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Probability Review
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Probability and Statistics Basics

o Normal (Gaussian) Distribution

p(x) = Wexp {—g (x—p) T (x —u)} = N(g,X)

@ Categorical Distribution

H P

@ Sampling
x ~ p(x)
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Probability and Statistics Basics

@ Independent variables

p(x1, %2, ,xk) = [ [ p(x7)

@ Expectation
Ep)f (x) = / f(x)p(x)dx

or for discrete variables

k
Eppf (X) =D f(xi) P (xi)
i=1
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Kullback Leibler Distance

KL(q (x)[|p (x)) = Eq(x) log [m]

_ / [q () log g (x) — q (x) log p (x)] dx

For the discrete case

KL(Q(x)[[P(x Z[Q(X:)logQ(X/) Q (x;)log P (xi)]
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Bayesian Deep Learning
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Bayesian Statistics

@ Joint distribution
p(x,y)=p(xly)p(y)

@ Marginalization

p(x):/,,(x,y)dy
P(x) = P(x.y)
y

o Conditional distribution

p(x,y) p(ylx) p(x)

(
ply)  [pylx)p(x)dx

p(xly) =
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Statistical view of Neural Networks

@ Prediction

pylx,w) =N (fw(x),X)

@ Classification .

P (ylx,w) =[] fi, (x)V"="

i=1
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Training Criteria

@ Maximum Likelihood(ML)
w=arg max p (Y|X,w)
@ Maximum A-Priori (MAP)
W = arg max p (Y,w|X) =arg max p (Y|X,w) p(w)

o Bayesian

p(YIX;w)p(w) — p(YX,w)p(w)
P(Y|X) ~ [P(Y|X,w)p(w)dw

p(W|Y,X) =
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Motivation for Bayesian Approach

How sure are we of the
output?
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Motivation for Bayesian Approach

/
/

ét o

Narada Warakagoda (FFI) Short title November 1, 2018 12 / 56



Uncertainty with Bayesian Approach

e Not only prediction/classification, but their uncertainty can also be
calculated

e Since we have p (w|Y, X) we can sample w and use each sample as
network parameters in calculating the prediction/classification
p (¥|x,w)) (i.e.network output for a given input ).

o Prediction/classification is the mean of p (¥|x, w)

Pout = P (YIX, Y, X) = /p(?l)?, w)p(wlY,X)dw

o Uncertainty of prediction/classification is the variance of p (y|X, w)
Var(p (717 w) = [ 1o (717, w) — pal” p (] X) dw

@ Uncertainty is important in safety critical applications (eg: self-driving
cars, medical diagnosis, military applications
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Other Advantages of Bayesian Approach

o Natural interpretation for regularization
@ Model selection

@ Input data selection (active learning)
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Main Challenge of Bayesian Approach

o We calculate
e For continuous case:
p(YIX,w)p (W)

PWY-X) = TBIVIX, w) p () dw

o For discrete case:

C p(YX.w) P (w)
PWIY-X) = & VX, wy P (w)

o Calculating denominator is often intractable
o Eg: Consider a weight vector w of 100 elements, each can have two
values. Then there are 2190 = 1.2 x 10% different weight vectors.
Compare this with universe's age 13.7 billion years.

@ We need approximations
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Different Approaches

e Monte Carlo techniques (Eg: Markov Chain Monte Carlo -MCMC)
@ Variational Inference

@ Introducing random elements in training (eg: Dropout)
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Advantages and Disadvantages of Different Approaches

@ Markov Chain Monte Carlo - MCMC

o Asymptotically exact
e Computationally expensive

@ Variational Inference

o No guarantee of exactness
o Possibility for faster computation
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Monte Carlo Techniques

@ We are interested in

Pout = Mean(p (y[x,w)) = p(¥[x, Y, X) = /P(?!?, w)p(wlY,X)dw

Var(p (7%, w)) = / [p (712, W) — poutl® p (W|Y, X) dw

@ Both are integrals of the type

I:/F(w)p(w\D) dw

where D = (Y, X) is training data.
@ Approximate the integral by sampling w; from p (w|D)

