
Recurrent Neural Networks

Eilif Solberg

12.09.2018

Contents

1 Introduction 1

1.1 The dimension of time . 1

2 RNN 4

2.1 Basic RNN . 4
2.2 Gradients of RNN . 4

2.2.1 Derivative of a shared parameter 5
2.3 LSTM and other gated recurrent units 6
2.4 Depth in RNN . 9

2.4.1 Multilayer perceptron 9
2.4.2 Stacking of RNNs . 9

2.5 Complexity of RNN . 10

3 Problems 11

3.1 How can we recover the basic RNN from an LSTM model? . . 11
3.1.1 Problem . 11

3.2 Show that a stacked RNN is itself an RNN 12
3.2.1 Problem . 12

4 Bibliography 12

1 Introduction

1.1 The dimension of time

We have so far seen ways of dealing with problems of �nding functions
f : X → Y , where X and Y have had �xed sizes. We have also seen situa-
tions where X have had a spatial dimension associated with it, e.g. through

1

image data. In the case of image segmentation we have in addition seen
spatial dimensions associated with Y . Through parameter sharing in convo-
lutional networks we have to some extent been able to handle the challenge
of variable-sized X and Y data. Now we will take a closer look at the situ-
ation where the data are arranged in a sequence, i.e. a linearly ordered set.
The index dimension in the sequence will in many cases correspond to, or
be closely associated with, time.

Sequential data is everywhere. When we look at the world around us, we
not only capture independent glimpses, but observe phenomena asmovement

and actions. Some phenomena are in fact only meaningful when taking the
time dimension into consideration. Sampling a sound wave at a single point
in time is not very useful, only when integrating information over a window
of time are we able to recognize the sound of an ambulance behind us or
convey the meaning of speech. For humans, not only does our input arrive
in a sequence, but our actions and responses are also spread out in time.
Indeed it seems that our whole lives are a more or less continuous stream

of inputs and outputs. We have a representation of the world around us
which we continuously update based on new information. Based on our
representation of the world and our goals and motivation we may also act

upon it, possibly in�uencing the new information that we acquire.
We will now try to formalize this into a model we can work with. We

shall use a discrete notion of time, introducing a sequence t = 1, 2, . . . , T .

� Let S ∈ Rd represent our state. The state contains our current repre-
sentation of the world around us. As this will change over time we add
a superscript to it, so that St represents the state at time t.

� Let Xt ∈ Rm denote the input at time t, and X = (X1, . . . , XT) be
the input sequence.

� Let Y t ∈ Rn denote the output at time t, and Y = (Y 1, . . . , Y T) be
the output sequence.

The input sequence is given to us, but how are the outputs produced?
Output decisions should be made based on our current state. We denote the
output function by f , and we have

Y t = f(St) (1)

How do we update our beliefs as we move along? We de�ne the update

function h, to be a function of the new information at the current time step

2

Xt, our previous state St−1 and also the output at the previous time step
Y t−1. We have

St = h(Xt, St−1, Y t−1) (2)

It may seem super�ous to have Y t−1 as an input, as from equation (1)
we have that this is just itself a function of St−1. One reason we might want
to include it though is that f could potentially be a random, i.e. nondeter-
ministic, function of St−1. If we are e.g. in the middle of a sentence, there
might be many possible completions that will convey our message. Each of
these completions will have a possibly di�erent next word associated with it.
So f ends up drawing from this distribution over words, and it will be useful
for us to know which word eventually got picked. Even for deterministic f ,
it might still be easier to just feed the output directly as input in the next
time step, rather then trying to �gure this out by somehow learning a replica
of the output function in the update function.

Note that equation (2) describes the general situation, there are situa-
tions where not all of the inputs to h are present. It is not uncommon to only
have an output at the last step, genre classi�cation of a song would be an
example. We call this a sequence-to-vector RNN. Even when there is an
output there are situations where we may not want to feed it back into the
network. One such case would be if the output elements Y 1, . . . , Y t are con-
ditionally independent given the input X1, . . . , Xt. This in particular means
that we can model the conditional distribution of each of the Y t values as a
function of X1, . . . , Xt only.

