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Introduction

• Observing the same points with two cameras, ℱ𝑎
and ℱ𝑏, puts a strong geometrical constraint on the 

point correspondences

• This epipolar constraint can be represented by two 

3 × 3 matrices
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Introduction

• Observing the same points with two cameras, ℱ𝑎
and ℱ𝑏, puts a strong geometrical constraint on the 

point correspondences

• This epipolar constraint can be represented by two 

3 × 3 matrices

• The essential matrix 𝐄 represents the constraint 

for point correspondences 𝐱𝑛
𝑎 ↔ 𝐱′𝑛

𝑏

• The fundamental matrix 𝐅 represents the same 

constraint, but for point correspondences 𝐮𝑎 ↔ 𝐮′b
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Introduction

• The baseline is the line joining the two camera centers

• The epipolar plane is the plane containing 𝐱 and the two camera centers ℱ𝑎 and ℱ𝑏
• The epipolar lines are where the epipolar plane intersect the image planes

• The epipoles are where the baseline intersects the two image planes

• Epipoles and epipolar lines can be represented in the normalized image plane as well as in the image
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Exploring the epipolar geometry

Let us consider two cameras, ℱ𝑎 and ℱ𝑏, and let 

ℱ𝑎 to be our “world frame”

Then we have the camera projection matrices

Assume that the two cameras project a 3D world 

point 𝐱𝑎 = 𝑥𝑎 𝑦𝑎 𝑧𝑎 𝑇 to 𝐮𝑎 and 𝐮′𝑏

correspondingly 
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Projecting 𝐱 into the first image yields

So up to scale we know that

But given that 𝐱𝑎 = 𝑥𝑎 𝑦𝑎 𝑧𝑎 𝑇, we also 

know the scale

Exploring the epipolar geometry
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Exploring the epipolar geometry

Projecting 𝐱 into the second image yields
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Combining these two results gives us

Exploring the epipolar geometry
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Combining these two results gives us

This describes how the position of 𝐮′𝑏 on the 

epipolar line varies with the depth 𝑧𝑎 of the 

observed world point 𝐱𝑎

Exploring the epipolar geometry
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Combining these two results gives us

This describes how the position of 𝐮′𝑏 on the 

epipolar line varies with the depth 𝑧𝑎 of the 

observed world point 𝐱𝑎

It is clear that ෥𝐮′
𝑏

is naturally restricted to an 

interval on the epipolar line

Exploring the epipolar geometry
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Combining these two results gives us

This describes how the position of 𝐮′𝑏 on the 

epipolar line varies with the depth 𝑧𝑎 of the 

observed world point 𝐱𝑎
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Exploring the epipolar geometry
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Since ෥𝐮𝑎 = 𝐊𝑏𝐑𝑏𝐊𝑎
−1෥𝐮𝑏 for any correspondence

𝐮𝑎 ↔ 𝐮′𝑏 for a “far away” 3D point 𝐱𝑎, it is clear 
that

Two overlapping perspective images of a “far 
away” scene is related by the homography

𝐇𝑏𝑎 = 𝐊𝑏𝐑𝑏𝑎𝐊𝑎
−1

The same is obviously true when ℱ𝑏 is just a 
rotation of ℱ𝑎, i.e. when 𝐭𝑏𝑎

𝑏 = 𝟎

This explains why it is easy to coregister images 
of distant scenes even when the camera motion 
is not a pure rotation

Exploring the epipolar geometry
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Describing the epipolar geometry

Let 𝐱 project to 𝐱𝑛
𝑎 in the normalized image plane of ℱ𝑎

and 𝐱′𝑛
𝑏 in that of ℱ𝑏

Let the pose of ℱ𝑎 relative to ℱ𝑏 be
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𝐭𝑏𝑎
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Describing the epipolar geometry

