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Motivation

« If two perspective cameras captures
images of a planar scene, their images are
related by a homography H

* |t can be estimated if we know at least 4
point-correspondences u; & u’;

« Correspondences can be found
automatically, but typically some of them
will be wrong

« RANSAC is a general method for detecting
bad data that we can use to remove bad
correspondences and robustly estimate H

TEKS030



RANdom SAmple Consensus - RANSAC

Observed data

« RANSAC is an iterative method for estimating the parameters
of a mathematical model from a set of observed data that
contains outliers

RANSAC

y=/fxa

Mathematical model
with parameters a =

(all L an)
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RANdom SAmple Consensus - RANSAC

RANSAC is an iterative method for estimating the parameters
of a mathematical model from a set of observed data that
contains outliers

The RANSAC estimation process divides the observed data
Into inliers and outliers, so it can also be regarded as an outlier
detection method
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RANdom SAmple Consensus - RANSAC

« RANSAC is an iterative method for estimating the parameters
of a mathematical model from a set of observed data that
contains outliers

— Secondary application!

« The RANSAC estimation process divides the observed data
Into inliers and outliers, so it can also be regarded as an outlier
detection method

— Main application!
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RANdom SAmple Consensus - RANSAC

Mathematical model

Observed data Inliers with parameters a =
Linear least (g, ..., ay)
RANSAC squares
> > y=fxa)

« |n order to estimate a model from data containing outliers, it is common to use RANSAC in
combination with another estimation method e.g. linear least squares

 The model estimated in RANSAC is usually ignored
— Itis based on a small subset of the observed data
— Different RANSAC estimations will typically return different models (RANSAC is non-deterministic)

TEK5030 °



Basic RANSAC

Objective
Robustly fit a model y = f(x; o) to a data set S = {x;}

Algorithm
Repeat steps 1-3 until N models have been tested

1. Determine a test model y = f(x; a;5;) from n random data points {(x1,¥1), (X2,¥2), ..., X, V1) }

2. Check how well the data points in S fit with the test model
—  Data points within a distance t of the model constitute a set of inliers S;;; € S
—  The remaining data points are outliers

3. If S; is larger than all previous set of inliers, we update the RANSAC model f(x; a) = f(X; ot;s)
and the set of inliers S;y = Sist
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Comments

The number of tests, N, is directly related to the probability of sampling at least one random
n-tuple {x4, X,, ..., X,,} with no outliers in it

The test model and inlier set corresponding to such an n-tuple should be an acceptable
result of the RANSAC estimation

If w Is the probability of a random data point being an inlier, then the number of test N and
the probability p to sample at least one random n-tuple with no outliers is related by

_ log(1-p)
~log(1 — w™)

By keeping n as small as possible, we also minimize the number of required tests N for a
desired level of confidence p
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Basic RANSAC

Comments

Standard value p = 0.99

We rarely know the ratio of inliers in our dataset, so

In Most situations, w 1S unknown

Instead of choosing an large w just to be on the safe

side, leading to a larger than necessary N, we can
modify RANAC to adaptively estimate N as we

perform the iterations

TEKS030

w = P(inlier)

N 09 1 08| 07 ] 06 | 05
2 3 5 7 11 17
3 = 7 11 19 35
4 5 9 17 34 72
5 6 12 26 57 | 146
6 7 16 37 97 | 293
7 8 20 54 | 163 | 588
8 9 26 78 | 272 |1177
_ log(1—p)
log(1 — w™)
p = 0.99
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Adaptive RANSAC

Objective
Robustly fit a model y = f(x; o) to a data set S = {x;}

Algorithm
Let N = oo, SIN =0
While (num_iterations < N) repeat steps 1-4

1. Determine a test model y = f(x; a;5;) from n random data points {(x1,¥1), (X5,¥2), -, (X5, V) }

2. Check how well the data points in S fit with the test model
— Data points within a distance t of the model constitute a set of inliers S;;; € S

3. If S is larger than S;y, we update the RANSAC model f(x; o) = f(X; otsst)
and the set of inliers S;y = S;4;t

log(1—p)
log(1—-w™)

using that w = Sivl and p =0.99

4. Compute N = S|
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Example
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Fit a circle (x — xy)? + (y — y,)? = 2 to these data points by estimating the 3 parameters x,,

Yo and r
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Example N

70 -
60

50 -t 1 Random points on a circle

ol + Gaussian noise

30 . B T I Random points
20 | :

10

0 20 40 60 80 100

 Fitacircle (x — x9)? + (y — yo)? = r? to these data points by estimating the 3 parameters x,,
Yo and r

« The data set consists of random points on a circle with some Gaussian noise added to them
and some additional random points
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Example

Linear least squares approach
Separate observables from parameters:

(x—x0)2+(y—yo)2 =r

2

2 2 2 2 2
X" =2XXy + X5 + Y =2yY, + Y, =T

2XX, +2YY, + 12 —Xo — Yo = x> +y*

2X,
[x y 1] 2V,
=% Yo
o
[x vy 1] p,
| P

ey

=[x +¥*]

So for each observation (x;, y;) we get one
equation

P,
%y 1 p, :|:Xi2+yi2:|
Ps_

From all our n observations we get a system
of linear equations

X Y 1 - _Xf+y12
pl 2 2
X, ¥, 1 ) X5 +Y;
. 2 | — .
Xy, 1] X +yl
Ap =
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Example

