UiO : Department of Technology Systems University of Oslo

Multiple-view geometry

Thomas Opsahl

2023

Recap on two-view geometry

- Epipolar geometry
- The essential matrix $\mathbf{E}_{b a}=\left[t_{b a}^{b}\right]_{\times} \mathbf{R}_{b a}$

Estimate from 5 or more correspondences $\mathbf{x}_{n}^{a} \leftrightarrow \mathbf{x}_{n}^{\prime b}$

- The fundamental matrix $\mathbf{F}_{b a}=\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1}$

Estimate from 7 or more correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{b}$

Recap on two-view geometry

- Epipolar geometry
- The essential matrix $\mathbf{E}_{b a}=\left[t_{b a}^{b}\right]_{\times} \mathbf{R}_{b a}$

Estimate from 5 or more correspondences $\mathbf{x}_{n}^{a} \leftrightarrow \mathbf{x}_{n}^{\prime b}$

- The fundamental matrix $\mathbf{F}_{b a}=\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1}$

Estimate from 7 or more correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{b}$

- Pose from epipolar geometry
- Decompose $\mathbf{E}_{b a}$ into $\mathbf{R}_{b a}$ and $\mathbf{t}_{b a}^{b}$ (up to scale)

$$
\mathbf{K}_{a} \downarrow \mathbf{T}_{\mathrm{ba}}=\left[\begin{array}{cc}
\mathbf{R}_{b a} & \mathrm{t}_{b a}^{b} \\
0 & 1
\end{array}\right] \quad \downarrow \mathbf{K}_{b}
$$

Recap on two-view geometry

- Epipolar geometry
- The essential matrix $\mathbf{E}_{b a}=\left[\mathbf{t}_{b a}^{b}\right]_{\times} \mathbf{R}_{b a}$

Estimate from 5 or more correspondences $\mathbf{x}_{n}^{a} \leftrightarrow \mathbf{x}_{n}^{\prime b}$

- The fundamental matrix $\mathbf{F}_{b a}=\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1}$

Estimate from 7 or more correspondences $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{b}$

- Pose from epipolar geometry
- Decompose $\mathbf{E}_{b a}$ into $\mathbf{R}_{b a}$ and $\mathbf{t}_{b a}^{b}$ (up to scale)
- 3D structure from epipolar geometry
- Triangulation by minimizing algebraic error

$$
\left.\begin{array}{l}
\widetilde{\mathbf{u}}^{a}=\mathbf{K}_{a}\left[\mathbf{R}_{a w}\right. \\
\left.\widetilde{\mathbf{u}}_{a w}^{a}\right] \widetilde{\mathbf{x}}^{w} \\
\mathbf{K}_{b}\left[\mathbf{R}_{b w}\right. \\
\left.\mathbf{t}_{b w}^{b}\right] \widetilde{\mathbf{x}}^{w}
\end{array}\right\} \rightarrow \mathbf{A} \mathbf{x}^{w}=0 \xrightarrow{S V D} \mathbf{x}^{w}
$$

- Triangulation by minimizing reprojection error

$$
\varepsilon=\left\|\pi_{a}\left(\mathbf{T}_{a w} \cdot \mathbf{x}^{w}\right)-\mathbf{u}^{a}\right\|^{2}+\left\|\pi_{b}\left(\mathbf{T}_{b w} \cdot \mathbf{x}^{w}\right)-\mathbf{u}^{b}\right\|^{2}
$$

Recap on two-view geometry

Recap on two-view geometry

Pixel correspondences (matching)

- Correspondences must satisfy the epipolar constraint
- Useful for reducing the number of mismatches
- Useful when searching for correspondences

Scene geometry (structure)

- Sparse scene geometry from triangulating correspondences
- Refine result by performing BA
- Dense scene geometry from stereo processing

Camera geometry (motion)

- Camera poses must satisfy the epipolar constraint
- We can decompose the essential matrix to find the relative pose between cameras
- Refine result by performing BA

Multi-view geometry

Multi-view geometry

Pixel correspondences (matching)

- How does multi-view geometry constrain our pixel correspondences?

