UiO : Department of Technology Systems
University of Oslo

Epipolar geometry

Thomas Opsahl

2023

Introduction

- Observing the same points with two cameras, \mathcal{F}_{a} and \mathcal{F}_{b}, puts a strong geometrical constraint on the point correspondences
- This epipolar constraint can be represented by two 3×3 matrices

Introduction

- Observing the same points with two cameras, \mathcal{F}_{a} and \mathcal{F}_{b}, puts a strong geometrical constraint on the point correspondences
- This epipolar constraint can be represented by two 3×3 matrices
- The essential matrix E represents the constraint for point correspondences $\mathbf{x}_{n}^{a} \leftrightarrow \mathbf{x}_{n}^{\prime b}$
- The fundamental matrix \mathbf{F} represents the same constraint, but for point correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\text {b }}$

Introduction

- The baseline is the line joining the two camera centers
- The epipolar plane is the plane containing \mathbf{x} and the two camera centers \mathcal{F}_{a} and \mathcal{F}_{b}
- The epipolar lines are where the epipolar plane intersect the image planes
- The epipoles are where the baseline intersects the two image planes
- Epipoles and epipolar lines can be represented in the normalized image plane as well as in the image

Exploring the epipolar geometry

Let us consider two cameras, \mathcal{F}_{a} and \mathcal{F}_{b}, and let \mathcal{F}_{a} to be our "world frame"

Then we have the camera projection matrices

$$
\begin{aligned}
& \mathbf{P}_{a}=\mathbf{K}_{a}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \\
& \mathbf{P}_{b}=\mathbf{K}_{b}\left[\begin{array}{ll}
\mathbf{R}_{b a} & \mathbf{t}_{b a}^{b}
\end{array}\right]
\end{aligned}
$$

Assume that the two cameras project a 3D world point $\mathbf{x}^{a}=\left[\begin{array}{lll}x^{a} & y^{a} & z^{a}\end{array}\right]^{T}$ to \mathbf{u}^{a} and $\mathbf{u}^{\prime b}$ correspondingly

Exploring the epipolar geometry

Projecting \mathbf{x} into the first image yields

$$
\begin{aligned}
\tilde{\mathbf{u}}^{a} & =\mathbf{K}_{a}\left[\begin{array}{ll}
\mathbf{I} & 0
\end{array}\right] \tilde{\mathbf{x}}^{a} \\
\tilde{\mathbf{u}}^{a} & =\mathbf{K}_{a} \mathbf{x}^{a}
\end{aligned}
$$

$$
\tilde{\mathbf{x}}^{a}=\left[\begin{array}{c}
\mathbf{x}^{a} \\
1
\end{array}\right]
$$

So up to scale we know that

$$
\mathbf{x}^{a}=\mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a} \quad \text { equal up to scale }
$$

But given that $\mathbf{x}^{a}=\left[\begin{array}{lll}x^{a} & y^{a} & z^{a}\end{array}\right]^{T}$, we also know the scale

$$
\mathbf{x}^{a}=z^{a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a} \quad \text { truly equal }
$$

Exploring the epipolar geometry

Projecting \mathbf{x} into the second image yields

$$
\left.\left.\begin{array}{rl}
\tilde{\mathbf{u}}^{\prime b} & =\mathbf{K}_{b}\left[\begin{array}{ll}
\mathbf{R}_{b a} & \mathbf{t}_{b a}^{b}
\end{array} \tilde{\mathbf{x}}^{a}\right. \\
\tilde{\mathbf{u}}^{\prime b} & =\mathbf{K}_{b}\left(\mathbf{R}_{b a} \mathbf{x}^{a}+\mathbf{t}_{b a}^{b}\right) \\
\tilde{\mathbf{u}}^{\prime b} & =\mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{x}^{a}+\mathbf{K}_{b} b_{b a}^{b}
\end{array}\right] \begin{array}{c}
\mathbf{x}^{a} \\
1
\end{array}\right] \text { equal up to scale } .
$$

