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Visual SLAM and computer vision applications
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Today

1. What is Visual SLAM?
2. Short-term, mid-term and long-term tracking
3. Mapping and sensor fusion with factor graphs

4. VSLAM backend strategies
5. VSLAM systems

6. Example application
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WHAT IS VISUAL SLAM?
Part I
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What is SLAM?

Simultaneous localisation and mapping
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What is SLAM?

Simultaneous localisation and mapping

Simultaneous 
• estimation of the state of a robot 

using on-board sensors

• construction of a map of the environment 
that the sensors are perceiving
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What is SLAM?

Simultaneous localisation and mapping

Simultaneous 
• mapping:

Continuously expanding 
and optimising a consistent map 
while exploring the environment

• localisation:
Localisation within the map

Jing Dong “GTSAM 4.0 Tutorial” License CC BY-NC-SA 3.0

https://www.cc.gatech.edu/grads/j/jdong37/files/gtsam-tutorial.pdf
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What is Visual SLAM?

Visual simultaneous localisation and mapping

Simultaneous 
• mapping:

Continuously expanding 
and optimising a consistent map 
while exploring the environment

• localisation (tracking):
Localisation within the map
(tracking the map in image frames)
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What is the map?
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What is the map?

A model of the environment that lets us 

• limit the localisation error 
by recognising previously visited areas

• (support other tasks, 
such as obstacle avoidance 
and path planning)
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What is the map?

A model of the environment that lets us 

• limit the localisation error 
by recognising previously visited areas

• (support other tasks, 
such as obstacle avoidance 
and path planning)

Maybe best left as auxiliary processing?
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Examples of map representations

Feature-based metric maps

Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE 
Transactions on Robotics, 31(5), 1147–1163. https://doi.org/10.1109/TRO.2015.2463671
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Examples of map representations

Dense metric maps

DTAM: 
Dense Tracking and Mapping in Real-Time

Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense tracking and mapping in real-
time. In 2011 International Conference on Computer Vision (pp. 2320–2327). IEEE

https://youtu.be/Df9WhgibCQA
https://youtu.be/Df9WhgibCQA


TEK5030

Examples of map representations

Dense metric maps

DTAM: 
Dense Tracking and Mapping in Real-Time

Representation example:

https://voxblox.readthedocs.io/en/latest/
Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 

Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense tracking and mapping in real-
time. In 2011 International Conference on Computer Vision (pp. 2320–2327). IEEE

https://youtu.be/Df9WhgibCQA
https://youtu.be/Df9WhgibCQA
https://voxblox.readthedocs.io/en/latest/
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Examples of map representations

Topological maps
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Examples of map representations

Topological maps

FABMAP

Image: YouTube: ORI - Oxford Robotics Institute

Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic Localization and Mapping in the Space of 
Appearance. The International Journal of Robotics Research, 27(6), 647–665

https://youtu.be/7-JSuZrbS-g
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Examples of map representations

Topological-metric maps
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Examples of map representations

Topological-metric maps

Visual Teach & Repeat

Image: YouTube: utiasASRL

Furgale P T and Barfoot T D. Visual Teach and Repeat for Long-Range Rover Autonomy. 
Journal of Field Robotics, special issue on Visual mapping and navigation outdoors, 27(5): 534-560, 2010.

https://youtu.be/5bcKwrL_1As?t=38
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How do we build a map?
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Relative pose and 3D from two views
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How do we track a map?
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Pose from known 3D map
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Pose from point correspondences
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Pose from point correspondences
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Pose from point correspondences

Minimise geometric error

21argmin ( )
wc

w
wc wc i i

i
π∗ −= ⋅ −∑

T
T T x u
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Map initialisation and tracking
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Map reinitialisation and tracking
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Map reinitialisation and tracking
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Map reinitialisation and tracking
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Map reinitialisation and tracking

Drift 
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Map reinitialisation and tracking

Drift
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Map reinitialisation and tracking

Drift

Very naïve
Visual Odometry (VO) 
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Multi-view mapping
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Multi-view mapping
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Multi-view mapping
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Multi-view mapping

Tracking frame
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{ }
,

21, argmin ( )
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Full bundle adjustment

37

Minimise geometric error over the camera poses and world points
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Multi-view mapping

Tracking frame
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Sliding window mapping
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Sliding window mapping
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Sliding window mapping

