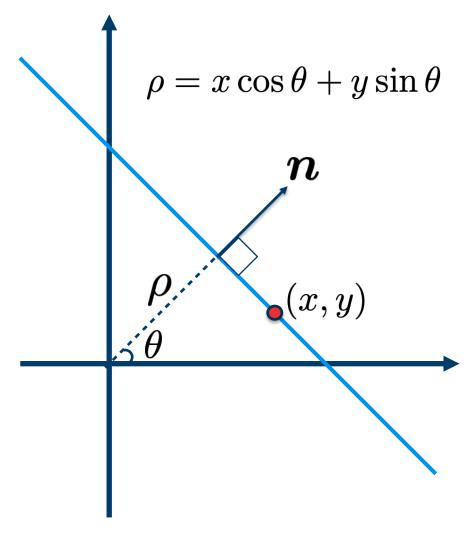


Line detection - Hough transform

The set of all lines going through a given point corresponds to a sinusoidal curve in the (ρ, θ) plane.

Two or more points on a straight line will give rise to sinusoids intersecting at the point (ρ, θ) for that line.

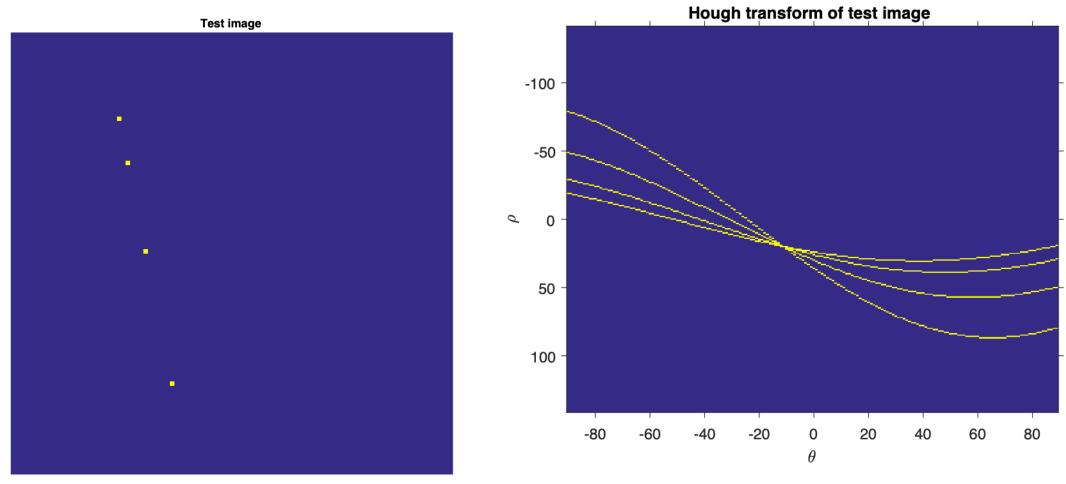




The Hough transform can be generalized to other shapes.

21

Example



Accumulator

Hough transform

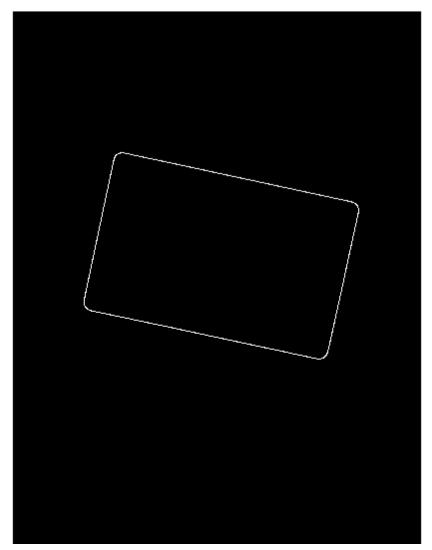
- 1. Clear the accumulator array
- 2. For each detected edge pixel at location (x, y) and each orientation $\theta = \tan^{-1}(n_y/n_x)$ compute the value of: $\rho = x \cos \theta + y \sin \theta$

and increment the accumulator bin corresponding to (
ho, heta)

- 3. Find the peaks (local maxima) in the accumulator corresponding to lines
- 4. Optional post-processing to fit the lines to the constituent edge pixels.