Exploring the epipolar geometry

Combining these two results gives us

$$
\begin{aligned}
& \tilde{\mathbf{u}}^{b}=z^{a} \mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\mathbf{K}_{b} \mathbf{t}_{b a}^{b} \\
& \tilde{\mathbf{u}}^{\prime b}=\mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\frac{1}{z^{a}} \mathbf{K}_{b} \mathbf{t}_{b a}^{b}
\end{aligned}
$$

Exploring the epipolar geometry

Combining these two results gives us

$$
\begin{array}{l|l}
\tilde{\mathbf{u}}^{\prime b}=z^{a} \mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\mathbf{K}_{b} \mathbf{t}_{b a}^{b} & \\
\tilde{\mathbf{u}}^{\prime b}=\mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\frac{1}{z^{a}} \mathbf{K}_{b} \mathbf{t}_{b a}^{b} & \text { equal up to scale }
\end{array}
$$

This describes how the position of $\mathbf{u}^{\prime b}$ on the epipolar line varies with the depth z^{a} of the observed world point \mathbf{x}^{a}

bed

Exploring the epipolar geometry

Combining these two results gives us

$$
\begin{array}{l|l}
\tilde{\mathbf{u}}^{\prime b}=z^{a} \mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\mathbf{K}_{b} \mathbf{t}_{b a}^{b} & \\
\tilde{\mathbf{u}}^{\prime b}=\mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\frac{1}{z^{a}} \mathbf{K}_{b} \mathbf{t}_{b a}^{b} & \text { equal up to scale }
\end{array}
$$

This describes how the position of $\mathbf{u}^{\prime b}$ on the epipolar line varies with the depth z^{a} of the observed world point \mathbf{x}^{a}

It is clear that $\widetilde{\mathbf{u}}^{\prime b}$ is naturally restricted to an interval on the epipolar line

$$
\begin{array}{cccc}
z^{a}=0 & \Rightarrow & \tilde{\mathbf{u}}^{\prime b}= & \mathbf{K}_{b} t_{b a}^{b} \\
z^{a}=\infty & \Rightarrow & \tilde{\mathbf{u}}^{\prime \prime}=\mathbf{K}_{b} \mathbf{R}_{b} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}
\end{array}
$$

Exploring the epipolar geometry

Combining these two results gives us

$$
\begin{array}{l|l}
\tilde{\mathbf{u}}^{\prime b}=z^{a} \mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\mathbf{K}_{b} \mathbf{t}_{b a}^{b} & \\
\tilde{\mathbf{u}}^{b}=\mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}+\frac{1}{z^{a}} \mathbf{K}_{b} \mathbf{t}_{b a}^{b} & \text { equal up to scale }
\end{array}
$$

This describes how the position of $\mathbf{u}^{\prime b}$ on the epipolar line varies with the depth z^{a} of the observed world point \mathbf{x}^{a}

It is clear that $\widetilde{\mathbf{u}}^{\prime b}$ is naturally restricted to an interval on the epipolar line

$$
\begin{array}{cccc}
z^{a}=0 & \Rightarrow & \tilde{\mathbf{u}}^{\prime b}= & \mathbf{K}_{b} t_{b a}^{b} \\
z^{a}=\infty & \Rightarrow & \tilde{\mathbf{u}}^{\prime \prime}=\mathbf{K}_{b} \mathbf{R}_{b} \mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}
\end{array}
$$

Generalized disparity:
$d=\left\|\mathbf{u}^{b}-\mathbf{u}_{\infty}^{b}\right\|$ where $\widetilde{\mathbf{u}}_{\infty}^{b}=\mathbf{K}_{b} \mathbf{R}_{b} \mathbf{K}_{a}^{-1} \widetilde{\mathbf{u}}^{b}$

Exploring the epipolar geometry

Since $\widetilde{\mathbf{u}}^{a}=\mathbf{K}_{b} \mathbf{R}_{b} \mathbf{K}_{a}^{-1} \widetilde{\mathbf{u}}^{b}$ for any correspondence $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ for a "far away" 3D point \mathbf{x}^{a}, it is clear that

Two overlapping perspective images of a "far away" scene is related by the homography

$$
\mathbf{H}_{b a}=\mathbf{K}_{b} \mathbf{R}_{b a} \mathbf{K}_{a}^{-1}
$$

The same is obviously true when \mathcal{F}_{b} is just a rotation of \mathcal{F}_{a}, i.e. when $\mathbf{t}_{b a}^{b}=\mathbf{0}$

