
Reinforcement Learning

Eilif Solberg

September 26, 2018

Contents

1 Introduction 2

2 Prediction - evaluating a policy 5

2.1 Monte Carlo . 7

2.2 Temporal Di�erence . 9

2.3 TD(λ) . 14

3 Control - �nding the optimal policy 14

3.1 Policy gradient - policy based control 15

3.2 Policy iteration and value iteration - value based control . . . 22

3.2.1 Policy iteration . 22

3.2.2 Value iteration . 24

3.3 Actor-critic - policy and value based control 25

4 Conclusion 27

5 Problems 28

5.1 Shifting rewards . 28

5.1.1 Problem . 28

5.2 Discount factor . 28

5.2.1 Problem . 28

6 Bibliography 29

7 Appendix 29

7.1 The purpose of the discount factor 29

7.2 Derivate under the integral sign 30

7.3 Proof of policy improvement theorem 32

1

1 Introduction

Up until now we have assumed that the data is given to us, and is has been

our job to analyze it. We have looked at how we can use e.g. attention

mechanisms to focus more on some parts of the data than others, but we

haven't had any way to actually in�uence the data distribution itself. Moving

over to reinforcement learning, this will no longer be so. Indeed for some

applications, taking actions to obtain the necessary information will be one

of the most important tasks that must be learned.

Reinforcement learning may be viewed as an interactive play with two

actors, the agent and the environment. The agent performs actions that

a�ect the environment. The environment provides the agent with useful

information about the current situation the agent �nds itself in, as well

as feedback through a scalar reward signal. Note that unlike supervised

learning, the environment is not a teacher that tells the agent what actions

he should have made. Of the two actors the environment is clearly the

passive one. It does not have any goals of its own and we shall assume

its behaviour to be the same throughout1. The agent on the other hand

wants to get as much reward as possible, and changes his policy π to achieve

this goal. In general we shall not assume that the agent knows anything

about the workings of the environment. The agent must �nd this out for

himself by interacting with the environment. We shall let A denote the set

of actions the agent may perform, this action space may be both �nite and

in�nite. Similarly we let O denote the observation space. The rewards are

real numbers, and we shall assume them to be bounded, i.e. we can always

�nd bounds m and M so that rewards are always greater than m and less

thanM2. We shall operate with a discrete notion of time, where the sequence

of agent-environment dynamics plays out as follows: The agent is presented

with an initial observation o0 and then for t = 0, 1, . . .

1. The agent performs an action at according to its policy π, i.e. at ∼
π(o0, a0, r1, o1, . . . , at−1, rt, ot), at ∈ A.

2. The environment rewards the agent with rt+1 ∈ R and emits the ob-

servation ot+1 ∈ O.

We de�ne the history ht to be o0, a0, r1, o1, . . . , at−1, rt, ot The situation
just presented is quite general, for the remainder of the chapter we shall make

1This is how we model the situation anyhow. In many applications the environment

may contain other actors that continually change and certainly do have goals of their own.
2Without this assumption you would at least need to put some other assumptions on

it if you would like convergence guarantees for any of the algorithms we will look at here.

2

a couple of quite strong assumptions. The �rst assumption shall basically

ensure that we know what information the environment is using to make its

decision. The history ht is in practice often not manageable for us and we

will have to base our decisions on only a subset of this information. The

second assumption shall just assume that even with this restricted version,

the agent still has su�cient information to learn the optimal behaviour. We

state the assumptions as follows:

� The distribution of (ot+1, rt+1) is fully determined by the history ht
and the action at.

� The agent is given a function f , st = f(ht), such that the distribution

of (ot+1, rt+1) is independent of ht given st and at. We shall call st the
state at time t and assume the states st to live in some state space S.

What do we do if either of these assumptions are not satis�ed? The game

of Texas hold'em poker is a situation where the �rst assumption is violated.

The actions of the other players (which is part of the environment for us)

will depend on their personal cards, which are unknown to us. One will then

usually try to reason on what kind of cards the opponent is likely to have,

given our own cards, the community cards and the actions taken by the

players so far. This kind of problem is not something we will try to handle

here, but we refer the reader to the literature on partially observable Markov

decision processes. Given that the �rst assumption is true it is within our

power to satisfy the second one. Sometimes however we shall have to give

this up in order to obtain any sort of practical solution. In a few cases it

may be possible to restrict the state to be only the last few observations,

i.e. st = (ot−k, . . . , ot−1, ot) for some k. For a chess game we may even take

k = 0, using only the current board position to make our decisions. The

moves of our opponent may of course depend on history going back several

moves, making our predictions of his moves slightly o�. He can't however

gain anything from this, and restricting ourselves to only the current board

position is probably a good decision. For a given f it is often hard to know

if the conditional assumption is actually satis�ed. For the theory we shall

assume it to be true, in applications we often have to balance likely deviations

against the complexity of the state space in constructing f . We may also try

to learn a state function, based on the whole history, through e.g. an RNN

model.

With the introduction of the state, we shall going forward ignore the

observations and assume the agent is given the state directly. Though the

agent could potentially base his policy on the whole history of states, there

3

would be no use to it as the environment dynamics is independent of the

previous states, given the current one. We shall thus assume that our policy

π is given as π : S × A → R+. For a given state s and action a, π(a|s)
represents for a discrete action space the probability for the agent to perform

action a given that we are in state s. If we are dealing with a continuous

action space, the number represents a density value. We may in the future

use these terms interchangeably. For a given state s we shall let π(s) denote
the probability distribution the policy π induces over the action space A.
The agents next action is then drawn from this distribution, i.e.

a ∼ π(s), s ∈ S, a ∈ A (1)

The environment, from the point of view of the agent, is fully de�ned

by the conditional distributions Pas , which may be described in terms of its

density values

p(r, s′|St = s,At = a) (2)

which denote the density value for the outcome Rt+1 = r and St+1 = s. The
model presented is called a Markov Decision Process and we will assume this

for the remainder of the chapter. The dynamics of the system then unfolds

according to

1. at ∼ π(st)

2. (st+1, rt+1) ∼ Patst

A state s such that P [St+1 = s|St = s,At = a] = 1 for all actions a, is
called an absorbing state as we can't escape from it. We shall assume that

all the rewards are zero from that point onwards, and that we know when we

are in an absorbing state. A transition into such a state e�ectively marks an

end of the sequence, as nothing more can be learned or gained going forward.

We call environments where the optimal behaviour always leads to such an

absorbing state an episodic environment. Continual environments on the

other hand either don't have absorbing states, or it is not a great idea to

get in one! We shall also assume that we always know if our environment is

episodic or continual. Some of the methods we will look at are only appli-

cable for episodic environments as the learning is based on seeing the entire

outcome of the episode. We will also look at methods that works for contin-

ual environments, these will be able to learn as they go without the need for

an end. Methods that work for continual environments automatically work

for episodic environments as well.

4

Note: The material of these notes are largely based on a course in re-

inforcement learning given by David Silver. Look at http://www0.cs.ucl.

ac.uk/staff/d.silver/web/Teaching.html, which also contains a link to

videos of the lectures.

2 Prediction - evaluating a policy

Before we look into how we can �nd the optimal policy we shall look at how

we can evaluate how good a policy is. Why would we want that? One reason

is that it can clearly be useful to know how well the policy is working, so

to be able to assess if it provides an acceptable solution. Another point is

that evaluating two policies let us compare them and we can make a more

informed decision on which policy to choose. A third reason, is that we

shall later see that our ability to evaluate a policy will also prove useful in

improving it.

For supervised learning the problem of evaluation is usually trivial. We

have a �xed evaluation set {(Xi, Yi)}Ni=1 where we aggreate some kind of loss

or accuracy g over the samples

L =
1

N

N∑
i=1

g(f(Xi), Yi) (3)

The case in reinforcement learning is a bit di�erent. We don't have a

�xed evaluation set we can run over, but must instead sample data through

our interactions with the environment. There may be introduced randomness

both through our policy and from the environment dynamics

1. In case of a stochastic policy we may sample di�erent actions from the

same state, leading to di�erent future states and rewards.

