UiO : Department of Technology Systems
University of Oslo

Triangulation

Thomas Opsahl

2023

Introduction

We have seen that two perspective cameras observing the same points must satisfy the epipolar constraint

$$
\left(\tilde{\mathbf{x}}_{n}^{\prime b}\right)^{T} \mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a}=0 \quad\left(\tilde{\mathbf{u}}^{\prime b}\right)^{T} \mathbf{F}_{b a} \tilde{\mathbf{u}}^{a}=0
$$

Being observed by two perspective cameras also puts a strong geometric constraint on the observed point \mathbf{x}

In the following we will look at how we can estimate observed 3D points \mathbf{x}_{i} from known correspondences $\mathbf{u}_{i}^{a} \leftrightarrow \mathbf{u}_{i}^{\prime b}$ when we know \mathbf{P}_{a} and \mathbf{P}_{b}

Introduction

We have seen that two perspective cameras observing the same points must satisfy the epipolar constraint

$$
\left(\tilde{\mathbf{x}}_{n}^{\prime b}\right)^{T} \mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a}=0 \quad\left(\tilde{\mathbf{u}}^{\prime b}\right)^{T} \mathbf{F}_{b a} \tilde{\mathbf{u}}^{a}=0
$$

Being observed by two perspective cameras also puts a strong geometric constraint on the observed point \mathbf{x}

In the following we will look at how we can estimate observed 3D points \mathbf{x}_{i} from known correspondences $\mathbf{u}_{i}^{a} \leftrightarrow \mathbf{u}_{i}^{\prime b}$ when we know \mathbf{P}_{a} and \mathbf{P}_{b}

Recall the camera projection matrix

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c}
\end{array}\right]
$$

Hence

$$
\mathbf{P} \tilde{\mathbf{x}}^{w}=\widetilde{\mathbf{u}}
$$

Introduction

In order to estimate the 3D point \mathbf{x} it is tempting to back-project the two image points and determine where these rays intersect

However, due to inevitable errors in the positions of \mathbf{u}^{a} and $\mathbf{u}^{\prime b}$, the two rays will typically not have a point of intersection

So we need to estimate a best solution to the problem

Triangulation by minimizing the 3D error

One intuitive estimate for \mathbf{x} is the midpoint on the shortest line between the two back-projected rays

This estimate minimize the 3D error, but it is not recommended

- We "measure" the positions of \mathbf{u}^{a} and $\mathbf{u}^{\prime b}$ in the images, so this is where the errors are
- Depending on the actual position of \mathbf{x}, a small perturbation in \mathbf{u}^{a} and $\mathbf{u}^{\prime b}$ can move the 3D midpoint by nothing at all, infinitely much or anything in between

Reprojection error

A much better choice is to minimize the reprojection error

$$
\begin{aligned}
\varepsilon^{2} & =\varepsilon_{a}^{2}+\varepsilon_{b}^{2} \\
& =\left\|\pi_{a}\left(\mathbf{T}_{a w} \cdot \mathbf{x}^{w}\right)-\mathbf{u}^{a}\right\|^{2}+\left\|\pi_{b}\left(\mathbf{T}_{b w} \cdot \mathbf{x}^{w}\right)-\mathbf{u}^{\prime b}\right\|^{2}
\end{aligned}
$$

Reprojection error

A much better choice is to minimize the reprojection error

$$
\begin{aligned}
\varepsilon^{2} & =\varepsilon_{a}^{2}+\varepsilon_{b}^{2} \\
& =\left\|\pi_{a}\left(\mathbf{T}_{a w} \cdot \mathbf{x}^{w}\right)-\mathbf{u}^{a}\right\|^{2}+\left\|\pi_{b}\left(\mathbf{T}_{b w} \cdot \mathbf{x}^{w}\right)-\mathbf{u}^{\prime b}\right\|^{2}
\end{aligned}
$$

But this is a non-linear optimization problem, that needs an initial estimate...

Linear triangulation by minimizing the algebraic error

Assume that we know the camera projection matrices $\mathbf{P}_{a}, \mathbf{P}_{b}$ and a 2D correspondence $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ for a 3D point \mathbf{x}

Each perspective camera model gives rise to two equations on the three entries of \mathbf{x}

$$
\begin{gathered}
\tilde{\mathbf{u}}^{a}=\mathbf{P}_{a} \tilde{\mathbf{x}} \\
{\left[\begin{array}{c}
u^{a} \\
v^{a} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{a}^{1 T} \\
\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{3 T}
\end{array}\right] \tilde{\mathbf{x}}} \\
\Downarrow
\end{gathered}
$$

$$
\tilde{\mathbf{u}}^{\prime b}=\mathbf{P}_{b} \tilde{\mathbf{x}}
$$

$$
\begin{array}{cc}
{\left[\begin{array}{c}
u^{a} \\
v^{a} \\
1
\end{array}\right] \times\left[\begin{array}{c}
\mathbf{p}_{a}^{1 T} \\
\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{3 T}
\end{array}\right] \tilde{\mathbf{x}}=\mathbf{0}} & {\left[\begin{array}{c}
u^{\prime b} \\
v^{\prime b} \\
1
\end{array}\right] \times\left[\begin{array}{c}
\mathbf{p}_{b}^{1 T} \\
\mathbf{p}_{b}^{2 T} \\
\mathbf{p}_{b}^{3 T}
\end{array}\right] \tilde{\mathbf{x}}=\mathbf{0}} \\
{\left[\begin{array}{c}
v^{a} \mathbf{p}_{a}^{3 T}-\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{1 T}-u^{a} \mathbf{p}_{a}^{3 T} \\
u^{a} \mathbf{p}_{a}^{2 T}-v^{a} \mathbf{p}_{a}^{1 T}
\end{array}\right] \tilde{\mathbf{x}}=\mathbf{0}} & {\left[\begin{array}{c}
v^{\prime b} \mathbf{p}_{b}^{3 T}-\mathbf{p}_{b}^{2 T} \\
\mathbf{p}_{b}^{1 T}-u^{\prime b} \mathbf{p}_{b}^{3 T} \\
\left.u^{\prime \mathbf{p}_{b}^{2 T}-v^{\prime b} \mathbf{p}_{b}^{1 T}}\right] \\
\mathbb{1} \\
{\left[\begin{array}{c}
v^{a} \mathbf{p}_{a}^{3 T}-\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{1 T}-u^{a} \mathbf{p}_{a}^{3 T}
\end{array}\right] \tilde{\mathbf{x}}=\mathbf{0}}
\end{array}\right.} \\
\end{array}
$$

