
Candidate no

UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Deferred constituent exam in: TEK5040 –– Deep Learning for Autonomous Systems

Day of examination: MOCK EXAM

This problem set consists of 6 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Contents

1 Tensorflow (weight 5%) page 1
2 Data efficiency (weight 5%) page 2
3 Self-supervised learning (weight 8%) page 2
4 Tracking (weight 8%) page 2
5 3D segmentation (weight 5%) page 3
6 Optimization (weight 5%) page 3
7 Batch normalization (weight 5%) page 4
8 Bidirectional RNNs (weight 4%) page 4
9 External memory (weight 8%) page 4
10 RL value functions (weight 5%) page 4
11 RL policy gradient (weight 7%) page 4
12 Word embedding (weight 5%) page 4
13 Loss functions (weight 5%) page 5
14 Bayesian deep learning (weight 5%) page 5
15 Evidence lower bound (weight 5%) page 5
16 Guided cost learning (weight 5%) page 5
17 Dialog systems (weight 5%) page 6
18 Sequence modeling (weight 5%) page 6

Problem 1 Tensorflow (weight 5%)

12
20

Remember that the feeded values holds for that exact run.

(Continued on page 2.)

Exam in TEK5040, MOCK EXAM Page 2

Problem 2 Data efficiency (weight 5%)

The most common method is transfer-learning/fine-tuning, where you
first train on a larger dataset, for a similar task. Then you reuse most
of the weights for you target task/data. Other methods could be to use,
multi-task learning where you add extra labels that guide your training or
surrogate losses without extra labels that helps the training process.

Problem 3 Self-supervised learning (weight 8%)

Building assumptions into your loss-function is a way to incorporate
knowledge into your model. You limit the configurations of your network,
into one that follow those assumptions. If your assumptions are strict
enough, you may only be left with configurations that makes your model
work. In the vid2depth network, they built into the loss the assumption
that edges should occur at the same positions for the input image and
the output depth estimation. By it self, this assumption is not enough
strong enough to make depth estimation work, but it does rule out a lot of
bad networks. They also assumed the image was taken of an overlapping
region of a 3D-world, where everything was static, and there were no
color or light changes. With these assumptions incorporated in the loss
function, the only way to get a low loss was to explain the variance in
terms of depth/geometry of the world and self-movement. Even though
these assumptions was not absolutely true, they worked often enough for
the model to learn something about the world.

Similarly it has been shown that a model can learn object tracking,
simply by building in the assumption that objects don’t change color.

To get full score:

• You can build assumptions into loss functions

• examples of assumptions: color constancy, fixed 3d world, aligned
edges

Problem 4 Tracking (weight 8%)

4a

If you base your network on an existing object detection network, the
best solution might be to use an approach similar to the MDNet. In you
training process you have make a separate last layer for each training
video and object, and share the rest of the for all examples. You sample
many random crops around your expected target location, run them
through the network that classifies them as target or not target. A crop
is counted as target if it overlaps above a certain threshold with the true
target. You train this network based on a training-set of videos, where a

(Continued on page 3.)

Exam in TEK5040, MOCK EXAM Page 3

specific object is marked with a bounding box in each video. In the training
process you train the whole network, both the specific last layer and the
shared base network.

When running the tracking network, you keep the shared part of the
network fixed, but create a new last layer that you train based on the initial
frame and random crops, similar to the training stage.

To get full score: Should give a rough overview of a tracking network,
based on one of the three methods from the course.

4b

Perhaps the most typical problem with a tracking network is to confuse
similar objects, say mixing one person with another. This could either be
caused by the objects being the same object in the pretrained network, if
transfer learning was used, or that you have few objects of the same type
in each video frame. This could be solved by specifically selecting similar
objects as object/non-object when training, or using distraction-aware in-
ference.

Other typical problems:

• Tracker only using a few features of an object

– Alleviated by e.g. regularized attention

• Tracker diverging over longer time periods

– Stopping learning of object features early

– Using memory network architectures

Problem 5 3D segmentation (weight 5%)

• Dense data like MRI, CT etc.

• Complex shapes where it is hard to get good view to capture all the
data e.g. large 3D maps of building

• Spare or noisy data where it’s hard to find views that groups related
data in a systematic way.

Problem 6 Optimization (weight 5%)

If N is the number of weights, the number of second derivatives are N2

and may become prohibitively expensive to compute and store for a large
number of parameters. (There exists approximate second order methods
though that have a somewhat wider applicability).

(Continued on page 4.)