2. The environment may introduce some randomness in its state transi-

tions and reward signal.

Though this makes the problem of policy evaluation highly non-trivial,

we will see that there are viable approaches to the problem. We de�ne the

return3 at t, denoted by Gt, to be the discounted cumulative reward from t
and onwards

Gt =
∞∑
k=0

γkRt+k+1 (4)

3We may in the future take the term reward to mean return if it is clear from context.

5

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

where γ ∈ [0, 1]. For theoretical analysis it is very convenient to have γ < 1.
For γ = 1 one often needs to make additional assumptions in order to obtain

similar results, for one thing we can't even guarantee that Gt is �nite if

γ = 1! We may also view γ as a mechanism to allow us to care more about

rewards in the near rather than distant future. Not to digress too much we

have postponed a longer discussion on the justi�cation and uses of the γ
factor to Section 7.1.

We shall make use of two di�erent representations of the expected return,

which we call value functions. The �rst function vπ : S → R, which we call

the state-value function, is de�ned as

vπ(s) = Eπ[G0|S0 = s] (5)

The function tells us the amount of reward we can expect from a given initial

state s, following policy π. As our distributions are stationary with respect

to time it is clear that also vπ(s) = Eπ[Gt|St = s] for any t. Thus at any

time we �nd ourselves in state s the value vπ(s) is the expected discounted

reward from that point and onwards.

We note that the state-value function introduces a weak ordering of poli-

cies. We say that π ≥ π′ if vπ(s) ≥ vπ′(s) for all s ∈ S and π > π′ if the
inequality is strict for at least one state s. We use the term weak ordering

as in general we may have vπ(s) > vπ′(s) for a state s and vπ′(s
′) > vπ(s′)

for another state s′.
The action-value function is a representation that will often prove con-

venient when used in the setting of policy improvement, and is de�ned as

qπ(s, a) = Eπ[Gt|St = s,At = a] (6)

qπ(s, a) tells us how much future reward we can expect by taking action a
from state s and then following policy π from that point forward. Note that

by the law of iterated expectations vπ(s) = Eπ[Gt|St = s] = Eπ[Eπ[Gt|St =
s,At = A]] = Eπ[qπ(s,A)]. The relation between them can also be written

as

vπ(s) =

∫
π(a|s)qπ(s, a)da (7)

If the policy π is deterministic equation (7) simpli�es and the relationship is

simply given by vπ(s) = qπ(s, π(s)).
We shall now present two methods that may be used to estimate the state-

value and action-value functions. The methods �nd themselves at opposite

positions in the infamous bias-variance trade-o�.

6

2.1 Monte Carlo

Our �rst approach is quite direct. We shall illustrate it using the state-value

function only, as the equations we derive will be of the exact same form

for the action-value function. Let's recall the de�nition of the state-value

function

vπ(s) = Eπ[Gt|St = s] (8)

Let us now assume that we are in an episodic enviroment, so that all se-

quences terminate. In that case why not just estimate the expectation di-

rectly through sampling sayN episodes? Assume �rst that we have a discrete

state space. For each episode, the �rst time we run into a state s we increase
the zero-initialized count N [s] by one, and add the observed future reward

to an accumulator A[s]4. Based on these N [s] estimates we then have an

approximation for vπ(s) which we store in an array V

V [s]← 1

N [s]
A[s] (9)

By the law of large numbers, we will have that A[s]/N [s] → vπ(s) as

N [s]→∞ 5.

Instead of collecting these statistics only to update our estimates in V
at the end, we can also create an equivalent online update rule. Recall that

Gt is the return for state t. At the end of the episode we may update the

running average for each state visited during the episode by

V [st]← V [st] +
1

N [st]
(Gt − V [st]) (10)

where t here is assumed to be the time index for the �rst encounter of state

st during the episode. To see that this is equivalent to our previous update

4This is called �rst-visit Monte Carlo. There is a also a variant called every-visit Monte

Carlo which only calculate the statistics based on every visit of a state for each episode.

Every-visit Monte Carlo will clearly have more statistics to base its expectation on, and

may thus seem superior. It does however have the disadvantage that it's harder to estimate

its variance as the samples are no longer independent.
5This is trivially true for �rst-visit Monte Carlo as we are dealing with IID data. This

should also hold for every-visit Monte Carlo though under mild assumptions

7

note that

x̄n :=
1

n

n∑
i=1

xi (11)

=
1

n
((n− 1)(

1

n− 1

n−1∑
i=1

xi) + xn) (12)

=
1

n
((n− 1)x̄n−1) + xn) (13)

= x̄n−1 +
1

n
(xn − x̄n−1) (14)

Although the updates of equations (9) and (10) are equivalent, the latter

formulation will be useful for us later when we shall look at cases where

the policy changes as we do the evaluation! For those cases we don't want

to take an equally weighted average, but rather gradually forget the early

samples as these are obtained using a potentially quite di�erent policy then

the current one. We shall then look at update equations of the form

V [st]← V [st] + α(Gt − V [st]) (15)

where α ∈ (0, 1). What if our state space is too large to keep such an array,

or the state space is not discrete? We will in those cases resort to function

approximation. We shall often take the approximator to be a neural network

parametrixed by η and will then let vη denote this function. Function ap-

proximation may also be used in cases where we in theory could keep our

estimates in an array, but would like to have the potential generalization

bene�ts that comes with function approximation. With function approxi-

mation updates to one state can potentially bene�t other, similar states. In

cases where we use a function approximator, we can't �assign� the target to

the function in any meaningful way, like we did in e.g. equation (9). We will

instead let the right-hand side be the target for the value of the approximator

at s, i.e. vη(s). We will then make an update of the parameters so to make

this value closer to this target. We de�ne the loss as

l(η) =
1

2

(
Gt − vη(st)

)2
(16)

and we �nd by using the chain rule that the gradient is given by

∇ηl(η) = −(Gt − vη(st))∇ηvη(st) (17)

8

Making an update in the direction of steepest descent gives an update in the

opposite direction of the gradient, i.e.

η = η + α
(
Gt − vη(st)

)
∇ηvη(st) (18)

where α > 0. Note the simliarities between this update and the one in

equation (15). Unlike for that case we cannot however know exactly how

the update a�ects our update vη(st). In addition this update will also a�ect

other states, perhaps also pushing our value estimates at states �similar� to

st towards Gt. We call Gt the target of the Monte Carlo update. The target

certainly provides unbiased estimates of the true value function. This follows

from the de�nition of the value function, E[Gt|st] = vπ(st). Unfortunately

the target may sometimes su�er from high variance. We may need to sample

a large number of episodes in order to reduce the variance to an acceptable

level, especially for states not visited that often.

2.2 Temporal Di�erence

When we looked at the Monte Carlo method above we estimated vπ(s) inde-
pendently for each s6. We treated the values vπ(s) as if they lived in separate

universes. We know that this is certainly not the case however, and will see

that the value of other states will pose very strong restrictions on vπ(s).
Assume we �nd ourselves in state s and take and action a, according to our

policy π. We get an immediate reward r and end up in a new state s′, where
vπ(s′) gives us the expected future reward from there. We might be unlucky

and �nd ourselves worse o� then our current expectations. By this we mean

that from the perspective of our new situation, we expect to get less total

reward from state s, i.e. r + γvπ(s′) < vπ(s). The reason for this might be

due to randomness in our policy, in the environment, or both:

� In case of a stochastic policy, our action a ∼ π(s) may turn out to be

one of the worse actions of our policy.

� The action a produced a lower immediate reward then usual or we

happened to transition to an unusually bad state.

Another time the luck is on our side and the future suddenly looks

brighter, i.e. r + vπ(s′) > vπ(s). On average however we should expect

6With function approximation it is not completely independent, but the coming argu-

ment still applies.