Local map
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Sliding window mapping

Global drift 
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Sliding window mapping

Global drift 
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Sliding window mapping

No longer map

Global drift 
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Sliding window mapping

No longer map

Typical VO

Global drift 
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Monocular Visual SLAM
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Monocular Visual SLAM
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Monocular Visual SLAM
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Monocular Visual SLAM

Drift 
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Monocular Visual SLAM

Drift 
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Monocular Visual SLAM

Loop closure detection

Drift 
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Monocular Visual SLAM

Loop closure correction
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Monocular Visual SLAM



TEK5030

Visual SLAM vs visual odometry

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–1163
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Visual SLAM vs visual odometry

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332
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Components of SLAM

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332
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Components of VSLAM

• Short-term tracking
– Pose estimation given the local map
– Keyframe proposals

• Mid-term tracking
– Loop closure detection in the local map

• Long-term tracking
– Loop closure detection in the global map

• Mapping
– Building and optimising the map 

over keyframes both locally and globally
– Data fusion

Lowry, S. et al. (2016). Visual Place Recognition: A Survey. 
IEEE Transactions on Robotics, 32(1), 1–19.

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332
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Example: ORB-SLAM 2

R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE Trans. Robot., pp. 1–8, 2017.
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Example: ORB-SLAM 2
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SHORT-TERM, MID-TERM AND LONG-TERM TRACKING
Part II
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Tracking the map in VSLAM

We track the map for localisation
– Estimate the camera pose

relative to the map for each frame

and for building a consistent map
– Detect loop closures
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Tracking the map in VSLAM

We track the map for localisation
– Estimate the camera pose

relative to the map for each frame

and for building a consistent map
– Detect loop closures

These tasks have different
requirements, challenges and opportunities
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Short-term tracking for pose estimation

Requires:
– High tracking rate
– Precise pose estimate

Challenges:
– Fast correspondence search
– Many correspondences

Opportunities:
– A simple motion model often results

in a good prediction for the next pose
– Conditions are almost the same, few changes
 It is often possible to significantly

restrict the search for correspondences 
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Mid-term tracking for loop closure detection

Requires:
– Tracks across many views after a significant motion
– Relatively high tracking rate (keyframe rate)

Challenges:
– Different viewpoints
– Occlusions
– Several candidate keyframes

Opportunities:
– Do not need to run in frame rate
– We are close to previous keyframes
 We can restrict our search

and exploit longer processing time
https://github.com/magicleap/SuperGluePretrainedNetwork

Sarlin, P. E., Detone, D., Malisiewicz, T., & Rabinovich, A. (2020). SuperGlue: Learning Feature Matching with Graph Neural Networks. 
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4937–4946.

https://github.com/magicleap/SuperGluePretrainedNetwork
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Long-term tracking for loop closure detection

"A Survey on Deep Visual Place Recognition," C. Masone and B. Caputo, IEEE Access, vol. 9, pp. 19516-19547, 2021

Requires:
– Tracks across many views after a significant time
– Global search

Additional challenges:
– Changing conditions
– Changing scene
– A very large amount 

of candidate keyframes

Opportunities:
 We can exploit even

longer processing time
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Image retrieval

"A Survey on Deep Visual Place Recognition," C. Masone and B. Caputo, IEEE Access, vol. 9, pp. 19516-19547, 2021
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Image retrieval architectures

Classical
approach

“Cross-weather-time, long term Visual Geo-Localization”, R. Kumar, CVPR 2021 tutorial on Cross-view and Cross-modal Visual GeoLocalization
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Image retrieval architectures

Classical
approach

Trained 
end-to-end

“Cross-weather-time, long term Visual Geo-Localization”, R. Kumar, CVPR 2021 tutorial on Cross-view and Cross-modal Visual GeoLocalization

Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2018). NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1437–1451

https://www.di.ens.fr/willow/research/netvlad/ 

https://www.di.ens.fr/willow/research/netvlad/
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Supplementary material

“Visual Place Recognition: A Survey“,
Lowry, S. et al., IEEE Transactions on Robotics, 32 (1), pp 1–19, 2016
https://ieeexplore.ieee.org/document/7339473 

"A Survey on Deep Visual Place Recognition," 
C. Masone and B. Caputo, IEEE Access, vol. 9, pp. 19516-19547, 2021
doi: 10.1109/ACCESS.2021.3054937.