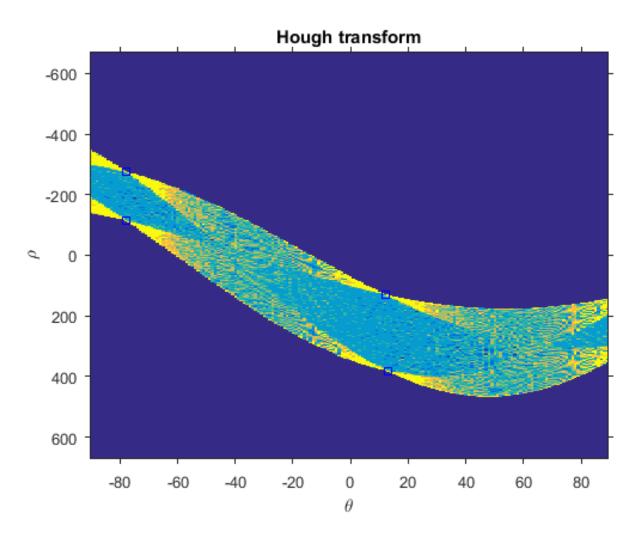
TEK5030

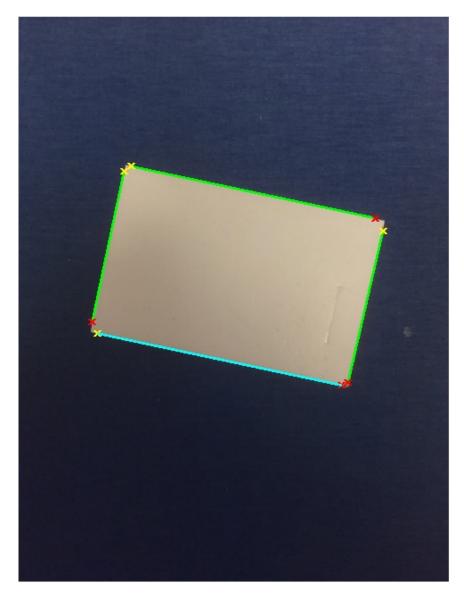
Example 1



TEK5030

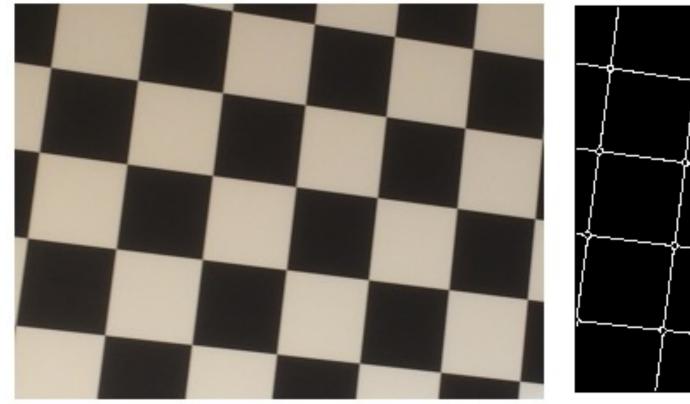
Example 1 - result

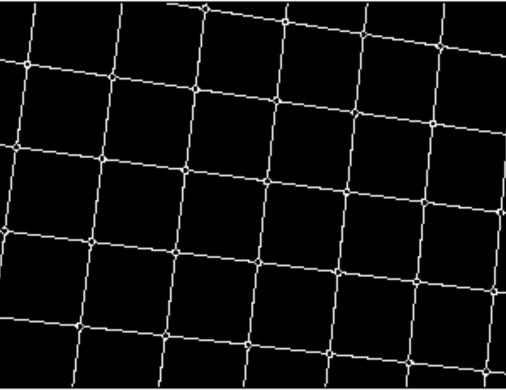




Detected lines

Example 2

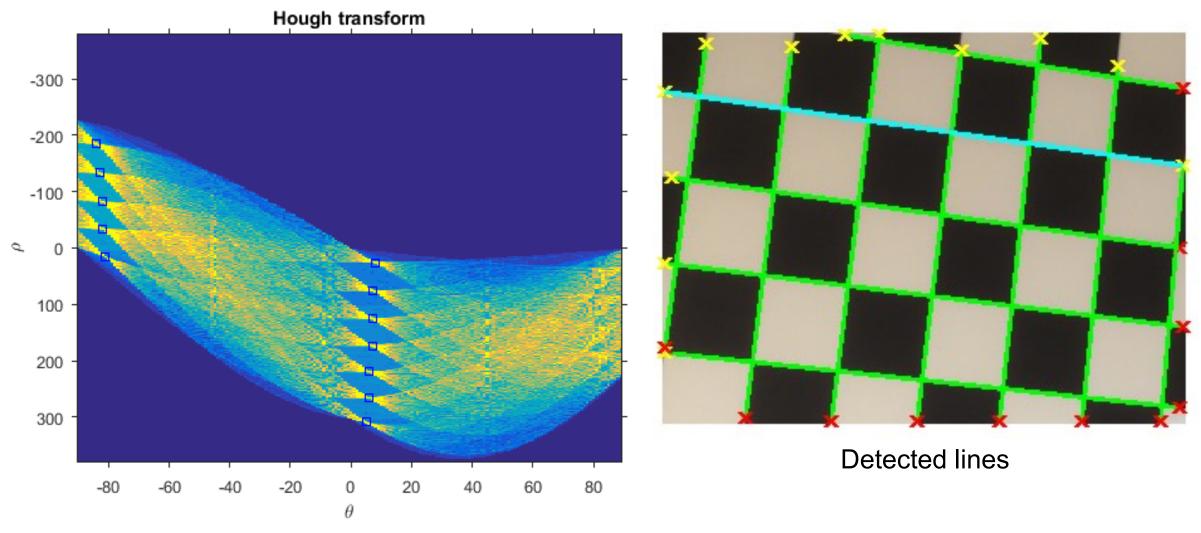




Original

Edge image (Canny)

Example 2 - result