9

that our estimate remains the same, we should neither expect to be posi-

tively nor negatively surprised. This consistency is what is captured in the

Bellman expectation equations. We have that

vπ(st) = Eπ[Rt+1 + γvπ(St+1)] (19)

=

∫ ∫ ∫
π(a|st)p(r, s′|st, a)(r + γvπ(s′))ds′drda (20)

Notice how equation (20) summarizes our intutiton from above. When we

average out the randomness that comes from either our action, next state or

immediate reward, the estimates from the point of view of the future should

be consistent with our current estimate. This gives us a necessary condition

that our value function must satisfy, and we should somehow be able to take

advantage of this when we estimate the value function. In fact the situation

is even better, as long as γ < 1 it is indeed a su�cient condition7.

Let's see if we can now try to make our value function estimates satisfy

the equations of (20). Let's �rst look at the case with a discrete state space

without function approximation. Assume that we have an array V such that

V [s] contains our current estimate of vπ(s). Assuming we also have a discrete

action space, equation (20) transforms into

V [s] =
∑
a

∑
r

∑
s′

π(a|s)p(r, s′|s, a)(r + γV [s′]) (21)

Imagine if the equation does not hold true, and say that the prediction

of future rewards consistently worsened when taking one step forward from

s. This inconsistency may of course be on either side of equation (21), i.e.

we are too positive to the prospects from state s, or we are in general too

negative to the likely future states we typically �nd ourselves in one step

ahead. In theory one might thus want to change either, or both, sides to

obtain balance. We could e.g. justify our current estimate by increasing our

predictions V [s′] for likely transition states s′. If these then indicated being

too optimistic, we could justify these again by increasing future prospects.

If our episodes never came to an end, it seems like we in this way could keep

changing our future predictions so that they �t with our early predictions,

and so obtain equality in this way. We will however see that it is not so.

Assume for now that we are in an episodic environment. All episodes comes

to an end, and we will �nally be held accountable for our predictions. If

7This can be proved by application of Banach's �xed-point theorem.

10

we come to the end of an episode and �gure out our reward estimate was

way too optimistic, we should take this reality into account and update our

beliefs based on it. The ending of episodes provides potential grounding

of our estimates and may prevent us from creating consistent, but fantasy

predictions. The information must necessarily be propagated backwards from

the �nal state, as there are no future states. This tells us that we should thus

update the left-hand side of equation (21) in terms of the right-hand side,

so that we update the state in terms of grounded future states, propagating

the grounding backwards in time.

In the case of general environments with γ < 1, we argue in Section 7.1

that this basically also forces us to only consider a perhaps long, but �nite

future. It indeed forces us to ground our reward estimates in the �near �

future as argued in the appendix. With γ = 1 in continual environments

we get into trouble because we neither get the grounding the episode end

provides, nor from the myopic world view the discount-factor forces upon us.

Anyway, the arguments given were only to give some intution why it

makes sense to update the left-hand side over the right-hand side. The math

tells the same story and doing it the other way will in general not give

convergence. In fact we can come up with a single-state MDP with γ < 1
that gives divergence in that case, perhaps you can think of such?

Let us now move on to see how we can actually make the updates. If we

knew the dynamics of the environment, i.e. p(r, s′|s, a) from above we could

turn the equation (21) directly into an update of every state by

V [s]←
∑
a

∑
r

∑
s′

π(a|s)p(r, s′|s, a)(r + γV [s′]) (22)

We can not assume this in general though and shall instead resort to

methods based on sampling, as was the case for the Monte Carlo methods

above. Note that again sampling-based updates a�ects our update scheme

in two quite di�erent aspects. Firstly it a�ects how we update a certain

state s, as we need to sample the right-hand side instead of taking the full

expectation. Secondly, it a�ects which states and in what order we update

them. We may not be able to magically put ourselves in any state s and

then update that state. Instead we will in general we can only update the

states we happen to visit as we interact with the envirionment. We shall in

general sample the states we update by following our policy π, as we ususally
do for Monte Carlo. Unlike with Monte Carlo, however, we shall not assume

an episodic environment, and we will look at methods that update after

each step, i.e. online methods. By moving one step forward we obtain an

unbiased sample R + V [S′] of the right-hand side of (22). As this is only a

11

single sample however, we shall not trust it completely by overwriting the

old value. Instead we will do an incremental update of the form

V [st]← V [st] + α((Rt+1 + γV [St+1])− V [st]) (23)

We here call Rt+1 + γV [St+1] the TD-target. Generally Rt+1 + γv̂π(St+1) is
the TD-target for a value function estimator v̂π.

Let's now see how we can make updates when we use function approx-

imation for the value function. If we implement the value function with a

di�erentiable model parameterized by η, we may de�ne a loss function l

l(η) =
1

2

(
(Rt+1 + vη(St+1))− vη(st)

)2
(24)

In the spirit of updating the left-hand side towards the right-hand side, we

shall in taking the gradient assume the parameters η of the TD-target to be

constant. Let η′ be a constant copy of η, then

∇ηl(η) = −
(
(Rt+1 + vη′(St+1))− vη(st)

)
∇ηvη(st) (25)

and following the direction of steepest descent gives an update rule

η = η + α
(
(Rt+1 + vη′(St+1)− vη(st))

)
∇ηVη(st) (26)

Notice the similarity of the updates in (23) and (26), to the corresponding

Monte Carlo updates in equations (15) and (18). The only change is that

the target we update towards is Rt+1 + v̂π(St+1) instead of Gt, where v̂π is

either the array V or function vη from above. The target for the TD-method

often has much lower variance than the Monte Carlo target. The only issue

is that the target is generally not correct in expectation, i.e.

Eπ[Rt+1 + v̂π(St+1)] 6= Eπ[Rt+1 + vπ(St+1)] = vπ(st) (27)

where the last equality follows from the Bellman equations. This shows that

the TD-target introduces some bias. This bias is not enough to throw us

o� convergence at least in the case without function approximation. With

function approximation there are known theoretical divergence issues, but it

may very well converge in practice.

What about the case of the action-value function? The same reasoning

that led us to believe that there must be some relations between the values

vπ(s) of the state-value function, should lead us to the same conclusion for

12

the action-value function. Assume that we �nd ourselves in state st and
choose action at. As a consequence we observe a reward r and state s′. Our
expected future reward from state s′ is vπ(s′). Again we should have that

the estimate before the action was applied qπ(st, at) should on average be

consistent with the estimate we get after observing the environment response,

r + γvπ(s′). We have

qπ(st, at) =

∫ ∫
p(r, s′|st, at)(r + γvπ(s′))ds′dr (28)

To get a recursive relation, we want to write this in terms of q though.

This is possible as by equation (7) we have vπ(s) =
∫
π(a|s)qπ(s, a)da. We

thus get the relation

qπ(st, at) =

∫ ∫
p(r, s′|st, at)(r + γ

∫
π(a′|s′)qπ(s′, a′)da′)ds′dr (29)

=

∫ ∫ ∫
p(r, s′|st, at)π(a′|s′)(r + γqπ(s′, a′))ds′drda′ (30)

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = st, At = at] (31)

Although the recursive relations in (20) and (30) look remarkably similar,

there is an important di�erence when it comes to sampling their right-hand

side. In case of the state-value function we �rst sample and action a ∼
π(s) and then observerve the response of the environment through r and

s′. When sampling (29) we �rst sample the environments response r and

s′, and then we sample an action a′ ∼ π(s′). As there is no randomness

to the result of our action sample, the value is given by q(s′, a′), we may

actually integrate it out and avoid sampling the action altogether. If this is

worthwhile depends on the computational cost of this integration. For each

of the TD-update equations for the state-value function we then have two

di�erent versions for the action-value function; depending if we choose to

integrate out randomness of our action or not. The corresponding update to

(23) has the two versions

(a) Q[s, a]← Q[s, a] + α
(
(R+

∑
a′

π(a′|S′)Q[S′, a′])−Q[s, a]
)

(32)

(b) Q[s, a]← Q[s, a] + α
(
(R+Q[S′, A′])−Q[s, a]

)
(33)

and (26) transforms into the options

(a) η ← η + α
(
(R+

∫
π(a′|S′)qη(S′, a′)da′)− qη(s, a)

)
∇ηqη(s, a) (34)

(b) η ← η + α
(
(R+ qη(S

′, A′))− qη(s, a)
)
∇ηqη(s, a) (35)

13

Again we have assumed the parameters in the target to be constant when

taking derivatives.