“Cross-weather-time, long term Visual Geo-Localization”
R. Kumar, CVPR 2021 tutorial on Cross-view and Cross-modal Visual GeoLocalization
https://www.sri.com/computer-vision/cvpr-2021-tutorial-on-cross-view-and-cross-modal-visual-
geo-localization/

https://ieeexplore.ieee.org/document/7339473
https://www.sri.com/computer-vision/cvpr-2021-tutorial-on-cross-view-and-cross-modal-visual-geo-localization/
https://www.sri.com/computer-vision/cvpr-2021-tutorial-on-cross-view-and-cross-modal-visual-geo-localization/
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MAPPING WITH FACTOR GRAPHS
Part III
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Maximum a posteriori inference

Interested in the unknown state variables 𝑋𝑋,
given the measurements 𝑍𝑍.

The most often used estimator for 𝑋𝑋
is the MAP estimate:

MAP argmax ( | )

( | ) ( )argmax
( )

argmax ( ; ) ( )

X

X

X

X p X Z

p Z X p X
p Z

l X Z p X

=

=

=

( ; ) ( | )l X Z p Z X∝
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Maximum a posteriori inference

Measurement model:

Measurement prediction function:

Measurement likelihood:

MAP estimate:

( ) , ( , )i i i ih X Nη η= +z 0 Σ

ˆ ( )i i ih X=z

21( | ) ( ; ) exp ( )
2 i

i i i i i i ip X l X h X ∝ = − − 
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Maximum a posteriori inference

Measurement model:

Measurement prediction function:

Measurement likelihood:

MAP estimate:

( ) , ( , )i i i ih X Nη η= +z 0 Σ

ˆ ( )i i ih X=z

21( | ) ( ; ) exp ( )
2 i

i i i i i i ip X l X h X ∝ = − − 
 Σ

z z z

2MAP argmin ( )
i

i i i
X i

X h X= −∑ Σ
z
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Maximum a posteriori inference and factor graphs

Measurement model:

Measurement prediction function:

Measurement likelihood:

MAP estimate:

( ) , ( , )i i i ih X Nη η= +z 0 Σ

ˆ ( )i i ih X=z

21( | ) ( ; ) exp ( )
2 i

i i i i i i ip X l X h X ∝ = − − 
 Σ

z z z

2MAP argmin ( )
i

i i i
X i

X h X= −∑ Σ
z Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 

Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332
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Maximum a posteriori inference and factor graphs

Simple SLAM example

https://github.com/tussedrotten/simple-factorgraph-example 

https://github.com/tussedrotten/simple-factorgraph-example
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Maximum a posteriori inference and factor graphs

Simple SLAM example

https://github.com/tussedrotten/simple-factorgraph-example 

21( ) exp ( )
2 i

i i i i iX h X zφ
Σ

 ∝ − − 
 

https://github.com/tussedrotten/simple-factorgraph-example
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Maximum a posteriori inference and factor graphs

Simple SLAM example

https://github.com/tussedrotten/simple-factorgraph-example 

21( ) exp ( )
2 i

i i i i iX h X zφ
Σ

 ∝ − − 
 

https://github.com/tussedrotten/simple-factorgraph-example


TEK5030

Maximum a posteriori inference and factor graphs

Simple SLAM example

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

https://github.com/tussedrotten/simple-factorgraph-example 

https://github.com/tussedrotten/simple-factorgraph-example


TEK5030

Factor graphs make it easier 
to talk and think about state estimation!

79

S. Suresh, P. Sodhi, J. G. Mangelson, D. Wettergreen and M. Kaess, "Active SLAM using 3D Submap Saliency for Underwater Volumetric Exploration," 
2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 3132-3138, doi: 10.1109/ICRA40945.2020.9196939.
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Supplementary material

Georgia Tech Smoothing and Mapping library
– https://gtsam.org/
– https://github.com/borglab/gtsam

Tutorial: https://gtsam.org/tutorials/intro.html

Factor Graphs for Robot Perception
by Frank Dellaert and Michael Kaess
https://www.cc.gatech.edu/~dellaert/pubs/Dellaert17fnt.pdf

80

https://gtsam.org/
https://github.com/borglab/gtsam
https://gtsam.org/tutorials/intro.html
https://www.cc.gatech.edu/%7Edellaert/pubs/Dellaert17fnt.pdf
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VSLAM BACKEND STRATEGIES
Part IV
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Batch processing

De facto standard is to formulate the mapping problem 
as a batch MAP estimation problem!

