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Introduction
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Introduction

Observing the same points with two cameras, F,
and Fj, puts a strong geometrical constraint on the
point correspondences

This epipolar constraint can be represented by two
3 X 3 matrices

The essential matrix E represents the constraint

for point correspondences x¢ « x'2

The fundamental matrix F represents the same

constraint, but for point correspondences u® < u’®
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Introduction

epipolar line epipolar line
epipolar plane

\"%

e, baseline e,

epipole epipole

« The baseline is the line joining the two camera centers

 The epipolar plane is the plane containing x and the two camera centers F, and F,

 The epipolar lines are where the epipolar plane intersect the image planes

 The epipoles are where the baseline intersects the two image planes

« Epipoles and epipolar lines can be represented in the normalized image plane as well as in the image
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Exploring the epipolar geometry

Let us consider two cameras, F, and F}, and let
F, to be our “world frame”

Then we have the camera projection matrices

PazKa[I 0]
Pb:Kb[Rba tga]

Assume that the two cameras project a 3D world
pointx® =[x y2% z%]T tou® and u'’®
correspondingly
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Exploring the epipolar geometry

Projecting x into the first image yields

0* =K, [l 0]%° [x
0% = K x° T

So up to scale we know that
x* =K '0? equal up to scale

But given that x* = [x* y®* z%]T, we also
know the scale

x* =z°K'0° truly equal
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Exploring the epipolar geometry

Projecting x into the second image yields

0" =K, R,, t, | o {x}

0” =K, (Ry,X* +15, )

0° =K,R,X*+K,t2. | equal up to scale
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Exploring the epipolar geometry

Combining these two results gives us

0" = 2°K,R, K;'0* + Kt}

1 equal up to scale
~rb -1~a b
u” =K,R,.K.T +FK,Otb&1
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Exploring the epipolar geometry

Combining these two results gives us

0° =2°K,R,K;'0% + K,t,,
~ ~ 1 equal up to scale
0° =K, R, K 0% + —K,t,
Z
This describes how the position of u’? on the
epipolar line varies with the depth z¢ of the
observed world point x¢
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Exploring the epipolar geometry

Combining these two results gives us

0° =2°K,R,K;'0% + K,t,,
~ ~ 1 equal up to scale
0° =K, R, K 0% + —K,t,
Z
This describes how the position of u’? on the
epipolar line varies with the depth z¢ of the
observed world point x¢

Itis clear that @'’ is naturally restricted to an
Interval on the epipolar line

=0 = 0= K,

2% =

~rh -1~a
00 — u” = K,R,K.0
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Exploring the epipolar geometry

Combining these two results gives us

0° =2°K,R,K;'0% + K,t,,
~ ~ 1 equal up to scale
0° =K, R, K 0% + —K,t,
Z
This describes how the position of u’? on the
epipolar line varies with the depth z¢ of the
observed world point x¢

Itis clear that @'’ is naturally restricted to an

Interval on the epipolar line

— G!b —

0 :> l']!b —

b
I'<btba

28 =0
7% = K,R, K10
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Generalized disparity:
d = ||u? — ub| where wL = K,R,K;uP?
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Exploring the epipolar geometry

Since i* = K,R,K;u” for any correspondence
u® < u'? for a “far away” 3D point x¢, it is clear
that

Two overlapping perspective images of a “far
away” scene is related by the homography

Hp, = KpRpoK3?

The same is obviously true when F, is just a
rotation of F,, i.e. whent?, =0

This explains why it is easy to coregister images
of distant scenes even when the camera motion
IS not a pure rotation
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Describing the epipolar geometry

Let x project to x5 in the normalized image plane of F,
and x'2 in that of F,

Let the pose of F, relative to F, be

Tba: Rba tga
0 1
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Describing the epipolar geometry

Let x project to x5 in the normalized image plane of F,
and x'2 in that of F,

Let the pose of F, relative to F, be

Tba: Rba tga
0 1

It is clear from the illustration that n® = [t5,]X%

15
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Describing the epipolar geometry

Let x project to x5 in the normalized image plane of F,
and x'2 in that of F,

Let the pose of F, relative to F, be
b
T = Rba tba
ba O 1

It is clear from the illustration that n® = [t5,]X%
Transformed to F}, this becomes

n’ = Rpa [tgb] xi%

16
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Describing the epipolar geometry

Let x project to x5 in the normalized image plane of F,
and x'2 in that of F,

Let the pose of F, relative to F, be
b
T = Rba tba
ba O 1

It is clear from the illustration that n® = [t5,]X%
Transformed to F}, this becomes

n’ = Rpa [tgb] xi%

The equation of the epipolar plane relative to F, is
n? x? = 0, so in particular we know that

T_.,b
n” %', =0

17
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Describing the epipolar geometry

Combining these observations, we get a general )
constraint on the relationship between x% and x2 ’X

~1b
(Rba[tg ]xxn)T =0
~nT b
X% [ ty ]TRbaT In = O> [t2 1T = —
ab ><T
~nT ~1b
X5 [taplxRgpX'n =0
This is known as the epipolar constraint
X%TEabi’b O

Where we define the essential matrix to be

Eqop = [tgb] xRap

18
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Describing the epipolar geometry

Combining these observations, we get a general
constraint on the relationship between x% and x2

(Rba [tab]xxn)T =
%3 [t 1k R e X '51—0

~aT 1b
Xn [tap]xRapX'n =0

This is known as the epipolar constraint
X%TEabi’b O
Where we define the essential matrix to be

Eqop = [tgb] xRap

Notice that this derivation is independent of ||t5,||!