Another special case worth mentioning, is cases where we only have a
single input element X1. It may seem strange to use a recurrent neural
network in this case, as it appears we are not dealing with sequence data
at all. However we can have sequence in the output data even for static
inputs. Describing an image (called image captioning in the machine learning
literature) would be such an example. We denote this special case as a
vector-to-sequence RNN. Note that we in these situations might still feed
in X1 at each time step so that we don't have to store everything that we
need from X1 in our state vector.

Lastly, we may have that both the input and output are sequence, but
where they may be of di�erent lengths. Speech interpretation and machine
translation are examples of this.

3

2 RNN

2.1 Basic RNN

So far we have been looking very abstractly at the problem, but how would
we go about actually implementing the update function h? Assume our state
s is of dimension d, and the input x and output y are of dimensions m and
n respectively. A simple choice would be to have just a linear1 function
followed by an activation function, i.e.

h(x, s, y) = a(Ux+ V s+Wy + b) (3)

where U ∈ Rd×m, V ∈ Rd×d and W ∈ Rd×n are all matrices and b is a
vector of dimension d. Tanh, sigmoid or ReLU are all common choices for
the activation function a and are applied elementwise. Note that the above
formulation is equivalent to concatenating the weight matrices U , V , W into
the matrix M and applying this to the concatenated vector [x, s, y], i.e.
h(x, s, y) = a(M [x, s, y] + b). We shall call the representation given by (3)
above is the basic RNN model.

Note that the form in (3) need not be followed strictly. Clearly x need
not be the raw data, but any preprocessing may have been applied to it.
Furthermore, if the preprocessing function is di�erentiable we could learn
this as well in an end-to-end fashion by passing the gradients on. If our
inputs are e.g. images it will in many cases be natural to �rst transform
the pixel values into a semantically more meaningful representation using a
convolutional neural network. In addition we allow for a, possibly learnable,
preprocessing of the output y. If we are e.g. generating sentences, one word
at a time, yt may be encoded as a one-hot vector or a soft distribution over
words. In this case applying a word embedding to y would be logical. The
idea is the same in both cases; transforming the data into a domain where
meaningful decisions can be made with a simple linear function. Note that
applying a similiar preprocessing to s does not make sense in the same way,
s is already assumed to be at the right level of abstraction.

2.2 Gradients of RNN

The equations in (3) tells us for given weight matrices and a sequence of
inputs x1, . . . , xτ , how to compute a sequence of outputs y1, . . . , yτ . How
do we get the appropriate weight matrices in the �rst place? This will

1We will use the term linear even if we have a bias term, where a�ne would really be

the correct term

4

of course depend on the particular problem setting, but as usual or go-to
method will be to turn the problem into an optimization problem and then
use some sort of gradient descent. How can we �nd the gradients for RNNs
though? Now we suddenly have loops in our graphs, and these are bound
to cause us some problems, right? It turns out they do not. If we look
at the graph that unfolds when we add a new layer for each step in our
computation, we just get an instance of a deep feed-forward network. We
call this the computational graph or the unrolled graph. Note that the depth
of this graph may be random, and could thus be di�erent between samples.
There is nothing wrong with that from a theoretical perspective, but it will
cause us some headaches when trying to batch samples during training and
inference.

Note that the same parameter may appear several times in the unrolled
graph, indeed exactly once for each time step. This does not really complicate
things much though, we deal with this in the same way as with other forms
of parameter sharing; by summing over the derivatives of all the replicas.
For the interested reader we will here lay out the basic argument for why
this is.

2.2.1 Derivative of a shared parameter

Let f be a real-valued function of a parameter λ occuring K times in f . Let
λ1, λ2, . . . λK denote the di�erent occurences of λ in f , and assume that we
have already calculated ∂

∂λi
f for i = 1, . . . ,K. Each of these derivatives tells

us how much change in f we can expect per unit change in λi, for small
changes to λi. If we change λ by a small amount, say δ, all replicas λi will
change by δ. It is perhaps not surprising that the total change in f will be
close to the sum of all the changes that each λi causes individually. If this is
exact in the limit for small δ we would have that the derivative with respect
to λ is the sum of the derivatives with respect to all the replicas. Indeed it
is so. Mathematically we have

d

dλ
f(λ) = lim

δ→0

f(λ+ δ)− f(λ)