– Generally more accurate
– Allows long-term loop-closure correction
– But the problem grows over time

→ Real-time batch inference not feasible?

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332
Strasdat, H., Montiel, J. M. M., & Davison, A. J. (2012). Visual SLAM: Why filter? Image and Vision Computing, 30(2), 65–77
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Full bundle adjustment over keyframes

Track every frame
Map with keyframes only

Parallel tracking and mapping
with full bundle adjustment
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Full bundle adjustment over keyframes

Track every frame
Map with keyframes only

Parallel tracking and mapping
with full bundle adjustment

 Map still grows unbounded 
when exploring
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Fixed-lag bundle adjustment

Perform BA over a fixed-lag
of the last n keyframes
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Fixed-lag bundle adjustment

Perform BA over a fixed-lag
of the last n keyframes
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Fixed-lag bundle adjustment

Perform BA over a fixed-lag
of the last n keyframes
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Fixed-lag bundle adjustment

Perform BA over a fixed-lag
of the last n keyframes

 Constant-time operation
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Fixed-lag bundle adjustment

Perform BA over a fixed-lag
of the last n keyframes

 Constant-time operation
 Marginalisation often results in dense Gaussian priors, 

hindering efficient inference
 Share part of the issues with filtering, such as consistency 

and build-up of linearisation errors
 Bounded in how far back in keyframes one may perform 

loop closures



TEK5030

Local bundle adjustment

Perform BA within an active window
of keyframes with co-visible points

Keep keyframes at the boundary fixed

Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window 
optimisation for constant time visual SLAM. Proceedings of the IEEE International 

Conference on Computer Vision, 2352–2359
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Local bundle adjustment

Perform BA within an active window
of keyframes with co-visible points

Keep keyframes at the boundary fixed

 ~Constant-time operation

Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window 
optimisation for constant time visual SLAM. Proceedings of the IEEE International 

Conference on Computer Vision, 2352–2359
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Local bundle adjustment

Perform BA within an active window
of keyframes with co-visible points

Keep keyframes at the boundary fixed

 ~Constant-time operation
 Loopy motion results in a large 

number of keyframes on the boundary
 Hampers convergence and accuracy

Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window 
optimisation for constant time visual SLAM. Proceedings of the IEEE International 

Conference on Computer Vision, 2352–2359
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Pose graph

Marginalise out the points, keep only
relative pose constraints between the keyframes
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Pose graph

Marginalize out the points, keep only
relative pose constraints between the keyframes

 Faster to optimise
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Pose graph

Marginalize out the points, keep only
relative pose constraints between the keyframes

 Faster to optimise
 Approximation, since these constraints do not fully 

encode the nonlinear connections between frames and 
points

 Map still grows unbounded 
when exploring
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Double window optimisation

Inner window: Local bundle adjustment
Outer window: Pose graph based on co-visibility
Joint optimisation

Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window 
optimisation for constant time visual SLAM. Proceedings of the IEEE International 

Conference on Computer Vision, 2352–2359
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Double window optimisation

Inner window: Local bundle adjustment
Outer window: Pose graph based on co-visibility
Joint optimisation

 Locally Euclidean, globally topological
 ~Constant-time with fixed outer window

Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window 
optimisation for constant time visual SLAM. Proceedings of the IEEE International 

Conference on Computer Vision, 2352–2359
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Double window optimisation

Inner window: Local bundle adjustment
Outer window: Pose graph based on co-visibility
Joint optimisation

 Locally Euclidean, globally topological
 ~Constant-time with fixed outer window

Examples: Video1, Video2

Strasdat, H., Davison, A. J., Montiel, J. M. M., & Konolige, K. (2011). Double window 
optimisation for constant time visual SLAM. Proceedings of the IEEE International 

Conference on Computer Vision, 2352–2359

https://www.youtube.com/watch?v=3vTFrYuUYBY
https://www.youtube.com/watch?v=89CNVQ5azsc
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VSLAM SYSTEMS
Part V
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C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM," in IEEE Transactions on Robotics, doi: 10.1109/TRO.2021.3075644.
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ORB-SLAM 2 system overview

R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE Trans. Robot., pp. 1–8, 2017.
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ORB-SLAM 3 system overview

C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM," in IEEE Transactions on Robotics, doi: 10.1109/TRO.2021.3075644.
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https://github.com/MIT-SPARK/Kimera

Kimera system overview

https://github.com/MIT-SPARK/Kimera
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EXAMPLE APPLICATION
Part VI



Foto: AdobeStock

Compact multimodal multispectral 
sensor system for tactical reconnaissance
Trym Vegard Haavardsholm
Thomas Opsahl
Torbjørn Skauli
Annette Stahl

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Robotic Vision Group



What is spectral imaging?