Hence, E,; is homogeneous by nature

TEKS030
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The essential matrix E

For a correspondence x2 < x'2 to be geometrically
viable, it must satisfy the equations

~aT ~1b

Xn EqpX'n =0

bT o 4

X'n EpeXp =0

where the essential matrices E,; and E,, are
homogeneous and given (up to scale) by

Eqop = [tgb] xRap

Epg = [tga] % Rpq
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The essential matrix E

For a correspondence x2 < x'2 to be geometrically
viable, it must satisfy the equations

~aT ~1b

Xn EqpX'n =0

bT o 4

X'n EpeXp =0

where the essential matrices E,; and E,, are
homogeneous and given (up to scale) by

Eqop = [tgb] xRap

Epqg = [tga] % Rpa

From the equations it is clear that E,,, = E!,, so that the two

equations are equivalent representations of the same constraint
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The essential matrix E

Note

U : :
Although %P E,,X% = 0 is a necessary requirement for
the correspondence x¢ < x'2 to be correct, it is not
sufficient to guarantee its correctness

It only guarantees that the two points lie in the same
epipolar plane
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Properties of E

* Egp = [tgb]xRab

/‘ X
« E,; iIs homogeneous
xa
n. e
A Epa
* rank(E,,) = 2 Fy ® —bhay
Eab
+ det(Egp) = 0 | .
+ E_;, has five degrees of freedom u® Bes
— R = 3, t= 3, homogeneous = —1
— It can be estimated from as little as five point
'b a
correspondences x5 < x4 i%TEabi'g _
T
X'n EpaXfi =
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Properties of E

- 1'* =E_, %" is the homogeneous representation ' — g, %7 .X
of the epipolar line in the normalized image N NG
plane of F, corresponding to the point x'2 x@ . Ix®b
T c \ $ °
a 1'? ¢ ?b
Eab
l K, Kbl
ua ® L u/b

~nT ~1b
T ~
X'n EpgXy =
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Properties of E

- 1'* =E_, %" is the homogeneous representation ' — g, %7 .X
of the epipolar line in the normalized image =1 . \
. . b 7 ‘\\\
plane of F, corresponding to the point x';, x%\\ < x?
Ta ¢’ I’a $ ‘e Tb
Line in R?; E.
ax +by+c=0
Ka Kb
Line in P?:
X' =0 u? P ;i u’b
— _T — p—
x| |a
y||b|=0
1 |c %2TE,, %0 =0
T
X'y EpoXf =

25
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Properties of E

- 1'* =E_, %" is the homogeneous representation i _ g b o X b _ g ga
. . . . . _— b /// ~e f—
of the epipolar line in the normalized image wER pasn

. . 'b /// \\\
plane of F, corresponding to the point x';, x%\\ // )
/,, i’,a \\\

Eba 1P
T 4 —_— ° :7;'
b — ~a . . . . a b
« 1° = E,, X5 Is the epipolar line in the normalized <—E
image plane of F, corresponding to the point x4 ab
vl
ua () [ ] u’b

~aT
T SaA
X, EpgXn =0
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Properties of E

' = E_,%'% is the homogeneous representation
of the epipolar line in the normalized image
plane of F, corresponding to the point x'2

1 = E, X% is the epipolar line in the normalized
image plane of F, corresponding to the point x4

It is possible to determine R, and t, (up to
scale) by decomposing E;,

Eqop = [tgb] xRap
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The fundamental matrix F

The epipolar constraint extends naturally to point
correspondences u® < u’? via the camera
calibration matrices K, and K,

where the fundamental matrices F,; and F;,, are
given by

Fop = KaTEangl
Fpa = KI:TEbaKc_ll

TEKS030
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The fundamental matrix F

The epipolar constraint extends naturally to point
correspondences u® < u’? via the camera
calibration matrices K, and K,

where the fundamental matrices F,; and F;,, are
given by

Fop = KaTEangl
Fpa = KI:TEbaKc_ll
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The fundamental matrix F

The epipolar constraint extends naturally to point
correspondences u® < u’? via the camera
calibration matrices K, and K,

where the fundamental matrices F,; and F;,, are
given by

Fop = KaTEangl
Fpa = KI:TEbaKc_ll

From the equations it is clear that F,, = F.,, so that the two
equations are equivalent representations of the same constraint

TEKS030

30



Properties of F

* F,, IS homogeneous
e rank(F,,) = 2
* det(Fab) =0

+ F,,has seven degrees of freedom

— It can be estimated from seven or more point

correspondences u® o u'”

* Epipolar line corresponding to u'? is
I'e = F,u’?