Let 𝐱 project to 𝐱𝑛
𝑎 in the normalized image plane of ℱ𝑎

and 𝐱′𝑛
𝑏 in that of ℱ𝑏

Let the pose of ℱ𝑎 relative to ℱ𝑏 be

It is clear from the illustration that 𝐧𝑎 = 𝐭𝑎𝑏
𝑎

× ෤𝐱𝑛
𝑎
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𝐭𝑏𝑎
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Describing the epipolar geometry

Let 𝐱 project to 𝐱𝑛
𝑎 in the normalized image plane of ℱ𝑎

and 𝐱′𝑛
𝑏 in that of ℱ𝑏

Let the pose of ℱ𝑎 relative to ℱ𝑏 be

It is clear from the illustration that 𝐧𝑎 = 𝐭𝑎𝑏
𝑎

× ෤𝐱𝑛
𝑎

Transformed to ℱ𝑏, this becomes
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𝐭𝑏𝑎
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Describing the epipolar geometry

Let 𝐱 project to 𝐱𝑛
𝑎 in the normalized image plane of ℱ𝑎

and 𝐱′𝑛
𝑏 in that of ℱ𝑏

Let the pose of ℱ𝑎 relative to ℱ𝑏 be

It is clear from the illustration that 𝐧𝑎 = 𝐭𝑎𝑏
𝑎

× ෤𝐱𝑛
𝑎

Transformed to ℱ𝑏, this becomes

The equation of the epipolar plane relative to ℱ𝑏 is 

𝐧𝑏
𝑇
𝐱𝑏 = 0, so in particular we know that
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𝐭𝑏𝑎
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Describing the epipolar geometry

Combining these observations, we get a general 

constraint on the relationship between 𝐱𝑛
𝑎 and 𝐱𝑛

𝑏

This is known as the epipolar constraint

Where we define the essential matrix to be
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The essential matrix E

For a correspondence 𝐱𝑛
𝑎 ↔ 𝐱′𝑛

𝑏 to be geometrically 

viable, it must satisfy the equations

where the essential matrices 𝐄𝑎𝑏 and 𝐄𝑏𝑎 are 

homogeneous and given (up to scale) by
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The essential matrix E

Note

Although ෤𝐱𝑛
′𝑏𝑇𝐄𝑏𝑎 ෤𝐱𝑛

𝑎 = 0 is a necessary requirement for 

the correspondence 𝐱𝑛
𝑎 ↔ 𝐱′𝑛

𝑏 to be correct, it is not 

sufficient to guarantee its correctness

It only guarantees that the two points lie in the same 

epipolar plane
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Properties of E

• 𝐄𝑎𝑏 = 𝐭𝑎𝑏
𝑎

×𝐑𝑎𝑏

• 𝐄𝑎𝑏 is homogeneous

• rank 𝐄𝑎𝑏 = 2

• det 𝐄𝑎𝑏 = 0

• 𝐄𝑎𝑏 has five degrees of freedom

– 𝐑 ⇒ 3, 𝐭 ⇒ 3, homogeneous ⇒ −1

– It can be estimated from as little as five point 

correspondences 𝐱′𝑛
𝑏 ↔ 𝐱𝑛

𝑎
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Properties of E

• ሚ𝐥′𝑎 = 𝐄𝑎𝑏 ෤𝐱′𝑛
𝑏 is the homogeneous representation 

of the epipolar line in the normalized image 

plane of ℱ𝑎 corresponding to the point 𝐱′𝑛
𝑏
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Properties of E

• ሚ𝐥′𝑎 = 𝐄𝑎𝑏 ෤𝐱′𝑛
𝑏 is the homogeneous representation 

of the epipolar line in the normalized image 

plane of ℱ𝑎 corresponding to the point 𝐱′𝑛
𝑏
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Properties of E