• Each pixel contains measurements
from several spectral bands



Spectral taxonomy of cameras

• Monochromatic or broadband:
one grey level value per pixel,
no spectral information

• Multispectral:
2 – 10 spectral bands,
limited spectral information

• Hyperspectral:
tens or hundreds of narrow
and contiguous bands,
detailed spectral information



Why do spectral imaging?

Band image for selected wavelengths



Why do spectral imaging?

Band image for selected wavelengths



Why do spectral imaging?

Band image for selected wavelengths



Why do spectral imaging?

Band image for selected wavelengths



Why do spectral imaging?

Band image for selected wavelengths



Why do spectral imaging?

Band image for selected wavelengths

• Spectral images can capture a lot of interesting information in each pixel



Why do spectral imaging?

Results from spectral classification

• Spectral images can capture a lot of interesting information in each pixel
– Each pixel can be used directly as a feature vector for machine learning



Why do spectral imaging?

Results from spectral anomaly detection

• Spectral images can capture a lot of interesting information in each pixel
– Each pixel can be used directly as a feature vector for machine learning



How do we capture spectral images?

• A typical hyperspectral imaging sensor



Tactical reconnaissance with small UAVs 

How to exploit spectral signatures?



Can we stream a spectral image from this video? 
1920 pixels

12
00

 p
ix

el
s

@ 80 FPS



… for real-time applications?



Repeated spectral sampling for consistency testing



Spectral reconstruction

Raw image sequence Filter mosaics

Image-based navigation (VSLAM) Filter alignment



Example result
R-G-B



Example result
NIR-G-B



Shortcomings wrt
tactical applications
• VSLAM is slow 

and performs global updates

R-G-B



Shortcomings wrt
tactical applications
• VSLAM is slow 

and performs global updates

• Reconstruction is slow,
global
and overwrites overlapping areas

R-G-B



Shortcomings wrt
tactical applications
• VSLAM is slow 

and performs global updates

• Reconstruction is slow,
global
and overwrites overlapping areas

• Global map has fixed, low resolution
and is wasteful and cumbersome

R-G-B



Shortcomings wrt
tactical applications
• VSLAM is slow 

and performs global updates

• Reconstruction is slow,
global
and overwrites overlapping areas

• Global map has fixed, low resolution
and is wasteful and cumbersome

• Planar assumption results in
many inconsistencies

R-G-B



Real-time pose and structure estimation

• IMU-aided visual odometry (VO)
– Locally precise
– Global drift
– 3D mesh from local point cloud

• INS based on IMU and GNSS
– Less precise
– Globally consistent
– 3D digital elevation models



Locally consistent reconstruction in sensor perspective

• Preserves sensor resolution

• Based on local consistency
in pose and structure

• Robust to global drift and
navigation failures



Emulated push broom image representation

• In sensor perspective

• “Standard” representation
for spectral images

• Overlapping areas
are not overwritten



Emulated push broom imaging with full 3D structure



Emulated push broom imaging with OpenGL



Resulting push broom channels



Local and global consistency



“Digitally stabilised” push broom image



“Digitally stabilised” push broom image



“Digitally stabilised” push broom image



“Digitally stabilised” push broom image – Example

Projected back into the original camera frames Projected back into a smoothed,
reduced set of virtual camera frames



Results



Results



Results



Results

INS with DEM VO with local meshes

Spectral reconstruction rate: 
• 0.6´ frame rate (26M vertices)
• 3´ frame rate (up to ~100k vertices)



Summary

Multimodal multispectral sensor system for small UAVs in tactical applications:
– Streaming stabilised emulated push broom images
– Exploit precise local estimates of camera pose and full 3D structure
– Real-time performance with GPU implementation based on OpenGL



FFI turns knowledge and ideas
into an effective defence
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