L
1
I%L;F(w;).
=
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Monte Carlo techniques

@ Challenge: We don't have the posterior

@ "Solution”: Use importance sampling by sampling from a proposal
distribution g(w)

_ p(w|D) 1 P(WilD)
l_/F(w) e q(w)dWNLiZ::F(w,)q(wi)

@ Problem: We still do not have p (w|D)
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Monte Carlo Techniques

@ Problem: We still do not have p (w|D)

@ Solution: use unnormalized posterior  (w|D) = p (Y|X,w) p(w)
where normalization factor Z = [ P (Y|X,w) p (w) dw such that

p(w|D)

p(wD)="—~

@ Integral can be calculated with:

| ~ Sy F(wi) B (wi|D) /q(w;)
SFy B (wilD) /q(wi)

Narada Warakagoda (FFI) Short title November 1, 2018 20 / 56



Weakness of Importance Sampling

@ Proposal distribution must be close to the non-zero areas of original
distribution p (w|D).

@ In neural networks, p (w|D) is typically small except for few narrow
areas.

Blind sampling from g (w) has a high chance that they fall outside
non-zero areas of p (w|D)

We must actively try to get samples that lie close to p (w|D)
Markov Chain Monte Carlo (MCMC) is such technique.
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Metropolis Algorithm

Metropolis algorithm is an example of MCMC

Draw samples repeatedly from random walk w1 = w; + € where € is
a small random vector, € ~ g(€) (eg: Gaussian noise)

b e Al H B(w¢|D)
Drawn sample at t = t is either accepted based on the ratio B(w, 1]D)

o If p(w¢|D) > p(w¢_1|D) accept sample
o If p(w:|D) < p(w:_1|D) accept sample with probability
o If sample accepted use it for calculating /

B(w:|D)
B(we—1|D)

@ Can use the same formula for calculating /

[~ Siy F(w;) B (wilD) /q(w;)
>i_1 B (wilD) /q(w;)
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Other Monte Carlo and Related Techniques

@ Hybrid Monte Carlo (Hamiltonian Monte Carlo)

e Similar to Metropolis algorithm
e But uses gradient information rather than a random walk.

@ Simulated Annealing
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Variational Inference

@ Goal: computation of posterior p (w|D), i.e. the parameters of the
neural network w given data D = (Y, X)

But this computation is often intractable

Idea: find a distribution g(w) from a family of distributions Q such
that g(w) can closely approximate p(w|D)

@ How to measure the distance between g(w) and p(w|D) ?

o Kullback-Leibler Distance KL(g(w)||p(w|D))

The problem can be formulated as

B(w|D) = arg min KL (a(w)||p(w|D))

Narada Warakagoda (FFI) Short title November 1, 2018 24 / 56



Minimizing KL Distance

@ Using the definition of KL distance
q(w)
KL(g(w w|D :/ w)ln dw
(aw)llpwiD)) = [ a(w)in TS

e Cannot minimize this directly, because we do not know p (w|D)

@ But we can manipulate it further, and transform it to another
equivalent optimization problem involving a quantity known as
Evidence Lower Bound (ELBO)
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Evidence Lower Bound (ELBO)

e Since In p(D) is constant, minimizing KL(q(w)||p(w|D)) is
equivalent to maximizing ELBO
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Another Look at ELBO

ELBO = Eq(w) In

:/q(w)lnp(w,D)dw—/q(w)lnq(w)dw

:/q(w)ln[p(D|w)p(w)]dw—/q(w)ln q(w)dw

:/q(w)lnp(D|w)dw—/q(w)ln ZE:;CJW

= IEq(w)p(,D’W) - KL(q(W)Hp(W))

e We maximize ELBO with respect to g(w)

o First term Eq(,)p(D|w) is equivalent to maximizing g(w)’s ability
explain training data

o Second term KL(g(w)||p(w)) is equivalent to minimizing q(w)’s

distance to p(w
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Outline of Procedure with ELBO

o Start with ELBO

w,D
ELBO = £ = Eg(y) In pc(](w) )~y [Inp(w. D) — Inq(w)]