This explains why it is easy to coregister images of distant scenes even when the camera motion
 is not a pure rotation

Describing the epipolar geometry

Let \mathbf{x} project to \mathbf{x}_{n}^{a} in the normalized image plane of \mathcal{F}_{a} and $\mathbf{x}_{n}^{\prime b}$ in that of \mathcal{F}_{b}

Let the pose of \mathcal{F}_{a} relative to \mathcal{F}_{b} be

$$
\mathbf{T}_{b a}=\left[\begin{array}{cc}
\mathbf{R}_{b a} & \mathbf{t}_{b a}^{b} \\
\mathbf{0} & 1
\end{array}\right]
$$

Describing the epipolar geometry

Let \mathbf{x} project to \mathbf{x}_{n}^{a} in the normalized image plane of \mathcal{F}_{a} and $\mathbf{x}_{n}^{\prime b}$ in that of \mathcal{F}_{b}

Let the pose of \mathcal{F}_{a} relative to \mathcal{F}_{b} be

$$
\mathbf{T}_{b a}=\left[\begin{array}{cc}
\mathbf{R}_{b a} & \mathbf{t}_{b a}^{b} \\
\mathbf{0} & 1
\end{array}\right]
$$

It is clear from the illustration that $\mathbf{n}^{a}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \tilde{\mathbf{x}}_{n}^{a}$

Describing the epipolar geometry

Let \mathbf{x} project to \mathbf{x}_{n}^{a} in the normalized image plane of \mathcal{F}_{a} and $\mathbf{x}_{n}^{\prime b}$ in that of \mathcal{F}_{b}

Let the pose of \mathcal{F}_{a} relative to \mathcal{F}_{b} be

$$
\mathbf{T}_{b a}=\left[\begin{array}{cc}
\mathbf{R}_{b a} & \mathbf{t}_{b a}^{b} \\
\mathbf{0} & 1
\end{array}\right]
$$

It is clear from the illustration that $\mathbf{n}^{a}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \tilde{\mathbf{x}}_{n}^{a}$ Transformed to \mathcal{F}_{b}, this becomes

$$
\mathbf{n}^{b}=\mathbf{R}_{b a}\left[\mathbf{t}_{a b}^{a}\right]_{\times} \tilde{\mathbf{x}}_{n}^{a}
$$

Describing the epipolar geometry

Let \mathbf{x} project to \mathbf{x}_{n}^{a} in the normalized image plane of \mathcal{F}_{a} and $\mathbf{x}_{n}^{\prime b}$ in that of \mathcal{F}_{b}

Let the pose of \mathcal{F}_{a} relative to \mathcal{F}_{b} be

$$
\mathbf{T}_{b a}=\left[\begin{array}{cc}
\mathbf{R}_{b a} & \mathbf{t}_{b a}^{b} \\
\mathbf{0} & 1
\end{array}\right]
$$

It is clear from the illustration that $\mathbf{n}^{a}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \tilde{\mathbf{x}}_{n}^{a}$
Transformed to \mathcal{F}_{b}, this becomes

$$
\mathbf{n}^{b}=\mathbf{R}_{b a}\left[\mathbf{t}_{a b}^{a}\right]_{\times} \tilde{\mathbf{x}}_{n}^{a}
$$

The equation of the epipolar plane relative to \mathcal{F}_{b} is
 $\mathbf{n}^{b^{T}} \mathbf{x}^{b}=0$, so in particular we know that

$$
\mathbf{n}^{b^{T}} \tilde{\mathbf{x}}_{n}^{\prime b}=0
$$

Describing the epipolar geometry

Combining these observations, we get a general constraint on the relationship between \mathbf{x}_{n}^{a} and \mathbf{x}_{n}^{b}

$$
\left.\begin{array}{l}
\left(\mathbf{R}_{b a}\left[\mathbf{t}_{a b}^{a}\right]_{\times} \tilde{\mathbf{x}}_{n}^{a}\right)^{T} \tilde{\mathbf{x}}_{n}^{\prime}{ }_{n}=0 \\
\tilde{\mathbf{x}}_{n}^{a T}\left[\mathbf{t}_{a b}^{a}\right]_{\times}^{T} \mathbf{R}_{b a}{ }^{T} \tilde{\mathbf{x}}_{n}^{\prime b}=0 \\
\tilde{\mathbf{x}}_{n}^{a T}\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b}=0
\end{array}\right) \begin{gathered}
{\left[\mathbf{t}_{a b}^{a}\right]_{\times}^{T}=-\left[\mathbf{t}_{a b}^{a}\right]_{\times}} \\
\mathbf{R}_{b a}^{T}=\mathbf{R}_{a b}
\end{gathered}
$$