δ

= lim
δ→0

f((λ1 + δ, λ2 + δ, . . . , λK + δ))− f(λ1, λ2, . . . , λK)

δ

= lim
δ→0

f((λ1, λ2, . . . , λK) + δr)− f(λ1, λ2, . . . , λK)

δ

where r is (1, 1, . . . , 1), i.e. the vector of all ones. The last equation is what
we call a directional derivative. From a basic result in calculus we know

5

that the for a di�erentiable function f the directional derivative at a point
λ along a vector r is equal to the inner product of the gradient at λ and r.
Let · denote the inner product function. It follows that

lim
δ→0

f((λ1, λ2, . . . , λK) + δr)− f(λ1, λ2, . . . , λK)

δ

=(∇(λ1,λ2,...,λK)f) · r

=(
∂

∂λ1
f,

∂

∂λ2
f, . . . ,

∂

∂λK
f) · (1, 1, . . . , 1)

=
K∑
i=1

∂

∂λi
f

which proves the result.

2.3 LSTM and other gated recurrent units

Although the basic RNN model seemed to have great learning potential
in theory, it was discovered early that it had great di�culties learning long-
term dependencies. Simply storing information over long sequences was very
di�cult to accomplish. A lot of early research was focused on improved opti-
mization techniques for training RNNs. It proved very challenging however,
and in some cases one had just as much success with random weight-guessing!
Thorough analysis identi�ed exploding or vanishing gradients as an inherent
problem of RNNs [1]. As in many other cases, more progress was made by
changing the model than improving the optimization.

Long short-term memory (LSTM) was a model designed to address the
shortcomings of RNNs for long sequences [2]. The model has several com-
ponents and we will introduce them one at a time. Arguably the most
important contribution of the LSTM is the skip connections they introduce
between layers. We have seen this in feed-forward residual networks (aka.
ResNet [3]). Keep in mind, however, that the ideas we are presenting here
were introduced two decades earlier. Our update equation with the intro-
duced skip connection takes the form

st = st−1 + r(xt, st−1, yt−1) (4)

where r is a linear function possibly followed by an activation function,
i.e. it is of the form in equation (3). To simplify notation, let rt denote
r(xt, st−1, yt−1). We then have

6

rt = g(Urx
t + Vrs

t−1 +Wry
t−1 + br) (5)

where g is often taken to be tanh, but other activation functions could be
used instead.

The form in (4) makes it easier to keep information across time steps,
as it now in some sense is the default behaviour. Instead of learning a new
representation at each time step we only learn changes. The authors however
did not stop there. They introduced what they called an input gate which is
a further protection of the information contained in the state. The input gate
decides whether we are allowed to update the neurons in the state vector or
not. The r function now serves merely as a proposed update, but a particular
state neuron will not change unless the input gate allows it. We will take
the input gate to be of the form

it = σ(Uix
t + Vis

t−1 +Wiy
t−1 + bi) (6)

where the sigmoid function is used as the activation function. Combined
with the residual we so far have

st = st−1 + it � rt (7)

where � denotes elementwise multiplication.
A few years after the original LSTM paper the forget gate was introduced

[4]. This proved useful in continual learning tasks, i.e. tasks that stretches
over time with no beginnings or ends. In these situations some of the in-
formation may be useful to accomplish a particular task, but then have no
further value. It's not hard to imagine such situations. Imagine that you are
asked to add 23 and 8, then these numbers are certainly important to re-
member. After you have provided the answer '31', however, and then asked
to add 43 and 36, still having to remember 23 and 8 will not be helpful and
could potentially take up memory we could have used for other purposes.
We de�ne the forget gate as

f t = σ(Ufx
t + Vfs

t−1 +Wfy
t−1 + bf) (8)

The update equation is then transformed into

st = f t � st−1 + it � rt (9)

Of course we could learn to reset the state by adding an additive inverse

to the current state. An explicit reset gate may however make the behavior
easier to learn.