• ሚ𝐥′𝑎 = 𝐄𝑎𝑏 ෤𝐱′𝑛
𝑏 is the homogeneous representation 

of the epipolar line in the normalized image 

plane of ℱ𝑎 corresponding to the point 𝐱′𝑛
𝑏

• ሚ𝐥𝑏 = 𝐄𝑏𝑎 ෤𝐱𝑛
𝑎 is the epipolar line in the normalized 

image plane of ℱ𝑏 corresponding to the point 𝐱𝑛
𝑎
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Properties of E

• ሚ𝐥′𝑎 = 𝐄𝑎𝑏 ෤𝐱′𝑛
𝑏 is the homogeneous representation 

of the epipolar line in the normalized image 

plane of ℱ𝑎 corresponding to the point 𝐱′𝑛
𝑏

• ሚ𝐥𝑏 = 𝐄𝑏𝑎 ෤𝐱𝑛
𝑎 is the epipolar line in the normalized 

image plane of ℱ𝑏 corresponding to the point 𝐱𝑛
𝑎

• It is possible to determine 𝐑𝑎𝑏 and 𝐭𝑎𝑏
𝑎 (up to 

scale) by decomposing 𝐄𝑎𝑏
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The fundamental matrix F

The epipolar constraint extends naturally to point 

correspondences 𝐮𝑎 ↔ 𝐮′𝑏 via the camera 

calibration matrices 𝐊𝑎 and 𝐊𝑏

where the fundamental matrices 𝐅𝑎𝑏 and 𝐅𝑏𝑎 are 

given by
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The fundamental matrix F

The epipolar constraint extends naturally to point 

correspondences 𝐮𝑎 ↔ 𝐮′𝑏 via the camera 

calibration matrices 𝐊𝑎 and 𝐊𝑏

where the fundamental matrices 𝐅𝑎𝑏 and 𝐅𝑏𝑎 are 

given by
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The fundamental matrix F

The epipolar constraint extends naturally to point 

correspondences 𝐮𝑎 ↔ 𝐮′𝑏 via the camera 

calibration matrices 𝐊𝑎 and 𝐊𝑏

where the fundamental matrices 𝐅𝑎𝑏 and 𝐅𝑏𝑎 are 

given by
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𝑇 , so that the two 

equations are equivalent representations of the same constraint
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Properties of F

• 𝐅𝑎𝑏 is homogeneous

• rank 𝐅𝑎𝑏 = 2

• det 𝐅𝑎𝑏 = 0

• 𝐅𝑎𝑏has seven degrees of freedom

– It can be estimated from seven or more point 

correspondences 𝐮𝑎 ↔ 𝐮′
𝑏

• Epipolar line corresponding to 𝐮′𝑏 is
ሚ𝐥′𝑎 = 𝐅𝑎𝑏෥𝐮

′𝑏

• Epipolar line corresponding to ෥𝐮𝑎 is
ሚ𝐥𝑏 = 𝐅𝑏𝑎෥𝐮

𝑎
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Example

32
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Estimating F

Several algorithms can be used

• Linear: 7-pt, 8-pt

• Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is 

natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the 

homography estimation we have already seen

To simplify notations let us consider the 

correspondence 𝐮 ↔ 𝐮′ and the fundamental 

matrix

33
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Estimating F

Several algorithms can be used

• Linear: 7-pt, 8-pt

• Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is 

natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the 

homography estimation we have already seen

To simplify notations let us consider the 

correspondence 𝐮 ↔ 𝐮′ and the fundamental 

matrix

For each point correspondence 𝐮 ↔ 𝐮′ we have 

that
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Estimating F

Several algorithms can be used

• Linear: 7-pt, 8-pt

• Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is 

natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the 

homography estimation we have already seen

To simplify notations let us consider the 

correspondence 𝐮 ↔ 𝐮′ and the fundamental 

matrix

For each point correspondence 𝐮 ↔ 𝐮′ we have 

that

From several correspondences, we get a system of 

linear equations that we can solve by SVD
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Estimating F – The 8-point algorithm