This is known as the epipolar constraint

$$
\widetilde{\mathbf{x}}_{n}^{a^{T}} \mathbf{E}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b}=0
$$

Where we define the essential matrix to be

$$
\mathbf{E}_{a b}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b}
$$

Describing the epipolar geometry

Combining these observations, we get a general constraint on the relationship between \mathbf{x}_{n}^{a} and \mathbf{x}_{n}^{b}

$$
\begin{aligned}
\left(\mathbf{R}_{b a}\left[\mathbf{t}_{a b}^{a}\right]_{\times} \tilde{\mathbf{x}}_{n}^{a}\right)^{T} \tilde{\mathbf{x}}_{n}^{b} & =0 \\
\tilde{\mathbf{x}}_{n}^{a T}\left[\mathbf{t}_{a b}^{a}\right]_{\times}^{T} \mathbf{R}_{b a}{ }^{T} \widetilde{\mathbf{x}}_{n}^{\prime b} & =0 \\
\tilde{\mathbf{x}}_{n}^{a T}\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b} & =0
\end{aligned}
$$

This is known as the epipolar constraint

$$
\widetilde{\mathbf{x}}_{n}^{a T} \mathbf{E}_{a b} \tilde{\mathbf{x}}^{\prime}{ }_{n}^{b}=0
$$

Where we define the essential matrix to be

$$
\mathbf{E}_{a b}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b}
$$

Notice that this derivation is independent of $\left\|\mathbf{t}_{b a}^{b}\right\|$! Hence, $\mathbf{E}_{a b}$ is homogeneous by nature

The essential matrix E

For a correspondence $\mathbf{x}_{n}^{a} \leftrightarrow \mathbf{x}_{n}^{\prime b}$ to be geometrically viable, it must satisfy the equations

$$
\begin{aligned}
\tilde{\mathbf{x}}_{n}^{a T} \mathbf{E}_{a b} \widetilde{\mathbf{x}}_{n}^{\prime b} & =0 \\
\tilde{\mathbf{x}}_{n}^{\prime b^{T}} \mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a} & =0
\end{aligned}
$$

where the essential matrices $\mathbf{E}_{a b}$ and $\mathbf{E}_{b a}$ are homogeneous and given (up to scale) by

$$
\begin{aligned}
\mathbf{E}_{a b} & =\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b} \\
\mathbf{E}_{b a} & =\left[\mathbf{t}_{b a}^{b}\right]_{\times} \mathbf{R}_{b a}
\end{aligned}
$$

The essential matrix E

For a correspondence $\mathbf{x}_{n}^{a} \leftrightarrow \mathbf{x}_{n}^{\prime b}$ to be geometrically viable, it must satisfy the equations

$$
\begin{aligned}
\tilde{\mathbf{x}}_{n}^{a T} \mathbf{E}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b} & =0 \\
\tilde{\mathbf{x}}_{n}^{\prime{ }^{\prime}}{ }^{T} \mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a} & =0
\end{aligned}
$$

where the essential matrices $\mathbf{E}_{a b}$ and $\mathbf{E}_{b a}$ are homogeneous and given (up to scale) by

$$
\begin{aligned}
& \mathbf{E}_{a b}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b} \\
& \mathbf{E}_{b a}=\left[\mathbf{t}_{b a}^{b}\right]_{\times} \mathbf{R}_{b a}
\end{aligned}
$$

From the equations it is clear that $\mathbf{E}_{b a}=\mathbf{E}_{a b}^{T}$, so that the two equations are equivalent representations of the same constraint