* Epipolar line corresponding to u® is
lb — Fbaﬁa
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Example

TEKS030
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Estimating F

Several algorithms can be used
» Linear: 7-pt, 8-pt
* Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is
natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the
homography estimation we have already seen

To simplify notations let us consider the
correspondence u « u’ and the fundamental

matrix
0"Fi=0

TEKS030
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Estimating F

Several algorithms can be used For each point correspondence u < u’ we have
. Linear: 7-pt, 8-pt that
* Non-linear: Minimize total epipolar distance U'FG=0

(f, f, f,][u]
Due to potential erroneous correspondences, it is [u’ V4 1] f, f. f |v]|=0
natural to begin with a RANSAC estimation o fll1

L 7 8 9 L~

luw" wu' U w wVou v 1f=0

The 8-pt algorithm is very similar to the
homography estimation we have already seen

To simplify notations let us consider the
correspondence u « u’ and the fundamental

matrix
0"Fi=0
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Estimating F

Several algorithms can be used
» Linear: 7-pt, 8-pt
* Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is
natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the
homography estimation we have already seen

To simplify notations let us consider the
correspondence u « u’ and the fundamental

matrix
0"Fi=0

For each point correspondence u < u’ we have
that

G"Fi =0
ff, ]

v v 1 f, f, f,|v|=0
f, g T 1]

! 4 4

[uw" v’ U w w Vv ou v 1f=0
From several correspondences, we get a system of

linear equations that we can solve by SVD

uu,  vuroous Uy vy ovou v 1
: : : : : F20
4 ! ! ! ! /
uu, Vvu, u. uv, vv. v, u v, 1
Af =0

TEK5030 >



Estimating F — The 8-point algorithm

Given eight (or more) correspondences u; « u;’

1. Normalize point sets {u;} and {u;'} using similarity Xn| .
transforms T and T’ o«

2. Build matrix A from correspondences 1i; < u’;and F
compute its SVD

3. Extract the estimate F from the right singular vector
corresponding to the smallest singular value

4. Perform SVD on F: u

F=usv’

5. Enforce zero determinant by setting the smallest
singular value (s33 in S) to zero and compute a
proper fundamental matrix

F*=usvT

6. Denormalize

F=T7TFT

TEKS030
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Estimating F — The 7-point algorithm

Given seven correspondences u; « u;’ * The additional constraint det(A) = 0 leads
to a cubic polynomial equation in a which
« The matrix A is a 7 X 9 matrix, so in has one or three solutions
general rank(A) = 7 and the null space of
A is 2-dimensional * Hence the 7-pt algorithm returns one or

three possible fundamental matrices

« Then the fundamental matrix must be a
linear combination of the two right singular

In a RANSAC scheme, the 7-pt algorithm is

vectors of A which correspond to the two better than the 8-pt algorithm
singular values that are zero — It is minimal, since we only need to sample
seven random correspondences per iteration
F(a) = aF, + (1 — a)F, — Each sampled set of correspondences can

return three fundamental matrices for testing
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Estimating F — Beyond linear estimation

Improved estimates of F can be obtained using
iterative methods

One possibility is to determine the matrix F that
minimizes the total squared epipolar distance

= d(0,Fa,) +d(a,Fa;)

d(u, FTu) d(u’, Fu)
. \
—

I'=Fu' 1=Fu

TEKS030

The distance between a homogeneous point i and
a homogeneous linel=1[l; 1, I5]Tis

Iterative methods typically achieve a noticeably
better estimate than the linear methods

But linear methods typically provide quite good
estimates
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Estimating E

For calibrated cameras we can first estimate F and
then compute E by

E = K''FK

One can also estimate E directly from five normalized
point correspondences x,, < X, using an algorithm
called the 5-pt algorithm

— Involves finding the roots of a 10t degree polynomial

In a RANSAC scheme, the 5-pt algorithm is the
preferred alternative

— To achieve 99% confidence with 50% oultliers,
requires 145 tests with using the 5-pt algorithm
versus 1177 tests using the 8-pt algorithm

TEKS030
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Summary

The essential matrix E and the fundamental
matrix F represent the epipolar constraint

%) E 2 =0 a*) F.a* =0
(%7) E; (@) F

a 'n

E and F can be estimated from correspondences
— F «< RANSAC, 7-pt or 8-pt
— E « RANSAC, 5-pt

E and F maps points to their corresponding
epipolar lines
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Supplementary material

Recommended

Richard Szeliski: Computer Vision: Algorithms and Applications 2" ed

— Chapter 11 “Structure from motion and SLAM”, in particular section 11.3 “Two-frame structure from
motion”

T. V. Haavardsholm: A Handbook In Visual SLAM
— Chapter 3 “Camera geometry”, in particular section 3.2 “Epipolar geometry”

Other

David Nistér, An Efficient Solution to the Five-Point Relative Pose Problem, 2004
Richard I. Hartley, In Defense of the Eight-Point Algorithm, 1997
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