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1 Introduction

We are all familiar with the importance of attention through experiences
in our own lives. Having found yourself in a crowded room with multiple
simultaneous conversations, you are still able to interpret what your conver-
sational partner is saying. Trying to listen in on someone else's conversation,
however, you suddenly �nd yourself embarrassed having to ask your partner
to repeat him or herself. This common situation is a powerful illustration of
both the promise and disadvantages of attention mechanisms.

In the same spirit humans are in general not great multitaskers. We are
able to walk and chew gum at the same time, but performing two cognitively
demanding tasks simultaneously is near impossible without severe degrada-
tion in performance. We thus see that we have some cognitive bottlenecks
for both processing of input as well as in our ability to perform actions.

Humans seem to both be able to change the focus of their mental e�ort
as well as their level of attention. The second part refers to the total mental

e�ort we put into a situation, while the �rst refers to the distribution of the
total mental e�ort.
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Thus, when someone tells us that �we should pay attention�, our failure
may lie in either our level or our distribution of attention. Humans have the
ability to dynamically change the level of attention depending on the need of
the task. This is useful, as we can save energy when possible, and use all our
mental capacity when needed. We will not aim for something as ambitious
as this. Instead we will focus on how we distribute our attention. There are
at least a couple of arguments that can be made for introducing attention
into our models

� Ignoring irrelevant part of the input. There are cases where some
of the input data provides little or no additional information for the
task at hand. We saw this clearly in the introductory example, other
peoples conversations are unlikely to help if you are trying to hear
what your partner is saying. Part of the input data serves only as a
distractor, and ignoring it sooner rather than later seems like a good
idea.

� Using computational resources wisely. If we apply the same pro-
cessing to all the input data, irregardless of their usefulness in the
accomplishment of a certain task, it is clear that we will waste a lot of
computational resources. In general computation is a scarce resource,
we should treat is as such.

We will now take a closer look at ways we can make models that uses
attention. We have already seen an example of this on the notes on exten-
sions to recurrent neural networks, where we increased the e�ective memory
of RNNs by allowing them to attend to previous states. We have also pre-
viously seen di�erent ways of addressing, location and content-based, in our
discussions of external memory. We will see that there are in fact very close
relations between attention and the addressing mechanism described before.
We will make some remarks on some of the similarities and di�erences at the
end of this chapter.

2 Content-based attention

One very common way of attention is content-based attention. Here we have
basically the same setup as for content-based addressing. We don't specify
the exact location where we want to attend, we set up a query and re-
trieve a �xed-sized vector according to the matching scores. This approach
is taken in e.g. [1, 2]. For both of these papers we basically have an encoder-

decoder setup. For [1] we �translate� an image into a sentence. The encoder
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is a convolutional neural network that takes an image as input, and out-
puts a higher-level representation of this. The decoder is an RNN. Before
attention-mechanisms gained traction, the common approach was to use the
penultimate layer of a image classi�er (typically trained on ImageNet) as a
�xed size feature vector. A disadvantage of this is that we now have lost
most of the spatial structure of the image. As the goal of the paper is to
create a caption to an image, such spatial information may be useful. In ad-
dition, having a �xed size representation may become a bottleneck for larger
images. The contribution of [1] was to, instead of using the penultimate
layer, use the output of an earlier convolutional layer as input. The input
is then a h × w × c feature map which could be of variable size (though in
the paper they had h = w = 14 in all cases). The idea is that over the
course of the caption generation we may want to focus on di�erent parts of
the image. This is accomplished by generating a query at each time step,
where the query is a function of the state at the current time. You may have
noticed, but the model we have just presented is only a simpli�ed version
of the RNN with external memory presented earlier. The memory matrix
M has h × w cells, where each of the cells are $c$-dimensional. The model
for the read mechansim needs no change, while the write mechansim can
be removed as we treat the memory as read-only. In this example we don't
have any additional input data, our input is already given to us through the
�memory�.

The case in [2] is similar, here we are dealing with a translation model,
in the more traditional interpretation of the word. Before attention was
introduced in this context it was common to use an RNN as encoder and
then to feed the �nal state of the encoder as input to the decoder, which
was often an RNN as well. As this vector was of �xed length however it
became a bottleneck when encoding long sentences. So the idea of [2] was
then to feed all the states of the encoder as input to the decoder. For each
new word generated in the target sentence the decoder attends to a di�erent
part of the state sequence of the encoder through content-based attention.
Feeding the whole sequence as input to the decoder also allowed them to
use a bidirectional RNN as encoder. The argument to show that this is also
a special case of the RNN with external memory is similar as before. A
�memory� cell is now one of the state vectors of the encoder RNN (or the
concatenation of the forward and reverse RNNs). There are T such cells in
total, where T is the length of the input sentence.

