
(Neural) Architecture Search

Eilif Solberg

August 29, 2018

When a group of researchers from Toronto won the ImageNet competition
in 2012 with a convolutional neural network now know as �AlexNet� [1], they
set o� a race for even better architectures. It turns out that the researchers
of Toronto did not happen to stumble upon the best architecture, and the
top-5 error rate on ImageNet has decreased from over 18% in 2012 to less
than 4% today1. Hundreds of researchers have been involved in this quest
for improved architectures and through these e�orts some general principles
for well-performing convolutional architectures have emerged. For image
recognition we have seen that in general

� Smaller convolutions e.g. 3 Ö 3 or 5 Ö 5 works better than larger ones.

� Batch-normalization works well, and may actually replace Dropout in
many scenarios.

� We should do batch-normalization before e.g. ReLU activation, not
after it.

� Zero-padding to keep the output dimension the same is a good idea.

� Residual connections, or other ways of shortening the error path, im-
proves performance.

However, new ideas come out all the time and we would like to improve
architectures even further. With all the possible ideas, though, the number
of possible con�gurations gets enormous. We also have to consider the possi-
bility that new structures may even invalidate some of the general principles
mentioned above. And what about other applications, where we have less
experience and may not yet have guiding principles we can trust? What

1Single network, i.e. not ensemble, performance. The 18% score is obtained through

averaging predictions on 10 crops.

1

we would like is an algorithm that could search through the huge space of
architectures. Some attempts in this direction have indeed been made and
we shall look into a couple of these. There are at least two important parts
to algorithmic architecture search

1. De�ning an appropriate search space.

2. Deciding upon the optimization algorithm to �nd a good architecture
within the search space.

We will look at two approaches that use similar optimization algorithms,
but di�ers signi�cantly in the way they de�ne the search space. We will look
at how they go about �nding the best architecture on the CIFAR-10 image
recognition dataset, though they have much broader applicability than this.

First we shall look at the approach in [2]. Quite a bit of the structure of
the architecture is actually �xed. All networks in the search space is a series
of layers of the form

conv2D(FH, FW, N) −→ batch-norm −→ ReLU

where FH is the �lter height, FW is the �lter width and N is the number of
output �lters. What is searched over is the parameters of the convolutional
network, �lter width, �lter height and number of �lters individually for each
layer, as well as which of the previous layers to take as input. The �lter height
and �lter widths were both restricted to be in {1, 3, 5, 7}, and the number of
�lters to be in {24, 36, 48, 64}. For some experiments they also allowed the
stride height and width to be predicted, but they got slightly worse results
then using a prede�ned policy. They number of layers is prede�ned for each
search iteration, but is gradually increased as the search progresses. They
used a recurrent neural network2, which we call the controller, to predict
both the parameters of the convolutional layers and the inputs to each layer.
A predicted network is called a child network of the controller. The idea of
neural architecture search is illustrated in Figure 1

2Thereof the name neural architecture search

2

Figure 1: An overview of Neural Architecture Search. Figure and caption
from [2].

The controller is trained with a reinforcement learning algorithm called
policy gradient. You will later in the course learn the necessary tools to un-
derstand this fully, for now we shall try to give the basic intuition only. The
idea is that the network predicts the parameters sequentially, starting from
the �rst convolutional layer. In this way it can use the network structure so
far in deciding on the structure of the next convolutional layer. After the
controller has �nished predicting all layers in the network, the network is
trained on the training set of CIFAR-10 for 50 epochs and then evaluated
on the validation set. The controller gets as feedback the accuracy of the
child network on the validation set. If the child network obtains low accu-
racy the controller is discouraged from selecting the chosen hyperparameters
again. If the child network performs well on the other hand, the controller is
updated so to predict the chosen hyperparameters more often in the future.
The architecture search above predicted, trained and evaluated 12800 child
networks altogether, spending a total of 22400 GPU-hours3. They achieved
an accuracy slightly worse than the best hand-engineered networks. One
of the discovered architectures from the architecture search can be seen in
Figure 2.