Linear triangulation by minimizing the algebraic error

Assume that we know the camera projection matrices $\mathbf{P}_{a}, \mathbf{P}_{b}$ and a 2D correspondence $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ for a 3D point \mathbf{x}

Each perspective camera model gives rise to two equations on the three entries of \mathbf{x}

$$
\left[\begin{array}{c}
v^{a} \mathbf{p}_{a}^{3 T}-\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{1 T}-u^{a} \mathbf{p}_{a}^{3 T} \\
v^{\prime 3} \mathbf{p}_{b}^{3 T}-\mathbf{p}_{b}^{2 T} \\
\mathbf{p}_{b}^{1 T}-u^{\prime \prime} \mathbf{p}_{b}^{3 T}
\end{array}\right] \tilde{\mathbf{x}}=\mathbf{0}
$$

Combining these equations gives us an

$$
\mathbf{A} \tilde{\mathbf{x}}=\mathbf{0}
$$ overdetermined homogenous system of linear equations that we can solve with SVD to find the 3D point \mathbf{x} that minimize the algebraic error

$$
\varepsilon=\|\mathbf{A} \tilde{\mathbf{x}}\|
$$

in a linear least squares sense

Linear triangulation by minimizing the algebraic error

Assume that we know the camera projection matrices $\mathbf{P}_{a}, \mathbf{P}_{b}$ and a 2D correspondence $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ for a 3D point \mathbf{x}

Each perspective camera model gives rise to two equations on the three entries of \mathbf{x}

Combining these equations gives us an overdetermined homogenous system of linear equations that we can solve with SVD to find the 3D point \mathbf{x} that minimize the algebraic error

$$
\varepsilon=\|\mathbf{A} \tilde{\mathbf{x}}\|
$$

in a linear least squares sense

$$
\left[\begin{array}{c}
v^{a} \mathbf{p}_{a}^{3 T}-\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{1 T}-u^{a} \mathbf{p}_{a}^{3 T} \\
v^{\prime \prime} \mathbf{p}_{b}^{3 T}-\mathbf{p}_{b}^{2 T} \\
\mathbf{p}_{b}^{1 T}-u^{\prime \prime} \mathbf{p}_{b}^{3 T} \\
\vdots \\
\end{array}\right] \tilde{\mathbf{x}}=\mathbf{0}
$$

$$
\mathbf{A} \tilde{\mathbf{x}}=\mathbf{0}
$$

The algebraic error is not geometrically meaningful, but this approach generalizes naturally to the case when \mathbf{x} is observed by more than two cameras

Just construct A with two rows per camera

Example

- Two views with known relative pose

Example

- Two views with known relative pose
- Matching feature points

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

- Sparse 3D reconstruction of the scene by triangulation

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

- Sparse 3D reconstruction of the scene by triangulation

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

- Sparse 3D reconstruction of the scene by triangulation

Beyond linear triangulation

- Linear triangulation methods will typically provide decent 3D estimates that can be used as the starting point for iterative nonlinear estimation methods
- To improve the estimate, one can minimize the reprojection error iteratively

$$
\varepsilon^{2}=\left\|\pi_{a}\left(\mathbf{T}_{a w} \tilde{\mathbf{x}}^{w}\right)-\mathbf{u}^{a}\right\|^{2}+\left\|\pi_{b}\left(\mathbf{T}_{b w} \tilde{\mathbf{x}}^{w}\right)-\mathbf{u}^{b}\right\|^{2}
$$

This is sometimes called structure-only bundle adjustment

Summary

Triangulation

Estimate a 3D point \mathbf{x} for a correspondence $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ assuming error free camera projection matrices \mathbf{P}_{a} and \mathbf{P}_{b}

Minimal 3D error

3D midpoint, not recommended!

Minimal algebraic error

$$
\begin{gathered}
\begin{array}{c}
\widetilde{\mathbf{u}}^{a}=\mathbf{P}_{a} \tilde{\mathbf{x}}^{w} \\
\widetilde{\mathbf{u}}^{b}=\mathbf{P}_{b} \tilde{\mathbf{x}}^{w}
\end{array} \longrightarrow \mathbf{A} \tilde{\mathbf{x}}=0 \xrightarrow{\text { SVD }} \mathbf{x} \\
\varepsilon=\|\mathbf{A} \tilde{\mathbf{x}}\|
\end{gathered}
$$

Minimal reprojection error

$$
\varepsilon^{2}=\left\|\pi_{a}\left(\mathbf{T}_{a w} \tilde{\mathbf{x}}^{w}\right)-\mathbf{u}^{a}\right\|^{2}+\left\|\pi_{b}\left(\mathbf{T}_{b w} \tilde{\mathbf{x}}^{w}\right)-\mathbf{u}^{b}\right\|^{2}
$$

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Chapter 11 "Structure from motion and SLAM", in particular section 11.2.4 "Triangulation"

Other

- R. I. Hartley and P. Sturm, Triangulation, 1997