The essential matrix E

Note

Although $\widetilde{\mathbf{x}}_{n}^{\prime b^{T}} \mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a}=0$ is a necessary requirement for the correspondence $\mathbf{x}_{n}^{a} \leftrightarrow \mathbf{x}_{n}^{\prime b}$ to be correct, it is not sufficient to guarantee its correctness

It only guarantees that the two points lie in the same epipolar plane

Properties of E

- $\mathbf{E}_{a b}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b}$
- $\mathbf{E}_{a b}$ is homogeneous
- $\operatorname{rank}\left(\mathbf{E}_{a b}\right)=2$
- $\operatorname{det}\left(\mathbf{E}_{a b}\right)=0$
- $\mathbf{E}_{a b}$ has five degrees of freedom
$-\mathbf{R} \Rightarrow 3, \mathbf{t} \Rightarrow 3$, homogeneous $\Rightarrow-1$
- It can be estimated from as little as five point correspondences $\mathbf{x}_{n}^{\prime b} \leftrightarrow \mathbf{x}_{n}^{a}$

Properties of E

- $\tilde{\mathbf{I}}^{\prime a}=\mathbf{E}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b}$ is the homogeneous representation of the epipolar line in the normalized image plane of \mathcal{F}_{a} corresponding to the point $\mathbf{x}_{n}^{\prime b}$

Properties of E

- $\tilde{\mathbf{I}}^{\prime a}=\mathbf{E}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b}$ is the homogeneous representation of the epipolar line in the normalized image plane of \mathcal{F}_{a} corresponding to the point $\mathbf{x}_{n}^{\prime b}$

Line in \mathbb{R}^{2} :

$$
a x+b y+c=0
$$

Line in \mathbb{P}^{2} :

$$
\begin{aligned}
& \tilde{\mathbf{x}}^{T} \tilde{\mathbf{l}}=0 \\
& {\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=0 }
\end{aligned}
$$

Properties of E

- $\tilde{\mathbf{I}}^{\prime a}=\mathbf{E}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b}$ is the homogeneous representation of the epipolar line in the normalized image plane of \mathcal{F}_{a} corresponding to the point $\mathbf{x}_{n}^{\prime b}$
- $\tilde{\mathbf{I}}^{b}=\mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a}$ is the epipolar line in the normalized image plane of \mathcal{F}_{b} corresponding to the point \mathbf{x}_{n}^{a}

Properties of E

- $\tilde{\mathbf{I}}^{\prime a}=\mathbf{E}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b}$ is the homogeneous representation of the epipolar line in the normalized image plane of \mathcal{F}_{a} corresponding to the point $\mathbf{x}_{n}^{\prime b}$
- $\tilde{\mathbf{I}}^{b}=\mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a}$ is the epipolar line in the normalized image plane of \mathcal{F}_{b} corresponding to the point \mathbf{x}_{n}^{a}
- It is possible to determine $\mathbf{R}_{a b}$ and $\mathbf{t}_{a b}^{a}$ (up to scale) by decomposing $\mathbf{E}_{a b}$

$$
\mathbf{E}_{a b}=\left[\mathbf{t}_{a b}^{a}\right]_{\times} \mathbf{R}_{a b}
$$

The fundamental matrix F

The epipolar constraint extends naturally to point correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ via the camera calibration matrices \mathbf{K}_{a} and \mathbf{K}_{b}

$$
\begin{aligned}
\widetilde{\mathbf{u}}^{a} \mathbf{F}_{a b} \widetilde{\mathbf{u}}^{b} & =0 \\
\widetilde{\mathbf{u}}^{\prime b^{T}} \mathbf{F}_{b a} \widetilde{\mathbf{u}}^{a} & =0
\end{aligned}
$$

where the fundamental matrices $\mathbf{F}_{a b}$ and $\mathbf{F}_{b a}$ are given by

$$
\begin{aligned}
\mathbf{F}_{a b} & =\mathbf{K}_{a}^{-T} \mathbf{E}_{a b} \mathbf{K}_{b}^{-1} \\
\mathbf{F}_{b a} & =\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1}
\end{aligned}
$$