2.3 TD(λ)

Monte Carlo evaluation had no bias, but high variance, while temporal dif-

ference learning had lower variance at the cost of some variance. In some

respects this are at di�erent ends of the bias-variance trade-o�. It turns out

that there is a whole spectrum of trade-o�s in-between. There is also an

elegant method in which we can smoothly change the trade-o� by varying a

single real-valued parameter. This technique is called TD(λ). We will not

cover this method here, but encourage the eager reader to look it up.

3 Control - �nding the optimal policy

Given any initial state s the goal of the agent is to maximize the expected

return, i.e. design a policy π such that

vπ(s) = maxπ′vπ′(s) (36)

for all states s.
How can we �nd a policy π with a high expected reward? As usual we

shall treat problem as an iterative optimization problem, where we have an

initial policy π0 which we gradually try to improve. The optimization how-

ever will not be as straightforward as for the case with supervised learning.

For supervised learning we had targets that told us what the desired output

was. This allowed us to create a di�erentiable loss function and we could use

stochastic gradient descent for the optimization. For reinforcement learning

we don't have targets for the outputs of π. The reward for an episode gives

us some overall feedback for the actions we performed, however. A high

reward may indicate that the choices we made were pretty good. We may

then decide to update the policy to increase the probability of the actions

taken. An issue is however that the reward doesn't tell us which actions were

good. We might be tempted to believe that an action at that gets a high

immediate reward rt from state st is a good action. We need to remember

however that actions we take now also a�ects future states and rewards. The

action may not look so good anymore if it comes at the cost of a much higher

reward later. One of the major problems in reinforcement learning is to as-

sign credit to the actions for their contribution to the sparse reward signal,

i.e. to �gure out which actions were responsible for the high or low reward.

14

Another interesting aspect with reinforcement learning is that for some en-

vironments it may not be immediately clear if a reward is good or not. Even

a high positive reward may not be impressive if we could potentially get a

much higher reward. On the other hand, a small negative reward may be

great if all rewards are negative. In these cases we will also need to try to

learn the distribution of rewards to �gure out what we can consider a good

or bad reward. For most of the problems that we will look at it is the credit

assignment problem that will be the greatest challenge. There are, however,

some problems in reinforcement learning, e.g. the multi-armed bandit, which

soley concern themselves with the distribution problem.

As a �nal thought is important to keep in mind that an action can rarely

be seen as good or bad on its own, we need to consider it together with

the rest of the policy. A good move for an expert chess player that leads

to a quite complicated position, but eventually will pay o� after a series of

follow-up moves, may not work out well for a novice player who does not

know how to proceed. As the novice improves his play, eventually it may

become a good move for the novice as well. It is thus the policy as a whole

that may be considered good or bad, not the individual actions.8 When we

later in this chapter refer to good and bad actions, this should then not be

interpreted as a statement about the action on its own, but also how it �ts

with the rest of the policy.

3.1 Policy gradient - policy based control

Or �rst approach for solving the reinforcement learning problem will be the

most direct one. We will start by creating a parametrized space of policy

functions πθ, θ ∈ Θ. By varying θ we get di�erent policies with di�erent

expected rewards. Our problem is then reduced from that of (36) to

πθ∗ = argmaxθEπθ(G0) (37)

Of course we have Eπθ∗ (G0) ≤ Eπ∗(G0). As we in general may not able to

cover all possible policies within our parametrized family, the inequality will

often be strict. However, at least we have reduced the problem to something

that looks more manageable. If we implement πθ as a neural network we

may usually increase the capacity of our policy family if necessary. We shall

assume that πθ is a di�erentiable function of θ.

8No rules without exception though, there can of course be cases where one move really

is better than another. E.g. if two actions leads to the same next state, but only one of

the actions gives a reward.

15

We shall approach the problem in equation (37) by imitating the standard

optimization approach in supervised learning with di�erentiable parametrized

models. Let's start by refreshing our memory on how that worked. During

training we have our input-target pair (X,Y), a parametrized function fθ
which predicts Y from X, and a di�erentiable loss function l measuring how

far away our prediction were from the target. The problem we want to solve

is

min
θ
E(l(f(X; θ), Y)) (38)

In order to proceed with our gradient descent optimization, we then need

to �nd the gradient of equation (38) with respect to θ. If we had a �nite

number of pairs, as is often the case for supervised learning, we could in

theory calculate the full gradient. In practice we usually approximate the

gradient using only a small number of sampled pairs, as this is may provide a

su�ciently good estimate at a much lower computational cost. We will now

show how we can get an unbiased estimate of the gradient with respect to

the full distribution of (X,Y). We shall use the trick of �derivation under the

integral sign�. You may assume this to be valid for all integrals encountered

in this chapter, though we refer the the uneasy reader to Section 7.2 for some

justi�cations. We have

∇θE(l(f(X; θ), Y)) = ∇θ
∫ ∫

p(x, y)l(f(x; θ), y)dxdy (39)

=

∫ ∫
∇θ(p(x, y)l(f(x; θ), y))dxdy (40)

=

∫ ∫
p(x, y)∇θl(f(x; θ), y)dxdy (41)

≈ 1

N

N∑
i=1

∇θl(f(xi; θ), yi) (42)

We will now see if can carry this approach over to the reinforcement

learning problem. We shall only derive the method in the case of episodic

environments, but we will in Section 3.3 see a version that can also be

applied for continual learning. Let z denote an arbitrary episode, z =
(s0, a0, r1, s1, , aτ−1, rτ , sτ) where sτ is a terminal state. We de�ne r(z) to

be the total reward for the episode, i.e. r(z) =
∑τ−1

t=0 γ
trt+1. We can then

16

write the expected return Eπθ(G0) as9

Eπθ(G0) =

∫
p(z; θ)r(z)dz (43)

To follow the same approach as for the supervised learning case we next

want to �nd a way to approximate the gradient of the expected reward with

respect to our parameters θ.10 We have

∇θEπθ(R) = ∇θ
∫
p(z; θ)r(z)dz (44)

=

∫
∇θp(z; θ)r(z)dz (45)

Now we start getting into trouble. The distribution is not constant with

respect to the variables θ, which we are taking the derivatives with respect to,
and thus we can't factor it out as before. If we go back and look at equations

(40) - (42), we see that this was what put us in position to approximate the

integral by sampling. Here we see the e�ect of a di�erence we pointed out

between supervised learning and reinforcement learning in the introduction;

with reinforcement learning our actions a�ect the data distribution itself. So

is this the end of the road then? Is the policy gradient method restricted to

the simple cases where we are able to evaluate the integral analytically? Not

so fast.

For a function f of one variable, we have by the chain rule that

d

dx
log f(x) =

d
dxf(x)

f(x)
(46)

We may easily verify that this translates to a function of several variables

θ as

∇θ log f(θ) =
∇θf(θ)

f(θ)
(47)

and thus we we that ∇θf(θ) = f(θ)∇θ log f(θ). This is known as the log-

derivative trick. Using this we get that

9We of course also have Eπθ (G0) =
∫
p(r; θ)rdr, but it is less clear how to proceed

from there.
10For now we shall assume that this exists!

