UiO **Department of Technology Systems**

University of Oslo

Robust estimation with RANSAC

Thomas Opsahl

2023

 If two perspective cameras captures images of a planar scene, their images are related by a homography H

- If two perspective cameras captures images of a planar scene, their images are related by a homography H
- It can be estimated if we know at least 4 point-correspondences u_i ↔ u'_i

- If two perspective cameras captures images of a planar scene, their images are related by a homography H
- It can be estimated if we know at least 4 point-correspondences u_i ↔ u'_i
- Correspondences can be found automatically, but typically some of them will be wrong

- If two perspective cameras captures images of a planar scene, their images are related by a homography H
- It can be estimated if we know at least 4 point-correspondences u_i ↔ u'_i
- Correspondences can be found automatically, but typically some of them will be wrong
- RANSAC is a general method for detecting bad data that we can use to remove bad correspondences and robustly estimate **H**

 RANSAC is an iterative method for estimating the parameters of a mathematical model from a set of observed data that contains outliers

$$\mathbf{y} = f(\mathbf{x}; \boldsymbol{\alpha})$$

Mathematical model with parameters $\alpha = (\alpha_1, ..., \alpha_n)$

• RANSAC is an iterative method for estimating the parameters of a mathematical model from a set of observed data that contains outliers

 The RANSAC estimation process divides the observed data into inliers and outliers, so it can also be regarded as an outlier detection method

$$\mathbf{y} = f(\mathbf{x}; \boldsymbol{\alpha})$$

Mathematical model with parameters $\alpha = (\alpha_1, ..., \alpha_n)$

- RANSAC is an iterative method for estimating the parameters of a mathematical model from a set of observed data that contains outliers
 - Secondary application!
- The RANSAC estimation process divides the observed data into inliers and outliers, so it can also be regarded as an outlier detection method
 - Main application!

Mathematical model with parameters $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)$

- In order to estimate a model from data containing outliers, it is common to use RANSAC in combination with another estimation method e.g. linear least squares
- The model estimated in RANSAC is usually ignored
 - It is based on a small subset of the observed data
 - Different RANSAC estimations will typically return different models (RANSAC is non-deterministic)

Basic RANSAC

Objective

Robustly fit a model $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\alpha})$ to a data set $S = {\mathbf{x}_i}$

Algorithm

Repeat steps 1-3 until N models have been tested

- 1. Determine a test model $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\alpha}_{tst})$ from *n* random data points {($\mathbf{x}_1, \mathbf{y}_1$), ($\mathbf{x}_2, \mathbf{y}_2$), ..., ($\mathbf{x}_n, \mathbf{y}_n$)}
- 2. Check how well the data points in *S* fit with the test model
 - Data points within a distance t of the model constitute a set of inliers $S_{tst} \subseteq S$
 - The remaining data points are outliers
- 3. If S_{tst} is larger than all previous set of inliers, we update the RANSAC model $f(\mathbf{x}; \boldsymbol{\alpha}) = f(\mathbf{x}; \boldsymbol{\alpha}_{tst})$ and the set of inliers $S_{IN} = S_{tst}$

Comments

The number of tests, N, is directly related to the probability of sampling at least one random n-tuple {x₁, x₂, ..., x_n} with no outliers in it

The test model and inlier set corresponding to such an *n*-tuple should be an acceptable result of the RANSAC estimation

• If ω is the probability of a random data point being an inlier, then the number of test N and the probability p to sample at least one random n-tuple with no outliers is related by

$$N = \frac{\log(1-p)}{\log(1-\omega^n)}$$

• By keeping n as small as possible, we also minimize the number of required tests N for a desired level of confidence p

Basic RANSAC

Comments

- Standard value p = 0.99
- We rarely know the ratio of inliers in our dataset, so in most situations, ω is unknown
- Instead of choosing an large ω just to be on the safe side, leading to a larger than necessary N, we can modify RANAC to adaptively estimate N as we perform the iterations

 $\omega = P(inlier)$

N	0.9	0.8	0.7	0.6	0.5
2	3	5	7	11	17
3	4	7	11	19	35
4	5	9	17	34	72
5	6	12	26	57	146
6	7	16	37	97	293
7	8	20	54	163	588
8	9	26	78	272	1177
	N 2 3 4 5 6 7 8	N 0.9 2 3 3 4 4 5 5 6 6 7 7 8 8 9	N0.90.82353474595612671678208926	N0.90.80.723573471145917561226671637782054892678	N0.90.80.70.6235711347111945917345612265767163797782054163892678272

$$\mathbf{V} = \frac{\log(1-p)}{\log(1-\omega^n)}$$

p = 0.99

n

Adaptive RANSAC

Objective

Robustly fit a model $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\alpha})$ to a data set $S = {\mathbf{x}_i}$