We will now look at an extension of the content-based attention scheme
to something we shall for the time being call self-attention. Up until now we
have thought about the query coming from a source di�erent from the data
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we are querying. It's like we have had a computational brain which have
decided what things to attend to. Furthermore our discussions have been
concerned with a single query, or at least a �xed number of queries being
performed, at any time. Neither of these assumptions will be true in the
self-attention case. Let's get into it.

Assume we have data X1, X2, . . . , XL ∈ Rn. Each Xi could e.g. be an
element of a sequence. We again have a key function K and a matching
function g. So far nothing is new. Now comes the twist. Instead of having
a �xed number of queries based on e.g. the current state in the RNN case,
each of the data points Xi will perform their own queries, all in parallel!
Every cell may in general query any other cell. It's like we have moved from
centralized control to a distributed system! Another way to put it is that we
have moved from top-down to bottom-up attention.

We will �rst describe the scenario where each cell performs exactly one

query. We de�ne a query function Q : Rn → Rd, and get attention scores

αi,j = g(Q(Xi),K(Xj)) (1)

We then normalize the score to get probabilities by applying e.g. the
softmax function. For each i, j ∈ {1, . . . L} we have

pi,j =
eαi,j∑
k e

αi,k
(2)

These coe�cients now de�ne L di�erent probability distributions π1, . . . ,
πL over {X1, . . . , XL}. As before we now have the choice between hard and
soft attention. In the hard attention case, for each i ∈ {1, . . . , L} we retrieve
one of the Xj by drawing from πi, i.e.

Zi ∼ πi({X1, . . . , XL}) (3)

In the soft-attention case we again take a weighted average

Z i =
L∑

j=1

pi, jX
j (4)

which may be seen as an expectation over the distribution induced by πi.
We are not quite done yet, however. We shall also introduce a value

function V . The role of the value function is to decide what properties of
Xj to return given that our query matches the key for Xj . With a value
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function we have that (3) and (4) transforms into

Zi ∼ πi({V (X1), . . . , V (XL)}) (5)

Zi =

L∑
j=1

pi,jV (Xj) (6)

We have just described the case where each cell performs exactly one
query. Why stop there? Our query might contain one interesting property,
but there may be many others. In addition several queries will allow us to
focus narrowly on several di�erent place. We call this multi-head attention,
instead of having a single Q, K and V we now have M (query, key, value)
triplets (Q1,K1, V1), . . . , (QM ,KM , VM ) which each will give rise to a series
of data points Z1

m, . . . , Z
L
m. For further processing we may e.g. combine the

results by concatenation, i.e. Zi = (Zi1, . . . Z
i
M ).

The setup we have just described was introduced in [3], where they had
great success applying this to natural language processing tasks. For the
translation task they used the common encoder-decoder setup, but instead of
using RNNs for the encoder and decoder they implemented modules heavily
based on the attention mechanism described above.

The self-attention mechanism described appears to be quite di�erent from
what is traditionally thought of as attention mechanisms. Although it seems
that the self-attention mechanism could be used as a way of e.g. judging the
relevance of other input data, it is not clear that this will actually happen.
It might be views as some, perhaps more general, data-dependent processing
mechanism that we don't yet have a good understanding of.

3 Location-based attention

We will now look at an example of how we can apply location-based attention.
For concreteness we will take image data as an example and we will base
our discussions on [4]. Though in principle the methods we will discuss
here could be applied to any set of data points X1, . . . , XL some of the
techniques discussed will make the most sense for data that has some sort
of grid structure, e.g. data that is ordered as a sequence or has some kind
of spatial structure.

Assume we have an input image X and we would like to classify a single
object that is present in the image. Instead of feeding the whole image into
e.g. a convolutional neural network, we will have an RNN that at each time
step takes only part of the image as input. We shall call each such subimage
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a glimpse. It will be the RNN itself that decides what part of the image
to feed in at each time step. We can imagine that applying attention in
this case is particularly useful if the object only occupies only a small part
of the image, and there is a lot of background clutter. Attention will let
us focus on the part of the image that contains the object. Note that this
attention mechanism potentially has both of the bene�ts that we mentioned
in the introduction, (1) better performance by ignoring possibly distracting
parts of the input data and (2) computational savings as we use most of our
computational resources on the input data that are relevant to the task at
hand.

For simplicity assume we have a �xed number of glimpses, say τ . Each
glimpse will be a �xed h × w crop of the image, which we shall assume to
be much smaller than the height and width of the image, centered around a
location lt. At the �rst time step the network may e.g. get a glimpse located
at the center of the image, or at a random location. All subsequent glimpses
will be decided by the network. In addition to our h×w crop, we will extract
at least one other crop, say of size 4h× 4w which we will immediatly resized
to h×w. This lower-resolution crop, sharing the same center, gives us some
context and may provide us with useful cues on where to look next. Note
that if we do not have any lower-resolution patches, we might have to go
through a large portion of the image before even locating the object. Having
lower-resolution crops will help us guide our search quickly towards the areas
in the image which we would like to process at full resolution.