17

∫
∇θp(z; θ)r(z)dr =

∫
p(z; θ)∇θ log p(z; θ)r(z)dr

We now see that we have been able to get a factor p(z; θ) outside the gradient.
This is good news as we know how to sample from p(z; θ), this is just episodes
generated by following policy πθ. We can thus approximate the gradient by

sampling episodes using our policy πθ

∇θEπθ(G0) ≈ 1

N

N∑
i=1

∇θ log p(zi; θ)r(zi) (48)

It remains to show that p(z; θ) is actually di�erentiable with respect to

θ, and hopefully get an expression for ∇θ log p(z; θ) which we can compute

e�ciently. We will accomplish this by choosing an appropriate factoriza-

tion11 of p(z; θ), where all factors are either applications of πθ or factors that
are constant with respect to θ. As we have assumed that πθ is di�erentiable
with respect to θ, the result will follow. We shall use a factorization that

is natural with respect to how the episode unfolds or is generated. For an

episode (s0, a0, r1, s1, . . . , aτ−1, rτ , sτ) to take place we must �rst start with

the initial state s0. Then for t = 0, . . . , τ − 1 we must have

1. Given st we follow up with action at, i.e. at is drawn from πθ(st). The
probability for this is πθ(at|st).

2. The environment rewards the agent with rt+1 and returns a new state

st+1, which has probability p(rt+1, st+1|st, at).

Let us denote by ht = (s0, a0, r1, s1, . . . , at−1, rt, st). We can write this

11We will use that p(x, y) = p(x)p(y|x) = p(y)p(x|y). We already see that for two vari-

ables, there is no unique factorization. With n variables we may factorize p(x1, x2, . . . , xn)
as p(xσ(1))p(xσ(2)|xσ(1))p(xσ(3)|xσ(1), xσ(2)) · · · p(xσ(n)|xσ(1), xσ(2), . . . , xσ(n−1)), where σ
is any permutation of {1, 2, . . . , n}.

18

factorization as

p(s0, a0, r1, s1, . . . , aτ−1, rτ , sτ ; θ) (49)

=p(s0)
τ−1∏
t=0

p(at|ht; θ)p(rt+1, st+1|ht, at) (50)

=p(s0)
τ−1∏
t=0

πθ(at|ht)p(rt+1, st+1|ht, at) (51)

=p(s0)

τ−1∏
t=0

πθ(at|st)p(rt+1, st+1|st, at) (52)

where we in the next to last step used that the probability of the next

action is given by our policy. In the �nal step, we used our assumptions

that both the agent and the environment only uses st and not the whole

history to determine the future. Note that there is no dependency on θ in

p(rt+1, st+1|st, at). The environment only depends on our policy, and thus

θ, through the actions it produces. As we have already conditioned on the

actions, the policy does not have any more in�uence on these probabilities.

The environment doesn't know what policy produced the actions, neither

does it care, when it decides on its reward rt+1 and next state st+1. The

probability in (52) is as argued above clearly di�erentiable with respect to

θ. As z was arbitrary, this show that this is true for all sequences z. We will

now �nd an expression for the derivative of the log-likelihood ∇θ log p(z; θ).
As the product in (52) turns into a sum, we have

∇θ log p(z; θ) (53)

=∇θ log
(
p(s0)

τ−1∏
t=0

πθ(at|st)p(rt+1, st+1|st, at)
)

(54)

=∇θ
(

log p(s0) +

τ−1∑
t=0

log πθ(at|st) +

τ−1∑
t=0

log p(rt+1, st+1|st, at)
)

(55)

=

τ−1∑
t=0

∇θ log πθ(at|st) (56)

as the gradients of all the constant terms (with respect to θ) are zero. Our
approximation of the gradient then becomes

∇θEπθ(G0) ≈ 1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)r(i)

)
(57)

19

where we have made the dependency of the actions, rewards and states on the

episode explicit by a superscript, where r(i) = r(zi). Following the direction

of steepest ascent, we then get an update

θ ← θ + α
1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)r(i)

)
(58)

Before we move on, let's see if we can get some intuition on the updates for

our policy function πθ. First we note that for each action at, ∇θ log πθ(at|st)
is a direction which increases the probability of choosing at from state st. We

thus see that if we get a positive reward we get a contribution for this term on

θ that increases the future frequencies for action at. Furthermore, the higher

the reward, the bigger the change. If the reward is negative on the other

hand, the direction is turned around, and the term gives a contribution that

decreases the probability of the action. We also see that as we use the sum

of the rewards r(zi), and not the immediate rewards, we will have that either

all terms try to increase the probability of the actions taken in the episode,

or all terms try to decrease the probability of those actions. An intuitive

reasoning may go something like this: If the outcome was good, as measured

by a high reward, the actions taken were probably pretty good. We update

the parameters θ so to increase the probability of those actions so that they

are picked more often. With a negative reward the same reasoning leads us

to update the parameters so that we are less likely to see those actions in the

future. Although this at �rst seems to make intuitive sense, the reasoning

should however also point us to a possible weakness of the policy gradient

method. A single mistake may ruin an until then well played chess game.

On the other hand, even a clear win may contain a few suboptimal moves

the opponent was not able to take advantage of. By treating all actions as

either good or bad12, we completely ignore the credit assignment problem

discussed in the introduction. We will see that we will be able to address

this problem later in Section 3.3 on actor-critic methods.

There is however a couple of quick �xes we can do even before then.

You may have been wondering about why we multiply log πθ(at|st) with the

whole cumulative reward r(zi) and not just the future rewards after action

at has been taken. Clearly action at cannot take credit or blame for any

rewards that happened before the action was taken. Indeed it is so. With a

12The norwegian expression "skjære alle over én kam" seems �tting here.

20

clever trick we can show that

∇θEπθ(G0) = E[
T∑
t=1

∇θ log πθ(at|st)Gt] (59)

≈ 1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)G

(i)
t

)
(60)

Another practical trick we can do is in normalizing rewards. Imagine e.g. if

all rewards were positive, then no matter what we do we will increase the

probability of the sampled actions! At �rst it might sound like this cannot

be correct, how can we improve our policy if this was the case? There is no

fault however as the updates for the actions with high reward will be larger.

Intuitively it is clear however that we will make more updates in the wrong

direction, even though they are correct on average. We would instead like

that unusually low returns were negative so that actions that led to such

an outcome are discouraged; thought where we still have that especially

high returns stay positive. We could solve this problem by subtracting an

appropriate scalar m. In fact we are fully in the right doing so. Recall that

our de�nition of the gradient we have just estimated was

∇θEπθ(G0) = ∇θ
∫
p(z; θ)r(z)dz (61)

If we now subtract a constant m from our return13 we have

∇θ
∫
p(z; θ)(r(z)−m)dz = ∇θ

∫
p(z; θ)r(z)dz −m∇θ

∫
p(z; θ)dz (62)

= ∇θ
∫
p(z; θ)r(z)dz −m∇θ1 (63)

= ∇θ
∫
p(z; θ)r(z)dz (64)

and we thus see that the gradient does not change. Our new gradient esti-

mate then becomes

∇θEπθ(G0) = E[

τ∑
t=1

∇θ log πθ(at|st)(Gt −m)] (65)

≈ 1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)(G

(i)
t −m)

)
(66)

13Note that shifting the immediate rewards rt however would usually get us into trouble,

see problem in Section 5.1

21

This is a poor man's version of what is to come in Section 3.3. We may also

scale the rewards. This is equivalent to a change in the update parameter α,
but scaling the rewards to fall within some �xed range may let us get away

with fewer changes to this parameter across experiments.

3.2 Policy iteration and value iteration - value based control

3.2.1 Policy iteration

Unlike policy gradient our next approach will not be that direct. Instead of

directly optimizing a policy, we will start with the perhaps less ambitious

goal of prediction. Assume that we have used one of the techniques described

in Section 2 to estimate the action-value function qπ(s, a). We saw earlier

that the value-function is a weighted average of the state-action function,

where we average actions with weights given by our policy, i.e.

vπ(s) =

∫
π(a|s)qπ(s, a)da

Lets �x a state s′ ∈ S. Just among the actions where π(a|s′) > 0 we must

have at least one action a such that qπ(s′, a) ≤ vπ(s′) and an action a′ such
that qπ(s′, a′) ≥ vπ(s′) (why?). If we look at all actions we may typically

have some actions a such that qπ(s′, a) < vπ(s′) and some actions a′ such
that qπ(s′, a′) > vπ(s′). It thus seems that from a given a state s′ there are
some actions that promises a better future than others. If you were given

the option to deviate from the policy π this one time, what would you do? It

is tempting to choose a′ = argmaxaqπ(s′, a). Our expected future rewards

are certainly no worse than what we could have gotten following our policy,

i.e. qπ(s′, a′) ≥ vπ(s′) and quite possibly better. It thus seems like we can

increase our rewards by sometimes deviating from our policy. Intuitively it

seems like if it makes sense to choose a′ from state s′ once, it should make

sense to this every time, as we each time �nd ourselves in the same situation.