The fundamental matrix F

The epipolar constraint extends naturally to point correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ via the camera calibration matrices \mathbf{K}_{a} and \mathbf{K}_{b}

$$
\begin{aligned}
\widetilde{\mathbf{u}}^{a} \mathbf{F}_{a b} \widetilde{\mathbf{u}}^{b} & =0 \\
\widetilde{\mathbf{u}}^{\prime b^{T}} \mathbf{F}_{b a} \widetilde{\mathbf{u}}^{a} & =0
\end{aligned}
$$

where the fundamental matrices $\mathbf{F}_{a b}$ and $\mathbf{F}_{b a}$ are given by

$$
\begin{aligned}
\mathbf{F}_{a b} & =\mathbf{K}_{a}^{-T} \mathbf{E}_{a b} \mathbf{K}_{b}^{-1} \\
\mathbf{F}_{b a} & =\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
&\left(\tilde{\mathbf{x}}_{n}^{a}\right)^{T} \mathbf{E}_{a b} \tilde{\mathbf{x}}_{n}^{\prime b}=0 \\
& \Downarrow\left\{\begin{array}{l}
\tilde{\mathbf{x}}_{n}^{a}=\mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a} \\
\tilde{\mathbf{x}}_{n}^{b}=\mathbf{K}_{b}^{-1} \tilde{\mathbf{u}}^{b}
\end{array}\right. \\
&\left(\mathbf{K}_{a}^{-1} \tilde{\mathbf{u}}^{a}\right)^{T} \mathbf{E}_{a b} \mathbf{K}_{b}^{-1} \tilde{\mathbf{u}}^{b}=0 \\
&\left(\tilde{\mathbf{u}}^{a}\right)^{T} \underbrace{\mathbf{K}_{a}^{-T} \mathbf{E}_{a \mathbf{K}_{b}} \mathbf{K}^{-1} \tilde{\mathbf{u}}^{b}}_{=\mathbf{F}_{a b}}=0
\end{aligned}
$$

The fundamental matrix F

The epipolar constraint extends naturally to point correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ via the camera calibration matrices \mathbf{K}_{a} and \mathbf{K}_{b}

$$
\begin{aligned}
& \widetilde{\mathbf{u}}^{a T} \mathbf{F}_{a b} \widetilde{\mathbf{u}}^{b}=0 \\
& \widetilde{\mathbf{u}}^{\prime b^{T}} \mathbf{F}_{b a} \widetilde{\mathbf{u}}^{a}=0
\end{aligned}
$$

where the fundamental matrices $\mathbf{F}_{a b}$ and $\mathbf{F}_{b a}$ are given by

$$
\begin{aligned}
& \mathbf{F}_{a b}=\mathbf{K}_{a}^{-T} \mathbf{E}_{a b} \mathbf{K}_{b}^{-1} \\
& \mathbf{F}_{b a}=\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1}
\end{aligned}
$$

From the equations it is clear that $\mathbf{F}_{b a}=\mathbf{F}_{a b}^{T}$, so that the two equations are equivalent representations of the same constraint

Properties of F

- $\mathbf{F}_{a b}$ is homogeneous
- $\operatorname{rank}\left(\mathbf{F}_{a b}\right)=2$
- $\operatorname{det}\left(\mathbf{F}_{a b}\right)=0$
- $\mathbf{F}_{a b}$ has seven degrees of freedom
- It can be estimated from seven or more point correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$
- Epipolar line corresponding to $\mathbf{u}^{\prime b}$ is

$$
\tilde{\mathbf{l}}^{\prime a}=\mathbf{F}_{a b} \widetilde{\mathbf{u}}^{\prime b}
$$

- Epipolar line corresponding to $\widetilde{\mathbf{u}}^{a}$ is

$$
\tilde{\mathbf{I}}^{b}=\mathbf{F}_{b a} \widetilde{\mathbf{u}}^{a}
$$

Example

Estimating F

Several algorithms can be used

- Linear: 7-pt, 8-pt
- Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the homography estimation we have already seen

To simplify notations let us consider the correspondence $\mathbf{u} \leftrightarrow \mathbf{u}^{\prime}$ and the fundamental matrix

$$
\tilde{\mathbf{u}}^{\prime T} \mathbf{F} \tilde{\mathbf{u}}=0
$$

Estimating F

Several algorithms can be used

- Linear: 7-pt, 8-pt
- Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the homography estimation we have already seen