3Using Nvidia Tesla K40s

3

Figure 2: Convolutional architecture discovered by our method, when the
search space does not have strides or pooling layers. FH is �lter height, FW
is �lter width and N is number of �lters. Note that the skip connections are
not residual connections. If one layer has many input layers then all input
layers are concatenated in the depth dimension. Figure and caption from
[2].

We shall now move over to the second approach for neural architecture
search. In [3] they de�ne the search space quite di�erently. They note that
many of the best performing convolutional neural network architectures con-
sist of many repetitions of the same building block, the ResNet architecture
[4] being a good example. Instead of optimizing over the whole architecture
they instead optimize over an architectural building cell4, which they then

4The paper uses the term cell to refer to the repeated building blocks, and the term

block to mean a substructure of a cell!

4

put together in a hand-engineered way. Actually they are learning two di�er-
ent cells, named normal cell and reduction cell respectively. The reduction

cell is forced to apply a stride of two to their initial input, thereby reducing
the spatial resolution in the network with a factor of two in each direction,
otherwise there is no di�erence to the possible structures they may take.
From these two cells one may build a complete newtork to classify images
from CIFAR-10 as shown in Figure 3.

Figure 3: Architecure for CIFAR-10. The normal cells are repeated N
times. Figure from [3].

In only searching over building cells, they put strong restrictions on the
architectures that may be obtained. It might be that the reason structures
of repeated cells dominate convolutional network architectures is due to the
lack of human imagination rather than the superiority of the design pattern.
Anyway, only optimizing over such cells reduces the search space consistently
and may allow us to a more thorough search within this limited area. An
even more important advantage is that a the learned building cells may
later be used in di�erent ways to build many di�erent network architectures.
This is useful both to adapt for di�erent input sizes and to create networks
with di�erent speed-accuracy tradeo�s. An architecture for higher resolution
images from ImageNet may be constructed as illustrated in Figure 4. In this
way we can search for an architecture on a smaller dataset of low-resolution
images, and hopefully the learned convolutional cells will generalize to higher

5

resolution images.

Figure 4: Architecure for ImageNet. Figure from [3].

We shall not go into the details of the search for now5 but point out that
the same search space was used for the two cells, and they were generated
as a pair, i.e. not independent of each other. A total of 20000 architectures
where sampled6, spending a total of 2000 GPU-hours7. The best performing
convolutional cell pair can be seen in Figure 5. What is not shown in the �g-
ure is that all convolutions are followed by batch normalization and then the
ReLU activation function. This is not learned, but �xed for all convolutional
cells.

5Can you think of a natural sequential generation process that could have resulted in

the two cells in Figure 5? You start with only hi and hi−1 in the graph. At each step you

add either an edge or a node, what are the rules?
6They were trained for 20 epochs instead of 50 as above
7Using Nvidia Tesla P100s

6

Normal Cell Reduction Cell

hi

hi-1

...

hi+1

concat

avg!
3x3

sep!
5x5

sep!
7x7

sep!
5x5

max!
3x3

sep!
7x7

add add

add add add

sep!
3x3

iden!
tity

avg!
3x3

max!
3x3

hi

hi-1

...

hi+1

concat

sep!
3x3

avg!
3x3

avg!
3x3

sep!
5x5

sep!
3x3

iden!
tity

iden!
tity

sep!
3x3

sep!
5x5

avg!
3x3

add add add addadd

Figure 5: Architecture of the best convolutional cells (NASNet-A) with B =
5 blocks identi�ed with CIFAR-10 . The input (white) is the hidden state
from previous activations (or input image). The output (pink) is the result of
a concatenation operation across all resulting branches. Each convolutional
cell is the result of B blocks. A single block is corresponds to two primitive
operations (yellow) and a combination operation (green). Figure and caption
from [3].