@ Rewrite with parameter A of g (w) and expand expectation

£(\) = /In[p(w,D)]q(w, \) dw—/ln[q(w, Mg (w, ) dw
e Maximize £(\) with respect to A
A" = arg max L(N)
@ Use the optimized g witn respect to A as posterior
q(w, ") = p(w, D)
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How to Maximize ELBO

@ Analytical methods are not practical for deep neural networks

@ We resort to gradient methods with Monte Carlo sampling
@ We discuss two methods:

e Black box variational inference: Based on log derivative trick
o Bayes by Backprop: Based on re-parameterization trick
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Black Box Variational Inference

@ Start with ELBO:
£0) = [ nlp (w. D)la (w. A)dw [ Inla (w, \lq (w. ) dw
o Differentiate with respect to \.
VAL(Y) = [ Infp (w, D)V, [q (w. \)]dw
~ [ Inla (w, )19 Lq (w ) w
— [ V[l (w. ) q . 3)

@ The last term is zero (Can you prove it?)
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Black Box Variational Inference

@ Now we have
VAL = [ Inlp (w, D)V [q (w. \)]dw
~ [ nla (w, A}V lq (w. V)]
— [ {1 w21 il (w01 9L . )t

@ We want to write this as an expectation with respect to g

@ Use the log derivative trick

V)\[q (Wa )‘)] = V)\[In q (W7 )‘)]q (W> )‘)
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Black Box Variational Inference

@ Now we get
VAL(N) = /In[p (w,D)]Vallng (w,\)]q (w, \) dw
= [ nla (w AVl ) w,3)

@ Rearranging terms

VAL(N) = / [In[p (w,D)] —Ing(w, )\)} Villng(w,N)]g (w, ) dw

@ This is the same as Expectation with respect to g

VAL = B | Il (w. D))~ 1w, )] Tl (. )
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BBVI optimization procedure

Assume a distribution g (w, \) parameterized by A.

Draw S samples of w from the distribution using the current value of
)\ - >\t

o Estimate the gradient of ELBO using the sample values:
S
VAL(A 52; [In[p w®,D)] — Ing (w®,\) | V[ln g (w®, \)]
o Update A .
At+1 = At + pVAL(N)
@ repeat from step 2
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Bayes by Backprop

e Try to approximate ELBO directly by sampling from the g(w, \)
ELBO = L(A) = Eqw,\)[Inp (W, D) —Inq(w, ))]

with s
Z [Inp(w®,D) — Ing(w®,)\)]

s=1

L) =

)

o But we need V,£()\) and we can not differentiate £()\) because it is
not a smooth function of A

@ Use the re-parameterization trick
w® =w(\€%)

where € is drawn from for example a standard Gaussian distribution.
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Bayes by BackProp (BbB)

@ The estimated ELBO now

S
L(\) = %Z [Inp(w(\€),D) —Inq(w()e),\)]

s=1

@ Now this is a smooth function of A and can differentiate
S ~ A
N | 0LsOw 0L

VAL(A) = 5; [8w ox ax]

where £, = Inp (w(\,€%),D) — Ing (w(\,€),))

@ Once the gradients are known, optimum A\* and hence g(w, \*) can
be found by gradient descent.
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Performance of BBVI and BbB

@ Both methods estimate approximate gradients by sampling
@ High variance of the estimated gradients is a problem

@ In practice, these algorithms need modifications to tackle high
variance

@ BbB tends to have a lower variance estimates than BBVI
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Bayesian Deep Learning through Randomization in

Training

@ Stochastic gradient descent and Dropout can be given Bayesian
interpretations
@ Dropout procedure in testing can be used for estimating the
uncertainty of model outputs (Monte Carlo Dropout).
e Enable dropout and feed the network S times with data and collect the
outputs f(s), s=1,2,---,S
o Output variance = ¢ > (f(s) — f(s))? where f(s) = T3 f(s)
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Restricted Boltzmann Machines

