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Introduction

We have seen that two perspective cameras 

observing the same points must satisfy the 

epipolar constraint

Being observed by two perspective cameras also 

puts a strong geometric constraint on the 

observed point 𝐱

In the following we will look at how we can 

estimate observed 3D points 𝐱𝑖 from known 

correspondences 𝐮𝑖
𝑎 ↔ 𝐮′𝑖

𝑏 when we know 𝐏𝑎
and 𝐏𝑏
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Introduction

In order to estimate the 3D point 𝐱 it is tempting 

to back-project the two image points and 

determine where these rays intersect

However, due to inevitable errors in the positions 

of 𝐮𝑎 and 𝐮′𝑏, the two rays will typically not have 

a point of intersection

So we need to estimate a best solution to the 

problem
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Triangulation by minimizing the 3D error

One intuitive estimate for 𝐱 is the midpoint on the 

shortest line between the two back-projected rays 

This estimate minimize the 3D error, but it is not 

recommended

• We “measure” the positions of 𝐮𝑎 and 𝐮′𝑏 in 

the images, so this is where the errors are

• Depending on the actual position of 𝐱, a small 

perturbation in 𝐮𝑎 and 𝐮′𝑏 can move the 3D 

midpoint by nothing at all, infinitely much or 

anything in between
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Reprojection error

A much better choice is to minimize the  

reprojection error
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2

= 𝜋𝑎 𝐓𝑎𝑤 ∙ 𝐱𝑤 − 𝐮𝑎 2 + 𝜋𝑏 𝐓𝑏𝑤 ∙ 𝐱𝑤 − 𝐮′𝑏
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A much better choice is to minimize the  

reprojection error

But this is a non-linear optimization problem, 

that needs an initial estimate…

Reprojection error
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Linear triangulation by minimizing the algebraic error

Assume that we know the camera projection 

matrices 𝐏𝑎, 𝐏𝑏 and a 2D correspondence 𝐮𝑎 ↔ 𝐮′𝑏

for a 3D point 𝐱

Each perspective camera model gives rise to two 

equations on the three entries of 𝐱
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Assume that we know the camera projection 

matrices 𝐏𝑎, 𝐏𝑏 and a 2D correspondence 𝐮𝑎 ↔ 𝐮′𝑏

for a 3D point 𝐱

Each perspective camera model gives rise to two 

equations on the three entries of 𝐱

Combining these equations gives us an 

overdetermined homogenous system of linear 

equations that we can solve with SVD to find the 

3D point 𝐱 that minimize the algebraic error

in a linear least squares sense

Linear triangulation by minimizing the algebraic error
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The algebraic error is not geometrically 

meaningful, but this approach generalizes 

naturally to the case when 𝐱 is observed by 

more than two cameras

Just  construct 𝐀 with two rows per camera
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Example

• Two views with known relative pose
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Beyond linear triangulation

• Linear triangulation methods will typically 

provide decent 3D estimates that can be 

used as the starting point for iterative non-

linear estimation methods

• To improve the estimate, one can minimize 

the reprojection error iteratively

This is sometimes called structure-only 

bundle adjustment
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Triangulation

Estimate a 3D point 𝐱 for a correspondence 𝐮𝑎 ↔ 𝐮′𝑏

assuming error free camera projection matrices 𝐏𝑎 and 𝐏𝑏

Minimal 3D error

3D midpoint, not recommended!

Minimal algebraic error

Minimal reprojection error

Summary
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Supplementary material

Recommended

• Richard Szeliski:  Computer Vision: Algorithms and Applications 2nd ed

– Chapter 11 “Structure from motion and SLAM”, in particular section 11.2.4 “Triangulation”

Other

• R. I. Hartley and P. Sturm, Triangulation, 1997
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