How did the cells perform we build an architecture of the form in Figure 4
and train it on ImageNet instead? This time the architecture search actually
led to better performance than those hand-engineered by humans so far. By
varying the number of repetitions of the learned cells (the N in Figure 4) and
number of output �lters in the convolution layers, they were able to produce
models of di�erent levels of computational complexity which performance
exceeded that of previous hand-crafted models at that computational level,
see Figure 6. We note that e.g. 6@4032 implies N = 6 and that the penulti-

mate8 layer has a feature depth of 4032. (During training on CIFAR-10 they
used N = 2, but they did not specify how many output �lters they used!
They use the heuristic of doubling the number of �lters after each reduction
cell, but the initial number of output �lters is not speci�ed. . .).

8Feature layer used for classiciation

7

10000 20000 300000

75

70

65

80

85

Mult-Add operations (millions)

ac
cu

ra
cy

 (p
re

ci
si

on
 @

1)

40000

PolyNet

Inception-v1

VGG-16

MobileNet

Inception-v3

Inception-v2

ResNeXt-101

ResNet-152
Inception-v4

Inception-ResNet-v2

Xception

NASNet-A (6 @ 4032)

ShuffleNet

DPN-131
NASNet-A (7 @ 1920)

NASNet-A (5 @ 1538)

NASNet-A (4 @ 1056)

SENet

Figure 6: Performance on ILSVRC12 as a function of number of �oating-
point multiply-add operations needed to process an image. Comparison with
published results (black circles). Figure from [3].

If we instead look at performance as a number of parameters, again we
get a curve that envelopes the results of previous hand-crafted architectures,
as can be seen in Figure 7.

8

75

70

65

80

85

parameters (millions)

ac
cu

ra
cy

 (p
re

ci
si

on
 @

1)

60 80 100 120 1400 4020

NASNet-A (5 @ 1538)

NASNet-A (4 @ 1056)
VGG-16

PolyNet

MobileNet
Inception-v1

ResNeXt-101

Inception-v2

Inception-v4

Inception-ResNet-v2

ResNet-152

Xception

Inception-v3

ShuffleNet

DPN-131

NASNet-A (6 @ 4032)

NASNet-A (7 @ 1920) SENet

Figure 7: Performance on ILSVRC12 as a function of number of parameters.
Comparison with published results (black circles). Figure from [3].

Although a clever learning strategy using recurrent neural networks and
reinforcement learning9 where used in the experiments, they also showed
that actually a simple random search over the same search space produced
good, though slightly worse, results. This shows that designing a good search
space may be just as important as using a clever optimization algorithm.

What was the cost of the architecture search? With a price of say 1.5
USD per hour for renting Nvidia Tesla P100, and 2000 hours spend, this gives
a cost of 3000 USD, or 25000 NOK, in total for GPU-rental. This is in many
respects surprisingly cheap given (1) the value of good convolutional archi-
tectures and (2) the human e�ort usually put into architecture design. Still
you would perhaps want it to be both faster and cheaper. Recent research
on architecture search goes in this direction [5, 6]. As a word of caution,
one should watch out for seemingly e�cient architecture searches that really
narrows down the search space. Perhaps you can think of an e�cient ar-
chitecture search algorithm that matches state-of-the art on ImageNet only
using a single sample?

9A somewhat more advanced variant of policy gradient was used here.

9

1 Bibliography

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet clas-
si�cation with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097�1105, 2012.

[2] Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

[3] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-
ing transferable architectures for scalable image recognition. arXiv

preprint arXiv:1707.07012, 2(6), 2017.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770�778, 2016.

[5] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-
Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural
architecture search. arXiv preprint arXiv:1712.00559, 2017.

[6] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Je� Dean.
E�cient neural architecture search via parameter sharing. arXiv preprint

arXiv:1802.03268, 2018.

10

	Bibliography