Narada Warakagoda (FFI) i November 1, 2018 38 / 56



Stochastic Neurons

Z1
Yy

Io Wso + ]

L3
b

Ativation Function

Deterministic Neuron Yy = cr(b + Zz wzzri)

Stochastic Neuron ply=1)=o(b+ >, wix;)

@ We consider stochastic binary neurons, i.e. y can be either 1 or 0

ply=1)=o(b+ Z Wix;)

1

ply=0)=1-p(y=1)
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Boltzmann Machine
blﬁ;{)*’—’ v

Y1
w2 = Wy, Y2
b2 g 2T T Yy —
® 5_le Y3
b3 ~ Y3
Undirected Graphical Model

Stochastic Recurrent Neural Network

@ A Boltzmann machine is a recurrent network with stochastic neurons
@ Weights are symmetrical

@ At the equilibrium, the relationships of the neuron outputs can be
represented using an undirected graphical model
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Restricted Boltzmann Machine (RBM)

}-Ll h,2 h3 h4
‘/'blxj P Pty

(bs) ;’bS ) 54‘} Hidden units

WW — {w.,)

A0

fer) (c2)  [e3)
& &)

U1 1}2 U3

Visible units

Neurons are divided into two groups: Visible and Hidden

Restricted architecture: No connections within visible group or hidden
group
Network parameters:

e Bias vector hidden units, b = [by, bo, - - - , by]

e Bias vector visible units, ¢ = [c1, ¢, - , cv]

o Connection weights, W = {w; ;}

o Network values are binary random vectors: v = [v1, va,--- , vy] and
h = [h17h27'” )hH]

Narada Warakagoda (FFI) Short title November 1, 2018 41 / 56



How the network parameters and values are related?

@ Through the definition of an Energy function
@ In RBM, the energy function is defined as

E(v,h)=—h"Wv—c"v—b"h
o We assign probabilities to (v, h) based on Boltzmann distribution

exp(—E(v, h))

p(v,h) = >

where
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What can we do with RBM?

Assume that the network parameters W, b, ¢ are known.

@ Can we calculate the probability of a given pair of vectors (v, i))?

e This is generally not tractable, because calculating Z requires to sum
all combinations v and h values.

e Can we calculate the probability of h given v or vice-versa?
o Yes, this is "inference” and possible.

Assume that a data set of v vectors given.

@ Can we estimate the network parameters W b, c ?
o Yes, this is training and possible
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Inference

We want to find p(h|v) assuming W, b, c are known.
o We start with the Bayes rule

_p(hlv)
p(h|V) - Zh' p(h',VI)

exp (hTWV +cTv+ bTh> /Z
N Zhle{o 137 €XP (h’TWv’ +cTv + bTh'> /Z

@ Canceling common factors and expanding vector-matrix multiplication
as a summation

exp (ZJ- (hiWv + bjhj)>

p(hlv) =
Do e{01) 2omefo) - - 2amefo1y PO (MW v + b))
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Inference

We want to find p(h|v) assuming W, b, c are known.
o Writing exponential of sums as product of exponentials

[1; (exp (h;W,v + b;hj))
Zh{e{o,l} Zhﬁe{o,l} xx Zh/He{o,u Hj(eXp(hjl'WjV + bih’))
LI, (exp (hiWv + bjhj))

p(hlv) =

(Cneqony P(MWav + bihn)) . (3 c 01y exP(hyWhv + brhi))
B L1; (exp (i Wv + bjhj))
B H,»(Eh;e{o,l} eXP(hjl' Wijv + bjhj))
[I; (exp (hjW,v + bjhj))
[1;exp(W,v + bj)

“11 (exp (hiWjv + bjhj))
L ep(Wiv+ by)

@ This implies that calculation of p(h|v) is tractable
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Inference

@ Let’s try to interpret

exp (hiW v + b;hj
phiv) =11 ( ZX(pZWj\‘:—I— bjj-)j))

exp (thjV + bjhj)

exp(Wjv + b))
q(h;) takes two values, g(0) and g(= 1). And sum of these values are
1. Therefore it is a probability measure of h;.