Given eight (or more) correspondences 𝐮𝑖 ↔ 𝐮𝑖′

1. Normalize point sets 𝐮𝑖 and 𝐮𝑖′ using similarity 

transforms 𝐓 and 𝐓′

2. Build matrix 𝐀 from correspondences ෝ𝐮𝑖 ↔ ෝ𝐮′𝑖and 

compute its SVD

3. Extract the estimate ෠𝐅 from the right singular vector 

corresponding to the smallest singular value

4. Perform SVD on ෠𝐅:  
෠𝐅 = 𝐔𝐒𝐕𝑇

5. Enforce zero determinant by setting the smallest 

singular value (𝑠33 in 𝐒) to zero and compute a 

proper fundamental matrix
෠𝐅∗ = 𝐔𝐒𝐕𝑇

6. Denormalize

𝐅 = 𝐓′𝑇 ෠𝐅∗𝐓
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Estimating F – The 7-point algorithm

Given seven correspondences 𝐮𝑖 ↔ 𝐮𝑖′

• The matrix 𝐀 is a 7 × 9 matrix, so in 

general rank 𝐀 = 7 and the null space of

𝐀 is 2-dimensional

• Then the fundamental matrix must be a 

linear combination of the two right singular 

vectors of 𝐀 which correspond to the two 

singular values that are zero

𝐅 𝛼 = 𝛼𝐅1 + 1 − 𝛼 𝐅2

• The additional constraint det 𝐀 = 0 leads 

to a cubic polynomial equation in 𝛼 which 

has one or three solutions

• Hence the 7-pt algorithm returns one or 

three possible fundamental matrices

• In a RANSAC scheme, the 7-pt algorithm is 

better than the 8-pt algorithm

– It is minimal, since we only need to sample 

seven random correspondences per iteration

– Each sampled set of correspondences can 

return three fundamental matrices for testing

37
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Improved estimates of 𝐅 can be obtained using 

iterative methods

One possibility is to determine the matrix 𝐅 that 

minimizes the total squared epipolar distance

Estimating F – Beyond linear estimation

The distance between a homogeneous point ෥𝐮 and 

a homogeneous line ሚ𝐥 = ሚ𝑙1 ሚ𝑙2 ሚ𝑙3
𝑇 is 

Iterative methods typically achieve a noticeably 

better estimate than the linear methods

But linear methods typically provide quite good 

estimates
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Estimating E

For calibrated cameras we can first estimate 𝐅 and 

then compute 𝐄 by

One can also estimate 𝐄 directly from five normalized 

point correspondences 𝐱𝑛 ↔ 𝐱𝑛
′ using an algorithm 

called the 5-pt algorithm

– Involves finding the roots of a 10th degree polynomial

In a RANSAC scheme, the 5-pt algorithm is the 

preferred alternative

– To achieve 99% confidence with 50% outliers, 

requires 145 tests with using the 5-pt algorithm 

versus 1177 tests using the 8-pt algorithm
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• The essential matrix 𝐄 and the fundamental 

matrix 𝐅 represent the epipolar constraint

• 𝐄 and 𝐅 can be estimated from correspondences 

– 𝐅 ← RANSAC, 7-pt or 8-pt

– 𝐄 ← RANSAC, 5-pt

• 𝐄 and 𝐅 maps points to their corresponding 

epipolar lines

Summary
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Supplementary material

Recommended

• Richard Szeliski:  Computer Vision: Algorithms and Applications 2nd ed

– Chapter 11 “Structure from motion and SLAM”, in particular section 11.3 “Two-frame structure from 

motion”

• T. V. Haavardsholm: A Handbook In Visual SLAM

– Chapter 3 “Camera geometry”, in particular section 3.2 “Epipolar geometry”

Other

• David Nistér, An Efficient Solution to the Five-Point Relative Pose Problem, 2004

• Richard I. Hartley, In Defense of the Eight-Point Algorithm, 1997
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