To simplify notations let us consider the correspondence $\mathbf{u} \leftrightarrow \mathbf{u}^{\prime}$ and the fundamental matrix

$$
\tilde{\mathbf{u}}^{\prime T} \mathbf{F} \tilde{\mathbf{u}}=0
$$

For each point correspondence $\mathbf{u} \leftrightarrow \mathbf{u}^{\prime}$ we have that

$$
\begin{aligned}
& \tilde{\mathbf{u}}^{\prime T} \mathbf{F} \tilde{\mathbf{u}}=0 \\
& {\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0} \\
& {\left[\begin{array}{lllllllll}
u u^{\prime} & v u^{\prime} & u^{\prime} & u v^{\prime} & v v^{\prime} & v^{\prime} & u & v & 1
\end{array}\right] \mathbf{f}=0}
\end{aligned}
$$

Estimating F

Several algorithms can be used

- Linear: 7-pt, 8-pt
- Non-linear: Minimize total epipolar distance

Due to potential erroneous correspondences, it is natural to begin with a RANSAC estimation

The 8-pt algorithm is very similar to the homography estimation we have already seen

To simplify notations let us consider the correspondence $\mathbf{u} \leftrightarrow \mathbf{u}^{\prime}$ and the fundamental matrix

$$
\tilde{\mathbf{u}}^{\prime T} \mathbf{F} \tilde{\mathbf{u}}=0
$$

For each point correspondence $\mathbf{u} \leftrightarrow \mathbf{u}^{\prime}$ we have that

$$
\begin{aligned}
& \tilde{\mathbf{u}}^{T T} \mathbf{F} \tilde{\mathbf{u}}=0 \\
& {\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0} \\
& {\left[\begin{array}{lllllllll}
u u^{\prime} & v u^{\prime} & u^{\prime} & u v^{\prime} & v v^{\prime} & v^{\prime} & u & v & 1
\end{array}\right] \mathbf{f}=0}
\end{aligned}
$$

From several correspondences, we get a system of linear equations that we can solve by SVD

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
\vdots & \vdots \\
u_{k} u_{k}^{\prime} & v_{k} u_{k}^{\prime} & u_{k}^{\prime} & u_{k} v_{k}^{\prime} & v_{k} v_{k}^{\prime} & v_{k}^{\prime} & u_{k} & v_{k} & 1
\end{array}\right] \mathbf{f}=0
$$

Estimating F - The 8-point algorithm

Given eight (or more) correspondences $\mathbf{u}_{i} \leftrightarrow \mathbf{u}_{i}{ }^{\prime}$

1. Normalize point sets $\left\{\mathbf{u}_{i}\right\}$ and $\left\{\mathbf{u}_{i}{ }^{\prime}\right\}$ using similarity transforms \mathbf{T} and \mathbf{T}^{\prime}
2. Build matrix A from correspondences $\widehat{\mathbf{u}}_{i} \leftrightarrow \widehat{\mathbf{u}}^{\prime}{ }_{i}$ and compute its SVD
3. Extract the estimate $\widehat{\mathbf{F}}$ from the right singular vector corresponding to the smallest singular value
4. Perform SVD on $\hat{\mathbf{F}}$:

$$
\widehat{\mathbf{F}}=\mathbf{U S V}^{T}
$$

5. Enforce zero determinant by setting the smallest singular value (s_{33} in \mathbf{S}) to zero and compute a proper fundamental matrix

$$
\hat{\mathbf{F}}^{*}=\mathbf{U S V}^{T}
$$

6. Denormalize

$$
\mathbf{F}=\mathbf{T}^{\prime T} \hat{\mathbf{F}}^{*} \mathbf{T}
$$

Estimating F - The 7-point algorithm

Given seven correspondences $\mathbf{u}_{i} \leftrightarrow \mathbf{u}_{i}{ }^{\prime}$