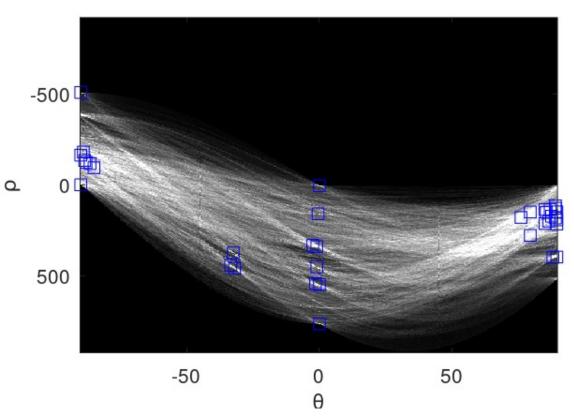
Example 3

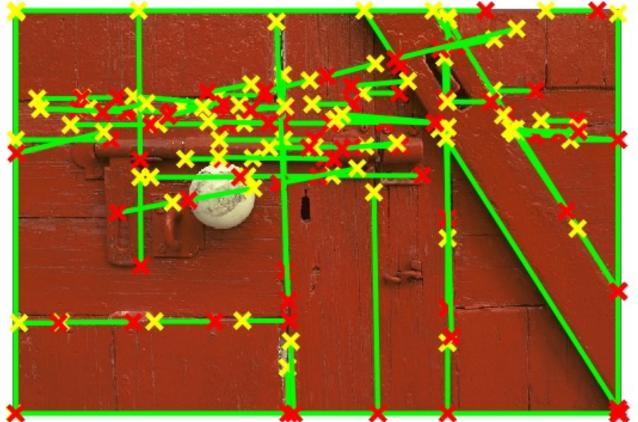
Original

Edge image (Canny)

Example 3 - result

Hough transform





Detected lines

Line detection - example 4

Summary

Line features:

- Edge detectors
- Line detection with the Hough transform

Recommended reading:

• Szeliski 7.2 and 7.4

