

Lecture 6.2 Stereo imaging

Trym Vegard Haavardsholm

World geometry from correspondences

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose estimation	Known	Estimate	3D to 2D correspondences
Triangulation, Stereo	Estimate	Known	2D to 2D correspondences
Reconstruction, Structure from Motion	Estimate	Estimate	2D to 2D correspondences

Stereo vision

Depth from two views with known viewpoints

Stereo vision

Depth from two views with known viewpoints

...with an imaging geometry that makes it especially simple to extract depth Z_{C_2} y_{C_1}

$$x = f \frac{X}{Z} = f \frac{kX}{kZ}$$
$$y = f \frac{Y}{Z} = f \frac{kY}{kZ}$$

Any point on the ray has image ${}^{C}p$

Add a second view!

- Left camera defines common coordinate system
- Right camera shifted b_x units along the x-axis
 - Baseline
- Otherwise identical
 - Orientation
 - Focal lengths

$$^{L}\mathbf{P}=(X,Y,Z)$$

• Image of **P** in left camera:

$$x_L = f \frac{X}{Z}, \qquad y_L = f \frac{Y}{Z}$$

 $^{L}\boldsymbol{P}=(X,Y,Z)$

• Image of *P* in left camera:

$$x_L = f \frac{X}{Z}, \qquad y_L = f \frac{Y}{Z}$$

• Image of *P* in right camera:

(translating the camera to the right is equivalent to translating the world to the left)

 $^{L}\mathbf{P}=(X,Y,Z)$

Image of P in left camera:

$$x_L = f \frac{X}{Z}, \qquad y_L = f \frac{Y}{Z}$$

• Image of *P* in right camera:

(translating the camera to the right is equivalent to translating the world to the left)

$$^{L}\mathbf{P}=(X,Y,Z)$$

• Image of **P** in left camera:

$$x_L = f \frac{X}{Z}, \qquad y_L = f \frac{Y}{Z}$$

• Image of *P* in right camera:

$$x_R = f \frac{X - b_X}{Z}, \qquad y_R = f \frac{Y}{Z}$$

$$^{L}\mathbf{P}=(X,Y,Z)$$

• Image of *P* in left camera:

$$x_L = f \frac{X}{Z}, \qquad y_L = f \frac{Y}{Z}$$

• Image of *P* in right camera:

$$x_R = f \frac{X - b_X}{Z}$$
, $y_R = f \frac{Y}{Z}$

Stereo disparity

$$d = x_L - x_R$$

 $^{L}\boldsymbol{P}=(X,Y,Z)$

• Image of *P* in left camera:

$$x_L = f \frac{X}{Z}, \qquad y_L = f \frac{Y}{Z}$$

• Image of *P* in right camera:

$$x_R = f \frac{X - b_X}{Z}, \qquad y_R = f \frac{Y}{Z}$$

Stereo disparity

$$d = x_L - x_R = f \frac{X}{Z} - \left(f \frac{X}{Z} - f \frac{b_x}{Z} \right)$$

Stereo disparity

Baseline

Disparity
$$d=frac{b_x}{Z}$$
 Depth

4690

Stereo disparity

Baseline

Depth
$$Z = f \frac{b_x}{d}$$
 Disparity

4690

From normalized coordinates

$$Z = f \frac{b_x}{d}$$

$$X = x_L \frac{Z}{f}$$

$$Y = y_L \frac{Z}{f}$$

From normalized coordinates

$$Z = f \frac{b_x}{d}$$

$$X = x_L \frac{b_x}{d}$$

$$Y = y_L \frac{b_x}{d}$$

From pixel coordinates

$$Z = f_u \frac{b_x}{d_u}$$

$$X = (u_L - {}^L c_u) \frac{b_x}{d_u}$$

$$Y = (v_L - {}^L c_v) \frac{b_x}{d_u}$$

From pixel coordinates

Stereo cameras

http://www.ptgrey.com

"Kinect2-ir-image" by User:Kolossos http://commons.wikimedia.org/wiki/File:Kinect2-ir-image.png

Stereo cameras

What if we do not have parallel cameras?

- Epipolar lines no longer horizontal
- What does disparity mean now?
- How to reproject to 3D points?

Stereo rectification

- Reproject image planes onto a common plane parallel to the line between the camera centers
- The epipolar lines are horizontal after this transformation
- Two homographies
- C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Summary

- Stereo imaging
 - Horizontal epipolar lines
 - Disparity
 - 3D from disparity
 - Stereo rectification
- Next: Stereo processing