Algorithm

Let $N = \infty$, $S_{IN} = \emptyset$ While (*num_iterations* < *N*) repeat steps 1-4

- 1. Determine a test model $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\alpha}_{tst})$ from *n* random data points $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$
- 2. Check how well the data points in *S* fit with the test model
 - Data points within a distance t of the model constitute a set of inliers $S_{tst} \subseteq S$
- 3. If S_{tst} is larger than S_{IN} , we update the RANSAC model $f(\mathbf{x}; \boldsymbol{\alpha}) = f(\mathbf{x}; \boldsymbol{\alpha}_{tst})$ and the set of inliers $S_{IN} = S_{tst}$

4. Compute
$$N = \frac{\log(1-p)}{\log(1-\omega^n)}$$
 using that $\omega = \frac{|S_{IN}|}{|S|}$ and $p = 0.99$

• Fit a circle $(x - x_0)^2 + (y - y_0)^2 = r^2$ to these data points by estimating the 3 parameters x_0 , y_0 and r

Random points on a circle + Gaussian noise

Random points

• Fit a circle $(x - x_0)^2 + (y - y_0)^2 = r^2$ to these data points by estimating the 3 parameters x_0 , y_0 and r

• The data set consists of random points on a circle with some Gaussian noise added to them and some additional random points

Linear least squares approach Separate observables from parameters:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

$$x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 = r^2$$

$$2xx_0 + 2yy_0 + r^2 - x_0^2 - y_0^2 = x^2 + y^2$$

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 2x_0 \\ 2y_0 \\ r^2 - x_0^2 - y_0^2 \end{bmatrix} = \begin{bmatrix} x^2 + y^2 \end{bmatrix}$$

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} x^2 + y^2 \end{bmatrix}$$

So for each observation (x_i, y_i) we get one equation

$$\begin{bmatrix} x_i & y_i & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} x_i^2 + y_i^2 \end{bmatrix}$$

From all our n observations we get a system of linear equations

$$\begin{bmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \\ x_{n} & y_{n} & 1 \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \begin{bmatrix} x_{1}^{2} + y_{1}^{2} \\ x_{2}^{2} + y_{2}^{2} \\ \vdots \\ x_{n}^{2} + y_{n}^{2} \end{bmatrix}$$
$$\mathbf{Ap} = \mathbf{b}$$

- Here we have n > 3 data points and only 3 parameters
 - Overdetermined set of equations
 - Typically no exact solution
- The linear least squares solution to the problem is the parameter \mathbf{p}^* that minimizes the sum of squares of residuals

$$\mathbf{p}^* = \underset{\mathbf{p}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{p} - \mathbf{b}\|^2$$

• This can be found by solving the following equation

$$\frac{\partial}{\partial \mathbf{p}}(\|\mathbf{A}\mathbf{p}-\mathbf{b}\|^2) = \mathbf{0}$$

• This leads to the so called normal equations

$$\frac{\partial}{\partial \mathbf{p}} (\|\mathbf{A}\mathbf{p} - \mathbf{b}\|^2) = \mathbf{0}$$
$$2\mathbf{A}^T (\mathbf{A}\mathbf{p} - \mathbf{b}) = \mathbf{0}$$
$$\mathbf{A}^T \mathbf{A}\mathbf{p} = \mathbf{A}^T \mathbf{b}$$

• Hence the linear least squares solution is

$$\mathbf{p}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

• The linear least squares solution for our problem looks like this...

$$\begin{bmatrix} 2x_{0} \\ 2y_{0} \\ r^{2} - x_{0}^{2} - y_{0}^{2} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \\ x_{n} & y_{n} & 1 \end{bmatrix}^{T} \begin{bmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \\ x_{n} & y_{n} & 1 \end{bmatrix}^{-1} \begin{bmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \\ x_{n} & y_{n} & 1 \end{bmatrix}^{T} \begin{bmatrix} x_{1}^{2} + y_{1}^{2} \\ x_{2}^{2} + y_{2}^{2} \\ \vdots \\ x_{n}^{2} + y_{n}^{2} \end{bmatrix}$$
$$\mathbf{p}^{*} \qquad (\mathbf{A}^{T}\mathbf{A})^{-1} \qquad \mathbf{A}^{T} \qquad \mathbf{b}$$

• The linear least squares solution for our problem looks like this...