This would correspond to a policy change, de�ning a new policy π′ such that

π′(a|s) = π(a|s) for all s 6= s′ and π′(s′) = a′ (i.e. we deterministially

choose a′ from s′ under π′). Before you implement this policy change you

may suddenly have seconds thought however. We know for sure that it was

a good idea to pick a′ from s′ if we were to follow policy π from then on.

When we change the future actions as well, we might imagine that it wasn't

such a great idea after all. We shall soon let all your worries come to rest,

and see that your initial intuition were entirely correct. What we shall prove

though is the case where we take the tactic above to the extreme, so that we

22

de�ne our new policy

π′(s) := argmaxaqπ(s, a) (67)

for all s ∈ S, then

π′ ≥ π (68)

Furthermore if π′ = π, in the sense that vπ′ (s) = vπ(s) for all s ∈ S then

π = π∗. This is called the policy improvement theorem. A proof of the �rst

part can be found in Section 7.3.

The policy improvement theorem then tells us one way we could improve

our policy. After we have our improved policy π′ we may estimate its value

function qπ′ . As there is no reason to believe that this new policy is optimal,

we may apply the same improvement step outlined above to qπ′ . This alter-
nation between prediction and control leads to an algorithm which we call

policy iteration. Assume that we have an initial policy π0. For i = 0, 1, 2, . . .
repeat the following two steps

1. Policy evaluation Estimate the value function for policy πi.

2. Policy improvement De�ne a policy πi+1 by acting greedily with

respect to the value function estimated in the previous step.

For the �rst step we may use any of the sampling based approaches

introduced in Section 2. The second step is easily accomplished if we have a

�nite action space with a manageable number of states, as the optimization

problem in (67) is simply picking the largest number in a small set. In other

cases it may be prove more challenging however. Note that we need not

actually store the policies πi+1 as it is implicitly de�ned through qi. There is
only one problem with the discussions so far. We have assumed that in the

�rst step we are able to fully �gure out the state-value function qπ(s, a). It
turns out that when we use sampling-based approaches, which not necessarily

update all state-action pairs, the approach may actually break down and we

may get stuck with a suboptimal policy. We need to keep exploring to make

sure that we don't prematurely rule out an action a even though our initial

estimate of q̂(s, a) is low. In the case of a �nite action space a simple way

to make sure that we keep visiting all state-action pairs is to pick a random

action ε of the time, choosing the greedy policy the rest of the time. The

policy iteration method for this case becomes

1. Policy evaluation Estimate the value function q̂πi

23

2. Policy improvement De�ne a policy πi+1 by acting ε-greedily with

respect to q̂πi

πi+1(a|s) =

{
1− ε+ ε/K for a =argmaxa′ q̂πi(s, a

′)

ε/K else

In practice we often do not even attempt to estimate qπi very accurately

at each iteration. The policy evaluation may be a very expensive operation

to have in an inner loop, and we might not want to to spend too much

time evaluating a policy we are about to change anyway. We may also get

policy improvement as long as the relative estimates are somewhat correct,

even though the value estimates themselves are not. How much time to

spend on policy evaluation between policy improvements may be treated as

a hyperparameter of the algorithm.

3.2.2 Value iteration

We have so far learned about the Bellman expectation equations, which led

to an algorithm for policy evaluation through temporal-di�erence learning.

They do however also exist in another form, the Bellman optimality equa-

tions14, which will lead to an algorithm for policy optimizing. The Bellman

optimaliy equations will not try to estimate the value function for a given

policy, but try to directly estimate the optimal value function! If we let v∗
denote the optimal value function, the Bellman optimality equations for the

optimal state-value function v∗ are

v∗(s) = max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a] (69)

= max
a

∫ ∫
p(r, s′|s, a)(r + γv∗(s

′))ds′dr (70)

As usual we shall often �nd the action-value function more convenient to

work with in settings with an unknown environment. The Bellman optimal-

ity equations for q∗ are

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a] (71)

=

∫ ∫
p(r, s′|s, a)(r + γmax

a′
q∗(s

′, a′))ds′dr (72)

14This is indeed usually the form implied when only the term Bellman equations is used

24

Note that given q∗ the optimal policy is given by π∗(s) = argmaxaq∗(s, a).
We may think of value iteration as combining the two steps of policy itera-

tion into a singe one! If we knew the dynamics of the environment we could

turn either of the equations above into an update equation. In Section 2.2

we argued in the context of the Bellman expectation equations we should

update the left-hand side in the term of the right-hand side. It turns out

that this is also the right thing to to for the Bellman optimality equations.

As we usually do not know the environment dynamics, we will generally need

to sample the right hand side. To be concrete we shall �rst look at the case

with discrete state and action spaces without function approximation (where

we store estimates in an array or table). The equation (71) transforms into

the update

Q[s, a]← Q[s, a] + α((R+ max
a′

Q[S′, a′])−Q[s, a]) (73)

With function approximation we have the update

λ← λ+ α
(
(R+ max

a′
qη(S

′, a′))− qη(s, a)
)
∇ηqη(s, a) (74)

What we have not yet discussed is which policy we should use to sample

our actions. It is interesting to compare the updates in (73) and (74) to the

TD-updates for policy evaulation in equations (32) and (34). It is like we are

doing policy evaluation with respect to the policy π(s) = argmaxaq̂∗(s, a)15.
This should perhaps suggest that we should use this policy to sample actions.

As we are actually not doing policy evalution, but policy optimization, this

unfortunately su�ers the same issues that the greedy update of policy it-

eration. Due to our incomplete knowledge of the environment we need to

explore. We may apply the same �x as for policy iteration, though, take the

greedy action with probability (1− ε) and sample a random action the rest

of the time.

3.3 Actor-critic - policy and value based control

Recall the policy gradient estimate from Section 3.1

∇θEπθ(G0) = E[
T∑
t=1

∇θ log πθ(at|st)Gt] (75)

≈ 1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)G

(i)
t

)
(76)

15Note that we can write maxa′ q̂∗(S
′, a′) = q̂∗(S

′, argmaxa′ q̂∗(S
′, a′))

25

If the reward Gt following action at is positive we make an update to increase

the probability of the action. The more positive it is, the more we try to

increase it. If the reward is negative, we make an update to decrease the

frequencey of action at from state st. Thus Gt in somes sense act as a

critic judging the goodness of the actions of the actor. The actor listens to

the critic when adjusting his policy, incresing or decreasing its probabilities

depending on the evaluation of the critic. The critic Gt on average brings us

in the right direction, but has potentially very high variance. E.g. if we have

only positive rewards this critic will always judge any action to be good,

which will necessarily make many of our updates go in the wrong direction.