For all but the �nal step we output the next location at which to extract
the glimpse with a function fl dependent on our current state, i.e.

lt = fl(s
t) (7)

For the �nal step we output either the predicted class, or a probability
vector distributed over the classes

c = fc(s
τ ) (8)

The update equation of our RNN looks like

st = h(x(lt−1), st−1, lt−1) (9)

where x(lt−1) is the image crop in addition to lower resolution crops,
centered at lt−1.

We now discuss a couple of ways of how to encode lt, our next center
of attention. The approach taken in [4] is to encode lt as a vector (x, y),
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where x, y ∈ [−1, 1]. Thus if we output lt = (−1,−1) our next glimpse will
be centered on the top-left part of the image. If we output lt = (0, 0) we will
extract a glimpse at the center of the image and so on. In principle we have
in�nitely many possible location centers, though many will of course have
highly overlapping �elds of view. In [4] the function fl outputs a location
center µt = (µtx, µ

t
y) and we draw the location from a normal distribution

with mean µt and �xed variance σ2.

lt ∼ πl(st) = (N(fl(s
t)x, σ

2), N(fl(s
t)y, σ

2)) (10)

Another approach would be to divide each image into a h×w grid, where
h and w are �xed, independent of image size. We would then �rst have a
function πl that outputs a probability distribution over the h× w cells and
then draw from this distribution.

lt ∼ πl(st) = softmax(fl(s
t)) (11)

Note that applying soft attention in this case would counteract our goal of
reducing the amount of computations used for processing. There is one more
thing that we need to discuss. How do we actually train our location policy
fl? As we don't really know where the best places to look are, we can't
train this in a supervised fashion. Instead we will apply a technique from
from reinforcement learning called policy gradient. A rigorous explantation
will have to wait, but we will provide some intution about how it works. If
we ultimately made the correct classi�cation we probably looked at a lot of
the right places, and we then increase the probability of looking at those
places. If we at the end of the episode misclassi�ed the object we might have
focused on the wrong parts of the image. We then update the location policy
π to decrease the probability for those areas, so that next time we are more
likely to look somewhere else. Of course this signal is far from perfect as
we might focus on exactly the right locations and still get the class wrong,
but as long as we get the class right more often when we look at relevant
areas our updates will on average go in the right direction. Exactly how we
change these probabilities depends on what kind of encoding we choose for
lt and our parametrization of πl.

We will end this section on location-based attention by mentioning an-
other location-based attention mechnism we have already encountered, namely
the LSTM output gate. It was not introduced as an attention mechanism per
se, but as we argued before it may be viewed as one (though over the state
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vector and not the input data). We will brie�y revisit the form of it here. If
you recall, the LSTM has a hidden state vector st that is not directly visible
to the outside world, but instead presents a vector s̄t. We have

s̄t = ot � a(st) (12)

ot = σ(Uox
t + Vos̄

t−1 +Woy
t−1 + bo) (13)

As we argued earlier, the output gate may try to mask out data from st that
are currently not useful, which is exactly one of the purposes of attention. It
does not save us any computations, but this is not a strict requirement for
an attention mechanism.

4 Addressing external memory vs attention

We have seen that addressing external memory and attention mechanisms
share many common properties. Especially content-based addressing and
attention is used so similarly that we in this chapter could apply some of
the same models we introduced earlier. This section, however, contains some
thoughts on possible di�erences both in motivation and implementation be-
tween the mechanisms. They should rather be treated starting points for
discussions than as concluding remarks.

� Addressing is about retrieving some information. The information is
not already at our �ngertips. Attention is about suppressing or ig-

noring information. The information is easily accessible, but we see
ourselves better o� without it.

� With external memory we often assume a limited bandwidth connec-
tion to the external memory. This may not always be the case with
attention. In some sense the default is to get all the information.

� External memory is often assumed to be variable-sized and unbounded.
This could be the case with attention mechanisms also, but it is not
uncommon to have �xed size inputs either.

� Di�erence in where data is coming from, how we control the content.
Memory more �exible in that we control the content, may allow for
other kinds of addressing?

� With attention, maybe less critical exactly which cells we retrieve? E.g.
if we are doing attention over convnet feature layer, the neighbouring
cells probably contain a lot of the same information. . .
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� The reason that location-based attention works is not because we know
what we wrote, rather that we have read it before (though possibly a
downsampled version as in our example with visual attention).
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