- The matrix \mathbf{A} is a 7×9 matrix, so in general $\operatorname{rank}(\mathbf{A})=7$ and the null space of A is 2-dimensional
- Then the fundamental matrix must be a linear combination of the two right singular vectors of A which correspond to the two singular values that are zero

$$
\mathbf{F}(\alpha)=\alpha \mathbf{F}_{1}+(1-\alpha) \mathbf{F}_{2}
$$

- The additional constraint $\operatorname{det}(\mathbf{A})=0$ leads to a cubic polynomial equation in α which has one or three solutions
- Hence the 7-pt algorithm returns one or three possible fundamental matrices
- In a RANSAC scheme, the 7-pt algorithm is better than the 8-pt algorithm
- It is minimal, since we only need to sample seven random correspondences per iteration
- Each sampled set of correspondences can return three fundamental matrices for testing

Estimating F - Beyond linear estimation

Improved estimates of \mathbf{F} can be obtained using iterative methods

One possibility is to determine the matrix \mathbf{F} that minimizes the total squared epipolar distance

$$
\begin{aligned}
& \varepsilon=\sum_{i} d\left(\tilde{\mathbf{u}}_{i}^{\prime}, \mathbf{F} \tilde{\mathbf{u}}_{i}\right)^{2}+d\left(\tilde{\mathbf{u}}_{i}, \mathbf{F}^{T} \tilde{\mathbf{u}}_{i}^{\prime}\right)^{2}
\end{aligned}
$$

The distance between a homogeneous point $\widetilde{\mathbf{u}}$ and a homogeneous line $\tilde{\mathbf{I}}=\left[\begin{array}{lll}\tilde{l}_{1} & \tilde{l}_{2} & \tilde{l}_{3}\end{array}\right]^{T}$ is

$$
d(\tilde{\mathbf{u}}, \tilde{\mathbf{l}})=\frac{\tilde{\mathbf{u}}^{T} \tilde{\mathbf{l}}}{\sqrt{\tilde{l}_{1}^{2}+\tilde{l}_{2}^{2}}}
$$

Iterative methods typically achieve a noticeably better estimate than the linear methods

But linear methods typically provide quite good estimates

Estimating E

For calibrated cameras we can first estimate \mathbf{F} and then compute \mathbf{E} by

$$
\mathbf{E}=\mathbf{K}^{\prime T} \mathbf{F} \mathbf{K}
$$

One can also estimate \mathbf{E} directly from five normalized point correspondences $\mathbf{x}_{n} \leftrightarrow \mathbf{x}_{n}^{\prime}$ using an algorithm called the 5-pt algorithm

- Involves finding the roots of a $10^{\text {th }}$ degree polynomial

In a RANSAC scheme, the 5-pt algorithm is the preferred alternative

- To achieve 99\% confidence with 50\% outliers, requires 145 tests with using the 5-pt algorithm versus 1177 tests using the 8-pt algorithm

Summary

- The essential matrix \mathbf{E} and the fundamental matrix \mathbf{F} represent the epipolar constraint

$$
\left(\tilde{\mathbf{x}}_{n}^{\prime b}\right)^{T} \mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a}=0 \quad\left(\tilde{\mathbf{u}}^{\prime b}\right)^{T} \mathbf{F}_{b a} \tilde{\mathbf{u}}^{a}=0
$$

- E and \mathbf{F} can be estimated from correspondences
- $\mathbf{F} \leftarrow$ RANSAC, 7-pt or 8-pt
$-\mathbf{E} \leftarrow$ RANSAC, 5-pt
- E and \mathbf{F} maps points to their corresponding epipolar lines

$$
\tilde{\mathbf{I}}^{b}=\mathbf{F}_{b a} \tilde{\mathbf{u}}^{a}
$$

$$
\begin{aligned}
\mathbf{E}_{b a} & =\left[\mathbf{t}_{b a}^{b}\right]_{\times} \mathbf{R}_{b a} \\
\mathbf{F}_{b a} & =\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1}
\end{aligned}
$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Chapter 11 "Structure from motion and SLAM", in particular section 11.3 "Two-frame structure from motion"
- T. V. Haavardsholm: A Handbook In Visual SLAM
- Chapter 3 "Camera geometry", in particular section 3.2 "Epipolar geometry"

Other

- David Nistér, An Efficient Solution to the Five-Point Relative Pose Problem, 2004
- Richard I. Hartley, In Defense of the Eight-Point Algorithm, 1997