We introduced at the end of Section 3.1 of a simple �x to this overly positive

critic. This only touched the surface of the problem, however. A series of

actions that leads to a miraculous save from a seemingly hopeless situation

should probably get a good evaluation, even if we don't end up with a high

reward. We should thus take into account our expectations from a particular

situation. Intuitively we would like to increase that probability of actions

that give better outcomes than we get on average following our policy. E.g.

if we take action a from state s and observe the reward Gt to be quite a

bit higher than what we typically get, vπ(s), it seems reasonable that we

should increase the frequency of action a from state s. This thus gives rise
to the critic Gt − vπ(st). As the value function vπ is not given to us, we

must estimate it, which will introduce some bias in our critic. Our gradient

estimate then becomes

∇θEπθ(G0) = E[
T∑
t=1

∇θ log πθ(at|st)(Gt − vπ(st))] (77)

≈ E[
T∑
t=1

∇θ log πθ(at|st)(Gt − v̂π(st))] (78)

≈ 1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)(G

(i)
t − v̂π(st))

)
(79)

Although this critic captures most of the properties that we would like a

critic to have, it still su�ers from the high variance of Gt. A critic, similar in

spirit but with lower variance, is (Rt+1 + γvπ(St+1))− vπ(s). We only look

one step ahead, and see if our situation has improved or not. Our gradient

estimate is then

26

∇θEπθ(G0) = E[
τ∑
t=1

∇θ log πθ(at|st)((Rt+1 + γvπ(St+1))− vπ(st))] (80)

≈ E[

τ∑
t=1

∇θ log πθ(at|st)((Rt+1 + γv̂π(St+1))− v̂π(st))] (81)

≈ 1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)((R

(i)
t+1 + γv̂π(S

(i)
t+1))− v̂π(s

(i)
t))

)
(82)

Actor-critic methods naturally alternates between policy updates, updating

π, and policy evaluation, updating v̂π, and may be viewed as generalized

policy iteration methods. For policy evaluation we might use any of the

methods presented in Section 2.

4 Conclusion

Reinforcement learning is a very elegant framework and many learning prob-

lems can naturally be stated as a reinforcement learning problem. One of the

really appealing properties about reinforcement learning is that it can poten-

tially learn without direct supervision. For supervised learning the problem

we are really concerned with is imitation. We try to copy and also generalize

based on examples. It is a problem that at least someone already knows how

to solve. If we had a huge database of chess games of expert players, we

could use supervised learning to try to copy their behaviour. The supervised

learning problem is not trivial as it would have to make intelligent general-

izations to make good moves for board positions never seen during training.

If we succeed we would probably get a pretty decent chess player. However

as the goal was to imitate, it will also inherit the same imperfections as the

human chess players had. With reinforcement learning, however, we try to

learn an optimal policy. Not only does it require no supervision at all, it can

go beyond the capabilities of any human.

Unfortunately reinforcement learning has some obstacles that may com-

plicate or prohibit its use. First of all the trial-and-error based learning

approach taken in reinforcement learning may be both challenging and com-

putationally very expensive. Furthermore for many learning problems it may

be hard to create a suitable environment for the agent to learn in. We can't

just put a self-driving car out in the street, and give it a negative reward

27

every time it runs over a human. Providing virtual environments through

simulation could in many cases be an acceptable solution. Creating realistic

enough virtual environments may however be too di�cult or too expensive

for some applications. Think about a robot that needs to interact with hu-

mans. To make the simulation realistic we would have to be able to fully

simulate human behaviour! You should hope that realistic enough for your

application may be satis�ed by much cruder models of human beings. Last,

but not least, designing the appropriate reward function may be challeng-

ing in many real-world scenarios. It can be very di�cult, if not impossible,

to capture every expectation we have of the agent into a reward function.

We may end up putting too much emphasis on the things that are easy to

measure. One of the stated advantages of reinforcement learning is that we

don't have to specify how the agent solves to problem. This may however

make the model unpredictable and given an imperfect reward function we

may �nd that we don't really like the how ! An intersting blog post both

illustrating the problem and suggesting ways to counteract it can be found

at https://blog.openai.com/faulty-reward-functions/.

5 Problems

5.1 Shifting rewards

Normalizing rewards in episodic and non-episodic environments. . . The

questions here shall be

5.1.1 Problem

Assume that you are in an episodic environment. What happens if you shift

all rewards rt by subracting a positive constant m, i.e. r′t = rt −m are our

new rewards? What happens if you do the same in a continual environment?

5.2 Discount factor

5.2.1 Problem

Imagine you try to learn the agent to play a game, e.g. chess, with very high

discounting, e.g. γ = 0.5. What di�erence in learned behaviour would you

expect to see as a result of the high discounting factor?

28

https://blog.openai.com/faulty-reward-functions/

6 Bibliography

References

7 Appendix

7.1 The purpose of the discount factor

Why do we sometimes discount future rewards with a factor γ ∈ (0, 1)? The

reward is then

Gt =

∞∑
k=0

γkrt+k+1 (83)

The question really contains two questions.

1. Why do we introduce a function g(k) where g(k) ∈ (0, 1] for k ∈ N and

g(k)→ 0 as k →∞ such that

Gt =

∞∑
k=0

g(k)rt+k+1 (84)

?

2. Why do we let g(k) = γk, γ ∈ (0, 1)?

The �rst is that we for some reason value rewards now more than later.

It might be argued that the future is uncertain, we might not even live

tomorrow, so it's better to take a sure thing now.

The answer to the second question is twofold, where the �rst answer also

complements the answer to the �rst question! Firstly, having a function

g(k) such that liml→∞
∑∞

k=l(k) → 016 is very convenient for dealing with

continual learning, i.e. non-episodic environments. Assuming we have a

bounded rewards, which we usually do, we e�ectively create �nite episodes!

Let M be the bounds for our rewards. Now for any ε > 0 we can choose

l such that
∑∞

k=l g(k) < ε. We now split the future rewards into two, the

rewards we get before time t+ l and the rewards from then

Gt =

l−1∑
k=0

g(k)rt+k+1 +

∞∑
k=l

g(k)rt+k+1 (85)

16To see that g(k) = γk satis�es this, we note that
∑∞
k=l γ

k = γl
∑∞
k=0 γ

k = γl 1
1−γ → 0

as γl → 0 as l→∞.

29

If we look at the second term we see that

|
∞∑
k=l

g(k)rt+k+1| ≤
∞∑
k=l

g(k)|rt+k+1| ≤
∞∑
k=l

g(k)M = M
∞∑
k=l

g(k) ≤Mε (86)

As ε was arbitrary we see that we may make the second term as small as we

would like. We can thus reduce the problem of maximizing
∑∞

k=0 g(k)rt+k+1

to that of maximizing
∑l−1

k=0 g(k)rt+k+1 with only the possibility of a very

small error.

This doesn't answer the question fully though, why not use a di�erent

function g(k) that satis�es liml→∞
∑∞

k=l g(k) → 0, e.g. g(k) = 1
(k+1)2

? It

turns out however that other functions are not as convenient to work with.

g(k) = γk has the nice property that g(k+ 1) = γg(k) for all k. This is very
convenient and allows us to get nice recursive relationships independent of

time. It turns out that only functions that has the property g(k+1) = γg(k)
for all k are functions of the form g(k) = kγk, k ∈ R.

7.2 Derivate under the integral sign

In reinforcement learning we often �nd ourselves in situations where our data-

distribution depends on some parameters θ. When our objective function

depends on this distribution, we often �nd that we would like to �nd the

gradient of the objective function with respect to our parameters. Often the

objective function is de�ned as an expectation, and the gradient function is

of the form

∇θEθ[f(Z)] = ∇θ
∫
p(z; θ)f(z)dz (87)

It is usually not possible to perform the integration, and even harder to get

an analytical solution so to allow us to derive the gradient with respect to

θ. It is then very tempting if we could just

∇θ
∫
p(z; θ)f(z)dz =

∫
∇θp(z; θ)f(z)dz (88)

because of the log-derivative trick we know that∫
∇θp(z; θ)f(z)dz =

∫
p(z; θ)∇θ log p(z; θ)f(z)dz (89)

which is something we can sample from, given that we know how to generate

samples z from p(z, θ). Under what conditions is this operation actually

valid though, if at all?

30

Wemight at �rst try an argument as follows: We know that the derivative

of a sum is the sum of derivatives, i.e.

d

dt

n∑
x=1

g(x, t) =
n∑
x=1

d

dt
g(x, t) (90)

As integration and summation is basically the same, this should also work

with integration. Not so fast! The result above was only for �nite sums, and

it will be the potential unboudedness of the in�nite that may cause issues

for us.

Let g : R× R→ R and assume g is di�erentiable in the second variable.

