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1 Introduction

The game of Surround was designed for the Atari 2600 platform and was
launched in 1977. We will use a modi�ed version of the game, where the
players take turns making their moves. You might think of it as a �board
game version� of Surround. The game has two players, 'white' and 'black',
where 'white' player goes �rst. You will randomly be assigned to play with
either 'white' or 'black' each game, and you will also randomly start on the
left or right side of the board. The players have four actions or moves: �left�,
�right�, �up� and �down�. Each time the player moves it leaves a �block� in
its previous positions. The �rst player to crash into any block, either its own
or the opponents, or crashes into the border of the board, looses. As the
game is turn-based, there are no draws. A reward of 1 is given to the winner
and −1 to the looser. We do not discount rewards.

The strategy we shall use for learning this game is called self-play rein-

forcement learning. In the normal reinforcement learning setting, we only
try to optimize the expected (discounted) reward for an agent in an assumed
�xed environment. In self-play reinforcement learning we create and update
the environment as well. The environment consist of two parts. The simu-
lator, which job is to apply the moves of the agents, update the board and
return a view of the board and a reward for the agent. The simulator is �xed
during the whole period, i.e. the rules of the game does not change. The
second part of the environment is an opponent, in self-play reinforcement
learning this is a clone of ourselves! To be precise our training shall proceed
as follows. We initialize the agent, and then the environment with a clone of
the agent as opponent. Then we train the agent in the environment, while
keeping the opponent �xed, until our agent becomes clearly superior to the
opponent. When the agent wins a certain percentage of the games (e.g. 60
percent), we update the opponent to a clone of the current agent. In that
way we always play against an opponent that are about our level.
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Note that although we said before that you will be randomly assigned to
play either �black� or �white�, in the observation (which may also be used as
a state) returned form the environment, you will always look green with a
blue head (the current position of the player) while your opponent will be
red with a purple head. From the perspective of the opponent, he will also
see himself as green and you as red. In this way can we use the same policy
function to play both black and white.

2 Training

An environment for the agent is created with

environment = simulator.Environment(height, width, opponent, turn_based=True)

where height and width are the height and with of the board. After we
have created an environment for the agent, we have transformed the problem
into the standard reinforcement learning setting. Note that the opponent
should be an object with a next_action method associated with it. The
environment uses this to create the next action for the opponent, i.e.

action_opponent = opponent.next_action(state)

A new game and initial state is created for the agent with

player = random.choice(["white", "black"])

game = environment.new_game(player=player)

state = game.init_state()

To obtain the next state and reward from the the environment you should
apply your action by

new_state, reward, END_OF_GAME = game.apply_action(action)

Here new_state is a numpy array of shape [height, width, 3] and reward
is 0 is except if END_OF_GAME is true, otherwise it is −1 if we lost and 1
if we won. END_OF_GAME is a boolean which is true if the game is over.

We will in this problem extend the policy-gradient framework with a
value function, we thus have an actor-critic setup. You should read up on
this in the lecture notes on reinforcement learning. The network and training
of the state-value function is already set up for you, though you are free to
make changes to this.

Note that as checkpointing is implemented so you may stop and restart
the training as you like.
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3 Evaluation against baselines

We will measure progress in two ways. Firstly, we continuously monitor how
well we are playing against our opponent. In addition to this, we have two
baseline policies that we evaluate against. You will �nd both implemented
in baseline.py. The �rst baseline opponent is a true random opponent, it
picks 'left', 'right', 'up' and 'down' with equal probability. Note that this
has at least a 1 in 4 chance of loosing every time it makes a move (except the
�rst move), as moving in the opposite direction always leads to a crash. A
slightly smarter baseline is the one that tries to avoid immediate loss. It �rst
looks at all positions 'left', 'right', 'up' and 'down' and �gures out which of
them are safe to play. Then it chooses either of these with equal probability.
If all actions will lead to a loss, it picks any action at random.

4 Your tasks

The only �le you should need to edit is actor_critic.py You should create
a policy-network

class PolicyNetwork:

def __init__(self, height, width, sess):

# you may want more arguments then the ones show above

pass

def next_action(self, state):

pass

# ... more methods ...

You will need to create the update operation for the policy network and
run this where and when you �nd it appropriate. For this you will need to
�gure out how to use the value function to create a critic. You will need to
update both the train and initialize_networks functions.

A few summaries are already implemented and logged to TensorBoard,
you may e.g. see example games under the IMAGES tab. You may add
more of these if you like. It is optional, but might be useful for debugging
purposes. E.g. plotting the entropy of the outputs of the policy network
could be useful. If the entropy for most states are zero, the policy is basically
deterministic, while if the entropy is typically around log(4), the network is
sampling uniformly among the four actions.
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Some hints that may help you with the solution.

� Hint 1: Note that the last form of the actor-critic from the notes
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can be simpli�ed into an online update at each time step, which you
may �nd the easiest to implement.

� Hint 2: You may take inspiration from the ValueNetwork class and
how updates are done there.

� Hint 3: This is related to the previous hint, but deserves some further
explanation. The surround game has several symmetries that can be
exploited. Making a �left� move from a certain position should be no
worse or better than moving �right� from the board we get when we
mirror the board around the vertical axis (i.e. left-right �ip the image).
Similarly moving �up� from a certain position, and moving �down� from
the position in the board upside-down should be equivalent. See e.g
the functions mirror and augment_with_mirroring.

� Hint 4: Focus on making sure you understand how things work, in-
cluding your own implementation. Don't spend a lot of time randomly
trying things to see if things improve/converge. Even a correct imple-
mentation may have no/slow convergence and your pass/fail will not
depend on this. You will want to try di�erent learning rates though.
My experiments so far have not been very promising. . .

The �le actor_critic.py is currently set up with train dir and learning

rate as arguments, so from the command line it could be called by e.g.

TRAIN_DIR = "train_dir"

LEARNING_RATE=1e-5

python3 actor_critic.py $TRAIN_DIR" $LEARNING_RATE

You may of course change this as you like. Learning rate here refers to the
learning rate (denoted by α in the notes) of the value network.

5 Hand in

We should hand in your assignment using Devilry. You upload should have
three elements:

4

https://devilry.ifi.uio.no/


� Your code.

� A short report (need not be longer than a page) answering the ques-
tions:

� how you implemented the agent update

� if you have seen signs of improvement/convergence

� if you tried to change something else, and what the result of it
was

� Perhaps a zipped-version of a log-directory illustrating any of the points
described in your report (there is an upload size limit on Devilry, per-
haps 100MB).

You may optionally include some feedback on the assignment itself.
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