7

We are almost done describing the LSTM, there is only one more gate to
describe. The original LSTM paper introduced the input gate to control write
access to the state neurons. They also introduced an output gate to control
the read access of the state neurons. At this point you might be thinking, �I
was on board with the input gate, protecting the state so to make it easier to
retain information over long periods. Not giving us full access to the state,
which contains the information we need on the other hand. . . �. You wouldn't
be completely crazy having such thoughts. We will however put a slightly
di�erent perspective on it to appreciate the potential bene�ts of such a gate.
Imagine that some of the neurons contains information that we will need at
some point, but is not very useful in the current situation. By blocking the
read access to this neurons we are not letting our decisions be a�ected by
irrelevant information. In this setting we might look at the output gates as
a soft attention mechanism, letting us focus on the state neurons that are
the most useful to us for the decisions we need to make now. The form of
the output gate follows the same pattern as the previous ones

ot = σ(Uox
t + Vos

t−1 +Woy
t−1 + bo) (10)

In addition to this attention mechanism, an activation function a is often
applied to the state vector before we apply elementwise multiplication with
the output gate. We thus have

s̄t = ot � a(st) (11)

where tanh again is a common choice of activation function. With the intro-
duction of the output gate we will have to revisit everything we have done
so far (including the output gate itself!), replacing the state s, which is no
longer directly accesible, with the observeable s̄.

rt = g(Urx
t + Vrs̄

t−1 +Wry
t−1 + br) (12)

it = σ(Uix
t + Vis̄

t−1 +Wiy
t−1 + bi) (13)

f t = σ(Ufx
t + Vf s̄

t−1 +Wfy
t−1 + bf) (14)

ot = σ(Uox
t + Vos̄

t−1 +Woy
t−1 + bo) (15)

Note however that the form of the update of st remains unchanged, we still
have

st = f t � st−1 + it � rt (16)

Although not clear from the expression, we of course have that st is a function
of (xt, st−1, yt−1).

8

However [5] argued that in order to learn precise timings the gates need
to be able to 'peek' into the state itself. For this purpose the concept of
peephole connections was introduced. We will not go into that here, but see
[6] for how these work.

A lot of di�erent versions of the LSTM have been developed, and the
term LSTM is often still used for this familiy of models with gated recurrent
units. See [6] for a more thorough overview of the di�erent variants. In the
paper they also did a local search, changing one element from the vanilla
LSTM, to see which parts of the LSTM are the most important. In [7] they
de�ned a much broader search space, and was able to �nd gated recurrent
units with good performance that looked quite di�erent from the standard
LSTM. The main takeaway is that residual connections and gated recurrent
units have proved very helpful in learning long-term dependencies in RNNs.
Exactly which model will work best for a particular problem may be hard
to predict apriori, and must usually be determined experimenally.

2.4 Depth in RNN

We have seen di�erent ways that recurrent neural networks implements the
update function h(x, s, y) of equation (2). In the basic RNN, the update
function was that of equation (3), a simple linear function followed by an
activation function. For the LSTM h was a bit more complex, but it was
still a shallow function. How can we make the update function deep?

2.4.1 Multilayer perceptron

The �rst idea that comes to mind may be to use a multilayer perceptron2 to
implement h. One thing we should keep in mind though, is that if we make
h have depth n then the path the error signal has to travel will be multiplied
by a factor of n as well. One could of course use skip connections across
several time steps to try to unset this e�ect.

2.4.2 Stacking of RNNs

Another quite di�erent approach for introducing depth into a recurrent neu-
ral network is to stack RNNs on top of each other. Assume that we have L
RNNs. Let stl be the state of RNN l at time t. Let yt0 = xt and for l > 0

2The term multilayer perceptron is often used for a neural network consisting of several

fully connected layers.

9

let ytl denote the output of RNN l at time t. We then de�ne the update
equation for RNN l at time t as

stl = hl(y
t
l−1, s

t−1
l , yt−1l) (17)

In other words we feed the output of RNN l − 1 as input to RNN l. In
many practical applications the output of all but the top RNN is simply
taken to be the state itself (possibly after e.g. an output gate has been
applied, which is typical for LSTM models). In this case there is of course
no reason to feed the output back in (as it is the same as the state) so that
equation (17) simpli�es to

stl = hl(s
t
l−1, s

t−1
l) (18)

If we deviate from a strict stacking of RNNs (and why shouldn't we?)
we could feed back the output from the topmost RNN into a lower layer, to
allow for output-dependent processing in earlier layers.