Consider the quantity q(h;) =

@ Since we assumed v is given, q(hj) is actually p(h;j|v)

A simple manipulation shows that | p(h; = 1) = o(Wv + bj) | i

®

The activation function of a stochastic neuron.
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@ We consider maximum likelihood training with a given dataset
{v1,va,...,vn} with respect to the log likelihood

L=log I p(vi) = 31" log p(vi)
L
@ We use gradient descent and therefore calculate % the gradient of L

with respect to a model parameter 6

dlog (p(v))

@ Derive the gradient for a single sample 20
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@ By definition we know that

p(v.h) 3 M)
where
Z= Zexp X)) (2)
v h
@ Therefore Etv h
=Y pv.h) = ZPEEWR) )
h h

o Take log and differentiate wrt 6

dlogp(v) _ Olog) pexp(—E(v,h)) OJlogZ ()
o0 06 06
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@ Consider the first term

O(E(v,h
Olog Ty ~E(v.b) __ Yol ) "R )
00 T T Eeh)

_ Z exp(—E(v,h)) O(E(v,h)) (6)
>oh exp( E(v,h)) 00
@ But dividing equation 1 by equation 3 we get

p(v,h) _ exp(—E(v, h))
p(v) >onexp(—E(v, h))

p(hlv) =

@ Substitute equation 7 in equation 6

6Iogzhe>;p€(—E(v,h)) _ —Zp(h!V)a(E(a‘; h)) (8)

h
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@ Consider the second term in equation 4 and substitute for Z from

equation 2
dlogZ Jlog Zvl,h/ exp(—E(V', ) 9
00 20 ©
=— Do W exp(—E(V', H')) (10)
exp(—E(v,h))  O(E(v,h))
T L S eel EWH) o (1)

exp(—E(v.h)
>y w xp(—E(V 1))

@ From equations 1 and 2 it is clear that

p(v. h)
@ Therefore

dlog Z O(E(v, h
o :—%}mmﬁéﬁﬂ (12)
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@ From equations 4, 8 and 12

a'°g” Zp ) XEWH) +Z v, h)? h)) (13)
dlo A(E(v, h A(E(v, h
o GG

@ The first term of equation 14
e Known as positive phase
e Depends on training data
o Can be computed exactly
@ The second term of equation 14
e Known as negative phase
e independent of training data, completely model dependent
e Must be estimated through Gibb's sampling and a procedure known as
Contrastive Divergence
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Applications of RBMs

@ Deep belief networks

o Collaborative filtering
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Deep Belief Networks

Hidden
layer

Hidden
layer

Hidden
layer

Input
layer!

QOOOOOG0OH

RBM

COC00000 v,

T

x

—

COOCOOO0H,
RBM

QOO00000DH,

~

QOOCO0C0DV,

Method for initializing a multilayer network
© Train an RBM with training data

—

y

1

QOO0CO00Hy
IRBM

QOOOCOO0H,_||

. QCOOCCO0OH,

A~

eloleIelolelele )]

@ Initialize the current layer with the trained parameters

© Present training data to the RBM and sample the hidden layer values

@ Use the hidden layer values as training data and repeat from step 1.
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Collaborative Filtering

I 2 L e
3

1
3 |5
& &
4

5

B

@ Application in recommendation systems. Eg: Movie
rating/recommendation

o Different users rate different items (eg: movies) using a rating scale
such as 1 to 5

@ Problem is to estimate the rating for an unrated item by a given user
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Collaborative filtering with RBM

h Hidden Units

U Visible Units

— > Movies

@ Train a different RBM for each user. But share weights across users
@ Visible units correspond to the ratings given to each movie
@ In training movies with missing ratings are omitted

e For prediction of a missing rating, find p(h|v) and back to p(v|h)
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The End
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