Here we have n > 3 data points and only 3 parameters
— Overdetermined set of equations
— Typically no exact solution

The linear least squares solution to the problem is the parameter p* that minimizes the sum
of squares of residuals

p* = argmin||Ap — b||?
p

This can be found by solving the following equation

d
—(|lAp — 2y —
55 (1P — bll) = 0

TEKS030
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Example

« This leads to the so called normal equations
° (llap - bII?) = 0
op P B
2AT(Ap—b) =0

ATAp =A™

« Hence the linear least squares solution is

p* = (ATA)"'ATb

TEKS030
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Example

« The linear least squares solution for our problem looks 80

like this...
70 - .
_ T Nl I -
5 x, oy 1 x, » 1 x, v o1 X+, 60 - 1
X
0 2 2
x, v, 1 x, v, |1 x, y, |1 X, +
2 S 2 2 J 2 2 J2 v P
2y, = : : : L 0f |
o : : : :
A0 T o 2 40 7
_rn Vrz l_ _Yn Vrz l_ _xn yrz l_ _Yr +Vn_
30 - .
p* (ATA)—l AT b
20 - .
10 F .
0 1 1 1 1
0 20 40 60 80 100

NOT GOOD!
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Example

* The linear least squares solution for our problem looks
like this...

2 2
o v, oy 1 y, oy 1 o on 1 X TN
Xo 2 2
X, W 1 X, W 1 X, W 1 X, TV,
2y, =
=Xl =yt
Xo = Vo 2 2
_xTI y?l l_ _x” y” l_ _x” y” l_ _xiz + V}l _
I]* (}\T}\)—l [\T b

« Since all points are treated equal, the random points
shift the estimated circle away from the desired solution

 Now let us try RANSAC
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Example

RANSAC requires two things
1. Away to estimate a circle from n points, where n is as small as possible
2. A way to determine which of the points are inliers for an estimated circle

TEKS030
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Example

 RANSAC requires two things
1. Away to estimate a circle from n points, where n is as small as possible
2. A way to determine which of the points are inliers for an estimated circle

« The smallest number of points required to determine a circle is 3, i.e. n = 3, and the
algorithm for computing the circle is quite simple
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Example

RANSAC requires two things
1. Away to estimate a circle from n points, where n is as small as possible
2. A way to determine which of the points are inliers for an estimated circle

The smallest number of points required to determine a circle is 3, i.e. n = 3, and the

algorithm for computing the circle is quite simple We could also have used the least squares
approach from earlier, just with three points!

TN
1 \\
U ~
) S
1 ~
[ / R J
1
1
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Example

 RANSAC requires two things
1. Away to estimate a circle from n points, where n is as small as possible
2. A way to determine which of the points are inliers for an estimated circle

 The distance from a point (x;, y;) to a circle (x — x5)? + (y — y,)? = r? is given by
‘\/(xi —x0)2+ (i —yo)2—1

(X1, ;)

'\/(xi —x0)% + (y; — ¥0)*

TEKS030

24



Example

 RANSAC requires two things
1. Away to estimate a circle from n points, where n is as small as possible
2. A way to determine which of the points are inliers for an estimated circle

 The distance from a point (x;, y;) to a circle (x — x5)? + (y — y,)? = r? is given by
‘\/(xi —x0)2+ (i —yo)2—1

« So for a threshold value t, we say that (x;, y;) is an inlier if ‘\/(xl- —x0)>+(y; —yo)?—r| <t

« The value of t should be chosen according to the noise/uncertainty we expect in the data
points (x;, y;)
— Inthe case of Gaussian noise with standard deviation ¢ = g, = 0,,, t = 30 should enable us to find
a large set of inliers
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Example

Objective
To robustly fit the model (x — x)? + (y — y,)? = r? to our data set S = {(x;,y;)}

Algorithm
1. LetN =o00, S, =0,p=099,t=2-expected noise

2. Aslong as the number of iterations are smaller than N repeat steps 3-5
3. Determine parameters (xg ¢st, Vo,tst» Tese) from three random points from S

4. Check how well each individual data point in S fits with the test model

\/(xi - xO,tst)z + (J’i — yO,tst)Z — Tist

o

Stst = {(xi,yi) € S such that

5. |If S is the largest set of inliers encountered so far, we keep this model
—  Set Sy = Sse and (xg, o, 7) = (xO,tstr Yo,tsts rtst)

_ log(l-p) . _ ISl
— Recompute N = oa (1w USINg that w = w

TEKS030
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Example
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 RANSAC output (an example)
— The RANSAC estimated circle typically changes from one estimation to another
— The RANSAC estimated inliers are more consistent
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Example
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» Linear least squares solution based on RANSAC inliers
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Summary

Y = fransac(X; &)
Mathematical model

Observed data / Inliers with parameters a =
(e, ..., an)

Linear least

RANSAC squares
> > y=fxa)

« RANSAC is an inlier detection method commonly used in combination with an estimation
method like linear least squares to estimate a mathematical model from a dataset containing

outliers

« RANSAC also provides an estimate for the mathematical model,
— Typically estimated from only a small subset of the inliers
— Typically different from one estimation to another

TEKS030

29



Supplementary material

Recommended

« Richard Szeliski: Computer Vision: Algorithms and Applications 2" ed

— Chapter 8 “Image alignment and stitching”, in particular section 8.1.4 “Robust least-squares and
RANSAC”
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