2.5 Complexity of RNN

We will here take a look into how memory usage, number of compute opera-
tions and number of serieal computational steps scales with sequence length.
We will do the analyzes both in the case of inference and training, as they
di�ers on some of these statistics.

For inference the amount of computation we do is the same for each time
step, so clearly this scales linearly with the sequence length. This is true for
the number of serial steps as well, we have to wait for the previous time step
to �nish processing before we can start processing the next. For memory
usage the situation is di�erent, we do not need to remember old state values
and can thus reuse the memory bu�ers from the states. The memory usage
is thus constant, independent of the sequence length.

What about training? In some sense the question is meaningless in this
general form. RNN de�nes a model and there are many potential training
algorithms, of which some have not yet been imagined, each which may scale
di�erently with sequence length. For a speci�c training procedure however
we may be able to answer this question. By far the most common method of
training is the backpropagation algorithm. For RNN the term backpropaga-

tion through time is often used, but this is just the normal backpropagation
algorithm applied to the unrolled network as we observed in Section 2.2. We
argued before that the both compute and serial steps scaled linearly with
sequence length for the forward pass. For the same reasons this is also true

10

for the backward pass. What about memory usage? During training we
can no longer discard old states during the forward pass, but have to keep
them around until we have �nished the backward pass. As each time step
then adds a constant amount of required memory, the total memory usage
scales linearly with T . There is however a special scenario where a training
iteration actually can be parallelized accross time. If we do not feed back
the previous state to the next iteration, only the new input and the output
of the previous state, we have an update equation of the form

st = h(xt, yt−1) (19)

If we are doing supervised learning we actually have the correct labels yt.
If we instead of feeding the output of RNN at the previos time step, feed in
the correct outputs, the computations at each time step are independent and
can thus be parallelized. At inference time we have to generate the outputs
ourselves, thus the complexity will there scale in the same way as usual with
sequence length.

The results are summarized in table 1.

Table 1: RNN complexity as a function sequence length
Memory Compute Serial steps

Inference O(1) O(T) O(T)
Training BPTT O(T) O(T) O(T)
Training BPTT h(x, y*) O(1) O(T) O(1)

3 Problems

3.1 How can we recover the basic RNN from an LSTM

model?

3.1.1 Problem

To be more precices, assume that we have an RNN with an update equation
of the form in equation (3), with weight matrices U , V andW and bias vector
b. Let a be the activation function and s0rnn be the initial state of the RNN.
We also assune a continuous, deterministic output function f . Assume we
have the LSTM setup of equations (11) - (16). Let st and yt denote the state
and output at time t for the LSTM. How can we choose the parameters of

11

the LSTM such that st ≈ strnn, yt ≈ ytrnn for all t, where the approximation
could be made arbitrarily good?

3.2 Show that a stacked RNN is itself an RNN

3.2.1 Problem

We have proposed stacking of RNNs as a way to make RNNs deep. Can we
show that the model we get when stacking RNNs actually is an RNN? With
this we mean that given a sequence X1, . . . , XT we can write Y1, . . . , YT as

Y t = f(St)

St = h(Xt, St−1, Y t−1)

for some state space and functions f and h.

4 Bibliography

References

[1] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen.
Diploma, Technische Universität München, 91:1, 1991.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735�1780, 1997.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770�778, 2016.

[4] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with lstm. 1999.

[5] Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and
count. In Proceedings of the IEEE-INNS-ENNS International Joint Con-

ference on Neural Networks. IJCNN 2000. Neural Computing: New Chal-

lenges and Perspectives for the New Millennium, volume 3, pages 189�
194. IEEE, 2000.

[6] Klaus Gre�, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and
Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions

on neural networks and learning systems, 28(10):2222�2232, 2017.

12

[7] Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

13

	Introduction
	The dimension of time

	RNN
	Basic RNN
	Gradients of RNN
	Derivative of a shared parameter

	LSTM and other gated recurrent units
	Depth in RNN
	Multilayer perceptron
	Stacking of RNNs

	Complexity of RNN

	Problems
	How can we recover the basic RNN from an LSTM model?
	Problem

	Show that a stacked RNN is itself an RNN
	Problem

	Bibliography