Image correspondences

- How do we deal with the problem of images not necessarily overlapping?

Scene geometry (structure)

- How does multi-view geometry impact the ability to estimate the 3D structure of the scene?

Camera geometry (motion)

- How does multi-view geometry impact the ability to estimate camera geometry?

Multi-view pixel correspondences

Three-view

- Three cameras observe the same point \mathbf{x}
- We have three two-view geometries

$$
\begin{aligned}
& \left(\widetilde{\mathbf{u}}^{2}\right)^{T} \mathbf{F}_{27} \widetilde{\mathbf{u}}^{1}=0 \\
& \left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{3} \widetilde{\mathbf{u}}^{1}=0 \\
& \left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{32} \widetilde{\mathbf{u}}^{2}=0
\end{aligned}
$$

Multi-view pixel correspondences

Three-view

- Three cameras observe the same point \mathbf{x}
- We have three two-view geometries

$$
\begin{aligned}
\left(\widetilde{\mathbf{u}}^{2}\right)^{T} \mathbf{F}_{21} \widetilde{\mathbf{u}}^{1} & =0 \\
\left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{3} \widetilde{\mathbf{u}}^{1} & =0 \\
\left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{32} \widetilde{\mathbf{u}}^{2} & =0
\end{aligned}
$$

- Each point corresponds to two epipolar lines

Multi-view pixel correspondences

Three-view

- Three cameras observe the same point \mathbf{x}
- We have three two-view geometries

$$
\begin{aligned}
& \left(\widetilde{\mathbf{u}}^{2}\right)^{T} \mathbf{F}_{21} \widetilde{\mathbf{u}}^{1}=0 \\
& \left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{3} \widetilde{\mathbf{u}}^{1}=0 \\
& \left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{32} \widetilde{\mathbf{u}}^{2}=0
\end{aligned}
$$

- Each point corresponds to two epipolar lines

Multi-view pixel correspondences

Three-view

- Three cameras observe the same point \mathbf{x}
- We have three two-view geometries

$$
\begin{aligned}
& \left(\widetilde{\mathbf{u}}^{2}\right)^{T} \mathbf{F}_{21} \widetilde{\mathbf{u}}^{1}=0 \\
& \left.\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{3} \widetilde{\mathbf{u}}^{1}=0 \\
& \left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{32} \widetilde{\mathbf{u}}^{2}=0
\end{aligned}
$$

- Each point corresponds to two epipolar lines

Multi-view pixel correspondences

Three-view

- Three cameras observe the same point \mathbf{x}
- We have three two-view geometries

$$
\begin{aligned}
& \left(\widetilde{\mathbf{u}}^{2}\right)^{T} \mathbf{F}_{21} \widetilde{\mathbf{u}}^{1}=0 \\
& \left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{31} \widetilde{\mathbf{u}}^{1}=0 \\
& \left(\widetilde{\mathbf{u}}^{3}\right)^{T} \mathbf{F}_{32} \widetilde{\mathbf{u}}^{2}=0
\end{aligned}
$$

- Each point corresponds to two epipolar lines
- We observe that we can estimate one of the points directly from the two others

$$
\widetilde{\mathbf{u}}^{3}=\left(\mathrm{F}_{31} \widetilde{\mathbf{u}}^{1}\right) \times\left(\mathrm{F}_{32} \widetilde{\mathbf{u}}^{2}\right)
$$

Multi-view pixel correspondences

Three-view

- This observation indicates that the points $\mathbf{u}^{1}, \mathbf{u}^{2}$ and \mathbf{u}^{3} are connected by some geometric constraint
- But it is not clear if this three-view constraint governs more than the three two-view constraints combined

Multi-view pixel correspondences

Three-view

- The difference between two-view geometry and three-view geometry becomes evident if we consider lines instead of points
- In two-view geometry no constraints are available for lines
- In three-view geometry, lines \mathbf{I}^{1} and \mathbf{I}^{2} in two views will in general generate a line \mathbf{l}^{3} in a third view