$$\begin{bmatrix} 2x_{0} \\ 2y_{0} \\ r^{2} - x_{0}^{2} - y_{0}^{2} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \vdots \\ x_{n} & y_{n} & 1 \end{bmatrix}^{T} \begin{bmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \vdots \\ x_{n} & y_{n} & 1 \end{bmatrix}^{T} \begin{bmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \vdots \\ x_{n} & y_{n} & 1 \end{bmatrix}^{T} \begin{bmatrix} x_{1}^{2} + y_{1}^{2} \\ x_{2}^{2} + y_{2}^{2} \\ \vdots \\ x_{n}^{2} + y_{n}^{2} \end{bmatrix}$$
$$\mathbf{p}^{*} \qquad (\mathbf{A}^{T}\mathbf{A})^{-1} \qquad \mathbf{A}^{T} \qquad \mathbf{b}$$

- Since all points are treated equal, the random points shift the estimated circle away from the desired solution
- Now let us try RANSAC

- RANSAC requires two things
 - 1. A way to estimate a circle from n points, where n is as small as possible
 - 2. A way to determine which of the points are inliers for an estimated circle

- RANSAC requires two things
 - 1. A way to estimate a circle from *n* points, where *n* is as small as possible
 - 2. A way to determine which of the points are inliers for an estimated circle
- The smallest number of points required to determine a circle is 3, i.e. n = 3, and the algorithm for computing the circle is quite simple

- RANSAC requires two things
 - 1. A way to estimate a circle from n points, where n is as small as possible
 - 2. A way to determine which of the points are inliers for an estimated circle
- The smallest number of points required to determine a circle is 3, i.e. n = 3, and the algorithm for computing the circle is quite simple
 We could also have used the least squares

approach from earlier, just with three points!

- RANSAC requires two things
 - 1. A way to estimate a circle from n points, where n is as small as possible
 - 2. A way to determine which of the points are inliers for an estimated circle
- The distance from a point (x_i, y_i) to a circle $(x x_0)^2 + (y y_0)^2 = r^2$ is given by $\left| \sqrt{(x_i x_0)^2 + (y_i y_0)^2} r \right|$

- RANSAC requires two things
 - 1. A way to estimate a circle from n points, where n is as small as possible
 - 2. A way to determine which of the points are inliers for an estimated circle
- The distance from a point (x_i, y_i) to a circle $(x x_0)^2 + (y y_0)^2 = r^2$ is given by $\left|\sqrt{(x_i x_0)^2 + (y_i y_0)^2} r\right|$
- So for a threshold value t, we say that (x_i, y_i) is an inlier if $\left|\sqrt{(x_i x_0)^2 + (y_i y_0)^2} r\right| < t$
- The value of *t* should be chosen according to the noise/uncertainty we expect in the data points (*x_i*, *y_i*)
 - In the case of Gaussian noise with standard deviation $\sigma = \sigma_x = \sigma_y$, $t = 3\sigma$ should enable us to find a large set of inliers

Objective

To robustly fit the model $(x - x_0)^2 + (y - y_0)^2 = r^2$ to our data set $S = \{(x_i, y_i)\}$

Algorithm

- 1. Let $N = \infty$, $S_{IN} = \emptyset$, p = 0.99, $t = 2 \cdot expected$ noise
- 2. As long as the number of iterations are smaller than *N* repeat steps 3-5
- 3. Determine parameters $(x_{0,tst}, y_{0,tst}, r_{tst})$ from three random points from *S*
- 4. Check how well each individual data point in *S* fits with the test model $S_{tst} = \left\{ (x_i, y_i) \in S \text{ such that } \left| \sqrt{(x_i - x_{0,tst})^2 + (y_i - y_{0,tst})^2} - r_{tst} \right| < t \right\}$
- 5. If S_{tst} is the largest set of inliers encountered so far, we keep this model

- Set
$$S_{IN} = S_{tst}$$
 and $(x_0, y_0, r) = (x_{0,tst}, y_{0,tst}, r_{tst})$
- Recompute $N = \frac{log(1-p)}{log(1-\omega^n)}$ using that $\omega = \frac{|S_{IN}|}{|S|}$

- RANSAC output (an example)
 - The RANSAC estimated circle typically changes from one estimation to another
 - The RANSAC estimated inliers are more consistent

• Linear least squares solution based on RANSAC inliers

Summary

 $\mathbf{y} = f_{RANSAC}(\mathbf{x}; \boldsymbol{\alpha})$

- RANSAC is an inlier detection method commonly used in combination with an estimation method like linear least squares to estimate a mathematical model from a dataset containing outliers
- RANSAC also provides an estimate for the mathematical model,
 - Typically estimated from only a small subset of the inliers
 - Typically different from one estimation to another

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications 2nd ed
 - Chapter 8 "Image alignment and stitching", in particular section 8.1.4 "Robust least-squares and RANSAC"