Exam in TEK5040, MOCK EXAM Page 4

Problem 7 Batch normalization (weight 5%)

We usually use stored running averages created during training, or use
statistics based on the whole training set.

Problem 8 Bidirectional RNNs (weight 4%)

Be able to take into account context from the "future".

Problem 9 External memory (weight 8%)

1. Normalize the vector using e.g. softmax function to get probabilities
p1, p2 and p3.

2. • In the case of hard addressing, draw one of the three memory
with probabilities p1, p2 and p3 for M1, M2 and M3 respectively.

• In the case of soft addressing, take a weighted mean of the
memory cells, i.e. r = p1M1 + p2M2 + p3M3.

Problem 10 RL value functions (weight 5%)

We have

vπ(s) = π(a1|s)qπ(s, a1) + π(a2|s)qπ(s, a2)

= 0.2 ∗ (−10) + 0.8 ∗ 10
= (−2) + 8
= 6

Problem 11 RL policy gradient (weight 7%)

∇θ log πθ(at|st) is the direction for which the probability, or probability
density value, of taking at from state st increases the most. Thus if the
return Gt is positive, this term gives a contribution in a direction that
increases the probability of the chosen action. If we get a negative return,
we try to decrease the probability of action at by going in the opposite
direction. Intuitively, if we see a good outcome we increase the probability
of the action, if see a bad outcome, we decrease it.

Problem 12 Word embedding (weight 5%)

Let the one-hot encoding vector of the considered input word be xxx ∈ RV×1

and the word vector hhh ∈ Rd×1. Then hhh = WWWTxxx and zzz = UUUhhh. If the

(Continued on page 5.)

Exam in TEK5040, MOCK EXAM Page 5

yth element of zzz is z(y), then P(wo = y) =
exp(z(y))

∑V
y=1 exp(z(y))

, where wo is the

considered output word.
The ith row of the matrix WWW is the word vector of the ith word in the
dictionary.

Problem 13 Loss functions (weight 5%)

Negative sample loss (NSL) is equivalent to Noice contrastive estimation
(NCE), when the distribution the noise samples are drawn from is uniform
such that kPn(y) = 1.

Problem 14 Bayesian deep learning (weight 5%)

• Maximum Likelihood (ML)

ŵww = arg max
www

p (Y|XY|XY|X, www)

• Maximum A-Posteriori (MAP)

ŵww = arg max
www

p (Y, www|XY, www|XY, www|X) = arg max
www

p (Y|XY|XY|X, www) p(www)

• Bayesian

p (www|YYY, XXX) =
p (YYY|XXX, www) p (www)

P (YYY|XXX)
=

p (YYY|XXX, www) p (www)∫
P (YYY|XXX, www) p (www) dwww

Problem 15 Evidence lower bound (weight 5%)

The first term encourages data to be explained correctly with model
parameters drawn from the auxiliary distribution. The second term
requires that the distance between the auxiliary distribution and the
posterior distribution would be minimized.

Problem 16 Guided cost learning (weight 5%)

With the demonstration trajectories, we back-propagate 1
N and with sys-

tem generated trajectories we back-propagate −wj
Z .

Basic steps in GCL:

1. Initialize cost function cθ (with random or otherwise selected values)

2. Initialize policy (q0)

(Continued on page 6.)

Exam in TEK5040, MOCK EXAM Page 6

3. Gather expert demonstrations (Ddemo)

4. Run policy and gather trajectories (Dsamp)

5. Feed expert demonstration through the cost function and back-
propagate 1

N

6. Feed system trajectories through the cost function and back-
propagate −wj

Z

7. Update cost function

8. Optimize policy (Reinforcement learning) with the updated cost
function

9. repeat from step 4.

Problem 17 Dialog systems (weight 5%)

Issues addressed with reinforcement learning:

• Maximum Likelihood criterion for predicting the next dialog turn
will lead to poor dialogs (dull responses, repetition etc.)

• Non differentiable evaluation metrics relevant to longer term goals
of the dialog.

Reinforcement learning applied to dialog system training:

• Agent: The Recurrent Net

• State: Previous dialog turns

• Action: Next dialog utterance

• Policy: Generate the next dialog utterance (action) given the
previous dialog turns (state)

• Reward: Score computed based on relevant factors such as ease of
answering, information flow, semantic coherence etc.

Variance can be reduced by introducing a baseline, which must be
independent of ws. Modified equation is

∇θ L(θ) = (r(wwws)− b)∇θ log pθ(wwws)

Problem 18 Sequence modeling (weight 5%)

Recurrent network: O(n)
Convolution network with contiguous kernels O(n/k)
Self attention network O(1)