Multi-view pixel correspondences

Three-view

- The three view geometry has an algebraic representation known as the trifocal tensor
$-3 \times 3 \times 3$ array with 18 dof
- Describes the relationship between
- Point-point-point
- Point-point-line
- Point-line-line
- Point-line-point
- Line-line-line

Multi-view pixel correspondences

Multi-view constraints

- Two-view constraint: Fundamental matrix (homography for planar cases)
- Three-view constraint: Trifocal tensor
- Four-view constraint: Quadrifocal tensor
- After that it gets complicated...

Multi-view pixel correspondences

Multi-view constraints

- For most applications, the two-view constraint is the goto constraint
- Fundamental matrix
- Homography
- Easy to estimate

- Easy to use
- Also useful for establishing correspondences between images

Multi-view image correspondences

- Multi-view applications deal with image sets
- Establishing image correspondences can be very difficult and time consuming
- Simplifying factors
- Ordered image set
- Known camera model(s)
- Known camera positions
- Known camera orientations

Multi-view image correspondences

Establish image correspondences

- Detect features

Multi-view image correspondences

Establish image correspondences

- Detect features
- Match features between all image pairs
- Refine matching by estimating Fin a RANSAC scheme

Multi-view image correspondences

Establish image correspondences

- Detect features
- Match features between all image pairs
- Refine matching by estimating \mathbf{F} in a RANSAC scheme
- Graph of image connectivity

Multi-view image correspondences

Establish image correspondences

- Detect features
- Match features between all image pairs
- Refine matching by estimating \mathbf{F} in a RANSAC scheme

- Graph of image connectivity
- Establish connected components

Multi-view geometry

Multi-view geometry vs multi two-view geometry The estimated geometry is generally more accurate since we can optimize over all views simultaneously

Full bundle adjustment (BA)
Estimate scene geometry and camera geometry by minimizing the total reprojection error

$$
\left\{\mathbf{T}_{w c_{i}}^{*}, \mathbf{x}_{j}^{*}\right\}=\underset{\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Multi-view geometry

Multi-view geometry vs multi two-view geometry The estimated geometry is generally more accurate since we can optimize over all views simultaneously

Full bundle adjustment (BA)
Estimate scene geometry and camera geometry by minimizing the total reprojection error

$$
\left\{\mathbf{T}_{w c_{i}}^{*}, \mathbf{x}_{j}^{*}\right\}=\underset{\mathbf{T}_{w c_{i}} \mathbf{x}_{j}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

But we need initial estimates to solve BA!

Multi-view geometry

Incremental Structure from Motion (SfM)

- Split images into groups of connected components
- For each component, start with two images
- Many RANSAC inliers when estimating F
- Few RANSAC inliers when estimating \mathbf{H}
- Estimate camera geometry and scene geometry
- Refine estimates by BA
- Add connected image
, - Estimate camera geometry
1 - Expand scene geometry
', - Update all estimates with BA
- Merge components

Multi-view geometry

Incremental SfM
Trevi fountain, Rome

Multi-view geometry

Time-lapse reconstruction of Dubrovnik, Croatia

Summary

Pixel correspondences

- Geometrical constraints: \mathbf{F} and \mathbf{H} most important

Image correspondences

- Feature matching + RANSAC estimate of \mathbf{F}
- Image connectivity graph
- Connected components

Scene geometry \& camera geometry

- Determine initial estimates based on two-view geometry
- Optimize geometry over all views
- For example incremental SfM

Supplementary material

Recommended

- Richard Szeliski: Computer Vision: Algorithms and Applications $2^{\text {nd }}$ ed
- Chapter 11 "Structure from motion and SLAM", in particular section 11.4 "Multi-frame structure from motion"

Other

- Snavely N., Seitz S. M., Modeling the World from Internet Photo Collections, 2007
- Agarwal S. et al., Building Rome in a Day, 2011
- Heinly J. et al., Recontstructing the World in Six Days, 2015

