UiO: Department of Technology Systems
University of Oslo

Line features

Idar Dyrdal

Edges and lines

An edge is a place of rapid change of image intensity, colour or texture, representing:

- Boundaries of objects or image regions
- Shadow boundaries
- Creases

Edge points and edge elements (edgels) can be attributed to:

- Curves/contours (open or closed)
- Straight line segments
- Piecewise linear contours

Edge operators (edge enhancement filters)

Edge pixels are found at extrema of the first derivative of the image intensity function.

Image gradient (noisy):

$$
\nabla f=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

Gradient magnitude:

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

Prewitt operator:

$$
G_{x}=\begin{array}{|c|c|c|}
\hline-1 & 0 & 1 \\
\hline-1 & 0 & 1 \\
\hline-1 & 0 & 1 \\
\hline
\end{array}
$$

$$
G_{y}=\begin{array}{|c|c|c|}
\hline-1 & -1 & -1 \\
\hline 0 & 0 & 0 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}
$$

Derivative of Gaussian (smoother result):

$$
\begin{aligned}
& \frac{\partial}{\partial u} h_{\sigma}(u, v) \\
& h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\left(\frac{u^{2}+v^{2}}{2 \sigma^{2}}\right)}
\end{aligned}
$$

Sobel operator:

$$
S_{x}=\begin{array}{|c|c|c|}
\hline-1 & 0 & 1 \\
-2 & 0 & 2 \\
\hline-1 & 0 & 1 \\
\hline
\end{array}
$$

$$
S_{y}=\begin{array}{|c|c|c|}
\hline-1 & -2 & -1 \\
\hline 0 & 0 & 0 \\
\hline 1 & 2 & 1 \\
\hline
\end{array}
$$

Image derivatives - Sobel

x-component
TEK5030

y-component

Gradient magnitude

Gradient magnitude - Prewitt TEK5030

Gradient magnitude - Sobel

Thinning and thresholding

- Detection of local maxima (i.e. suppression of non-maxima) along the gradient (across edges)
- Thresholding

Binary image with isolated edges (single pixels at discrete locations along edge contours)

Edge enhanced image (Sobel)

Edge image (Canny)

Canny edge detector

- Calculates a gradient image using the derivative of a Gaussian filter (i.e. Sobel operator)
- Detects local maxima of the gradient
- Thresholding using two thresholds:
- High threshold for detection of strong edges
- Low threshold for detection of weak edges
- Only weak edges connected to strong edges are retained in the output image
- This method is less likely to be fooled by noise than other methods, and
- More likely to detect true weak edges

First and second derivatives

Noisy image function

Low-pass filtered image function

Laplacian operator

Gradient (in two dimensions):
$\nabla=\left[\begin{array}{c}\frac{s}{a} \\ \frac{s}{w} \\ \frac{a}{w}\end{array}\right]$
Laplacian:
$\nabla \cdot \nabla=\nabla^{2}=\frac{\partial^{2}}{\partial^{2} x}+\frac{\partial^{2}}{\partial^{2} y}$

Discrete approximations (3×3 kernels):

Laplacian of Gaussian (LoG)

Gaussian Laplacian of Gaussian

Edge pixels at zero-crossings in the LoG image!

Laplacian of Gaussian - example

$\nabla^{2} h_{\sigma}(u, v)$
Laplace
$\left.\left.\begin{array}{\|rrr\|}\hline 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0\end{array}\right] * \begin{array}{rrr}0.0113 & 0.0838 & 0.0113 \\ 0.0838 & 0.6193 & 0.0838 \\ 0.0113 & 0.0838 & 0.0113\end{array}\right]=$0.0000 0.0113 0.0838 0.0113 0.0000 0.0113 0.1223 0.3068 0.1223 0.0113 0.0838 0.3068 -2.1421 0.3068 0.0838 0.0113 0.1223 0.3068 0.1223 0.0113 0.0000 0.0113 0.0838 0.0113 0.0000

Examples - Laplacian and LoG

Laplacian of Gaussian

Edge detection - Laplacian of Gaussian (LoG)

LoG (gray level)

Thresholded zero crossing (binary) TEK5030

All zero crossings (binary)

Difference of Gaussians (DoG)

Difference of Gaussians - approximation to LoG

TEK5030

Another example

RGB original

Gray level

Laplace and LoG images

Laplace

LoG

Laplace and LoG images - details

DoG images

3×3 Gaussian kernel

7×7 Gaussian kernel

Edge images

Binary images

Obtained by:

- Thresholding gradient images (e.g. Canny)
- Finding zero-crossings in Laplace og LoG images

How to connect these edge pixels to identify lines in the image?

Line detection - Hough transform

The set of all lines going through a given point corresponds to a sinusoidal curve in the (ρ, θ) plane.

Two or more points on a straight line will give rise to sinusoids intersecting at the point (ρ, θ) for that line.

The Hough transform can be generalized to other shapes.

Example

Hough transform

1. Clear the accumulator array
2. For each detected edge pixel at location (x, y) and each
orientation $\theta=\tan ^{-1}\left(n_{y} / n_{x}\right)$ compute the value of:

$$
\rho=x \cos \theta+y \sin \theta
$$

and increment the accumulator bin corresponding to (ρ, θ)
3. Find the peaks (local maxima) in the accumulator corresponding to lines
4. Optional post-processing to fit the lines to the constituent edge pixels.

Example 1

Edge image (Canny)

Example 1 - result

Example 2

Example 2 - result

Example 3

Original

Edge image (Canny)

Example 3 - result

Line detection - example 4

TEK5030

Summary

Line features:

- Edge detectors
- Line detection with the Hough transform

Recommended reading:

- Szeliski 7.2 and 7.4