We want to �nd the derivative of the function h : R → R, where h(t) =∫
g(x, t)dx. This is thus

d

dt
h(t) =

d

dt

∫
g(x, t)dx (91)

By using the the de�nition of the derivative we have

d

dt
h(t) = lim

∆→0

h(t+ ∆)− h(t)

∆
(92)

= lim
∆→0

1

∆

(∫
g(x, t+ ∆)dx−

∫
g(x, t)dx

)
(93)

= lim
∆→0

∫
g(x, t+ ∆)− g(x, t)

∆
dx (94)

If we could only bring the limit inside the integral we would have that∫
lim
∆→0

g(x, t+ ∆)− g(x, t)

∆
dx =

∫
∂

∂t
g(x, t)dx (95)

which would give the desired result

d

dt

∫
g(x, t)dx =

∫
∂

∂t
g(x, t)dx (96)

It turns out that this is sometimes possible, other times it is not. We

shall now look at a su�cient conditions for this to be true, and see that

indeed there is hope for many of the cases we care about.

� Add proof here. . .

31

We shall now look at the case

∇θEθ[f(Z)] = ∇θ
∫
p(z; θ)f(z)dz (97)

where we assume f is bounded, i.e. f(z) ≤M for all z. We have that

∇θp(z; θ)f(z) = p(z; θ)∇θ log p(z; θ) (98)

It is now su�cient to show that | ∂∂θi log p(z; θ)| ≤ L for some L ∈ R. To

show this it is su�cient to show that the function is Lipschitz-continuous,

i.e.

If you want to try to go about and prove this rigoursly, it might be useful

to keep in mind that if g(x) = g(n)(g(n−1)(. . . g(1)(x) . . .)) it is su�cient to

show that each function g(i) is Lipschitz to prove that g is Lipschitz with

respect to x17. The converse is not true, g can be Lipschitz even if not all

the functions g(i) are Lipschitz. If this was not the case we would never have

log p(z; θ) to be Lipschitz! The simple example g(1)(x) = 1x, g(2)(x) = x2,

shows that indeed none of them need to be!

7.3 Proof of policy improvement theorem

We only prove the �rst part, i.e. that de�ning a new policy π′ by acting

greedily with respect to a value function qπ always improves the policy, in

the sense that vπ′(s) ≥ vπ(s) for all s ∈ S. Assume bounded rewards and

discount factor γ < 1. Let s ∈ S. We will prove the result by �rst showing

that from state s we can improve our expected return by picking our inital

step from π′ instead of π. Then we will show that actually it is even better to

take two steps of policy π′ before we switch back to policy π. By an inductive
argument it may then be shown that following π′ for one more step always

improves our expected return. In the limit, we are actually following policy

π′, and as we have just kept improving our prospects it will follow that

vπ′(s) ≥ vπ(s). As s was arbitrary we obtain the desired inequality π′ ≥ π.
Let's now prove each of the steps outlined. The �rst step is easy, clearly

vπ(s) = Eπ[qπ(s,At)] ≤ maxaqπ(s, a) = Eπ′ [qπ(s,At)] (99)

which shows that taking the �rst action according to π′ is a good idea. The

second step will require some more work. We shall �rst show derive a result

17This can be proved by induction.

32

which shall come in handy at least a couple of times. For every s ∈ S and

a ∈ A

qπ(s, a) =Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a] (100)

≤Eπ[Rt+1 + γmax
a′

qπ(St+1, a
′)|St = s,At = a] (101)

=Eπ[Rt+1 + γqπ(St+1, argmaxa′qπ(St+1, a
′))|St = s,At = a] (102)

=Eπ[Rt+1 + γqπ(St+1, π
′(St+1)|St = s,At = a] (103)

=Eπ′ [Rt+1 + γqπ(St+1, At+1)|St = s,At = a] (104)

This also implies the inequality for the random variables below

qπ(s,At) ≤ Eπ′ [Rt+1 + γqπ(St+1, At+1)|St = s,At] (105)

Taking the expectation with respect to π′ and using the law of iterated

expectation

Eπ′ [qπ(s,At)] ≤Eπ′ [Eπ′ [Rt+1 + γqπ(St+1, At+1)|St = s,At]] (106)

=Eπ′ [Rt+1 + γqπ(St+1, At+1)|St = s] (107)

We have now proved that picking our initial two steps according to π′ is a
good idea. We can now proceed by induction. Assume that the inequality

below holds for all n such that 1 ≤ n ≤ m− 1

Eπ[qπ(s,At)] ≤ Eπ′ [
n−1∑
k=0

γkRt+k+1 + γnqπ(St+n+1, At+n+1)|St = s] (108)

We now want to show that it also for n = m. Setting n = m−1 the following

holds true

Eπ[qπ(s,At)] ≤ Eπ′ [
m−2∑
k=0

γkRt+k+1 + γm−1qπ(St+m, At+m)|St = s] (109)

By application of the result obtained through equations (100) - (104), we

have that

qπ(St+m, At+m) ≤ Eπ′ [Rt+m+1 + γqπ(St+m+1, At+m+1)|St+m, At+m] (110)

Note that both the left-hand and right-hand side are random variables, but

for any samples of St+m and At+m the inequality holds true. Inserting this

into (111) we get

33

Eπ′ [
m−2∑
k=0

γkRt+k+1 + γm−1qπ(St+m, At+m)|St = s] (111)

≤Eπ′ [
m−2∑
k=0

γkRt+k+1 + γm−1Eπ′ [Rt+m+1 + γqπ(St+m+1, At+m+1)|St+m, At+m]|St = s]

(112)

=Eπ′ [

m−2∑
k=0

γkRt+k+1 + γm−1
(
Rt+m+1 + γqπ(St+m+1, At+m+1)

)
|St = s]

(113)

=Eπ′ [

m−1∑
k=0

γkRt+k+1 + γmqπ(St+m+1, At+m+1)|St = s] (114)

where the second to last equality follows from the law of iterated expecta-

tions, and the last is simply rearranging. We have just showed the induction

step, which proves that equation (108) holds true for any n. Spitting the

right-hands side into two, and factoring out the γn factor, we have

Eπ[qπ(s,At)] ≤ Eπ′ [
n−1∑
k=0

γkRt+k+1|St = s] + γnEπ′ [qπ(St+n+1, At+n+1)|St = s]

(115)

Taking the limit as n→∞ the inequality

Eπ[qπ(s,At)] ≤ lim
n→∞

(Eπ′ [
n−1∑
k=0

γkRt+k+1|St = s] + γnEπ′ [qπ(St+n+1, At+n+1)|St = s])

(116)

= lim
n→∞

Eπ′ [
n−1∑
k=0

γkRt+k+1|St = s] + lim
n→∞

γnEπ′ [qπ(St+n+1, At+n+1)|St = s]

(117)

where the split can be justi�ed as both sequences are bounded, we are as-

suming bounded rewards and γ < 1. Clearly the right-term converges to

34

zero. Furthermore we may move the limit inside the integral18 to obtain

lim
n→∞

Eπ′ [

n−1∑
k=0

γkRt+k+1|St = s] = Eπ′ [lim
n→∞

n−1∑
k=0

γkRt+k+1|St = s] (118)

= Eπ′ [

∞∑
k=0

γkRt+k+1|St = s] (119)

= vπ′(s) (120)

Recalling our work we have now shown that

vπ(s) = Eπ[qπ(s,At)] ≤ vπ′(s) (121)

which �nishes the proof.

18This is an application of the Dominated Convergence Therem, which is also gives

su�cient conditions on "di�erentiation under the integral sign" as can be read about in

Section 7.2

35

	Introduction
	Prediction - evaluating a policy
	Monte Carlo
	Temporal Difference
	TD()

	Control - finding the optimal policy
	Policy gradient - policy based control
	Policy iteration and value iteration - value based control
	Policy iteration
	Value iteration

	Actor-critic - policy and value based control

	Conclusion
	Problems
	Shifting rewards
	Problem

	Discount factor
	Problem

	Bibliography
	Appendix
	The purpose of the discount factor
	Derivate under the integral sign
	Proof of policy improvement theorem

