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Probability Review
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Probability and Statistics Basics

Normal (Gaussian) Distribution

p (x) =
1

(2π)d/2 |ΣΣΣ|1/2
exp

{
−1

2
(x−µµµ)T ΣΣΣ−1 (x−µµµ)

}
= N (µ,Σ)µ,Σ)µ,Σ)

Categorical Distribution

P (x) =
k∏

i=1

p
[x=i ]
i

Sampling
xxx ∼ p (xxx)
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Probability and Statistics Basics

Independent variables

p (xxx1,xxx2, · · · ,xxxk) =
k∏

i=1

p (xxx i )

Expectation

Ep(xxx)f (xxx) =

∫
f (xxx) p (xxx) dx

or for discrete variables

Ep(xxx)f (xxx) =
k∑

i=1

f (xxx i )P (xxx i )
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Kullback Leibler Distance

KL (q (xxx) ||p (xxx)) = Eq(xxx) log

[
q (xxx)

p (xxx)

]
=

∫
[q (xxx) log q (xxx)− q (xxx) log p (xxx)] dxxx

For the discrete case

KL (Q (xxx) ||P (xxx)) =
k∑

i=1

[Q (xxx i ) logQ (xxx i )− Q (xxx i ) logP (xxx i )]
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Bayesian Deep Learning
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Bayesian Statistics

Joint distribution
p (xxx ,yyy) = p (xxx |yyy) p (yyy)

Marginalization

p (xxx) =

∫
p (xxx ,yyy) dyyy

P (xxx) =
∑
yyy

P (xxx ,yyy)

Conditional distribution

p (xxx |yyy) =
p (xxx ,yyy)

p (yyy)
=

p (yyy |xxx) p (xxx)∫
p (yyy |xxx) p (xxx) dxxx
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Statistical view of Neural Networks

Prediction
p (yyy |xxx ,www) = N (fff www (xxx) ,ΣΣΣ)

Classification

P (y |xxx ,www) =
k∏

i=1

fff iwww (xxx)[y=i ]

Narada Warakagoda (FFI) Short title November 1, 2018 9 / 56



Training Criteria

Maximum Likelihood(ML)

ŵww = arg max
www

p (Y |XY |XY |X ,www)

Maximum A-Priori (MAP)

ŵww = arg max
www

p (Y ,www |XY ,www |XY ,www |X ) = arg max
www

p (Y |XY |XY |X ,www) p(www)

Bayesian

p (www |YYY ,XXX ) =
p (YYY |XXX ,www) p (www)

P (YYY |XXX )
=

p (YYY |XXX ,www) p (www)∫
P (YYY |XXX ,www) p (www) dwww
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Motivation for Bayesian Approach
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Motivation for Bayesian Approach
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Uncertainty with Bayesian Approach

Not only prediction/classification, but their uncertainty can also be
calculated

Since we have p (www |YYY ,XXX ) we can sample www and use each sample as
network parameters in calculating the prediction/classification
p (ŷ |x̂ ,www)) (i.e.network output for a given input ).
Prediction/classification is the mean of p (ŷ |x̂ ,www)

pout = p (ŷ |x̂ ,YYY ,XXX ) =

∫
p (ŷ |x̂ ,www) p (www |YYY ,XXX ) dwww

Uncertainty of prediction/classification is the variance of p (ŷ |x̂ ,www)

Var(p (ŷ |x̂ ,www)) =

∫
[p (ŷ |x̂ ,www)− pout ]

2 p (www |YYY ,XXX ) dwww

Uncertainty is important in safety critical applications (eg: self-driving
cars, medical diagnosis, military applications
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Other Advantages of Bayesian Approach

Natural interpretation for regularization

Model selection

Input data selection (active learning)
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Main Challenge of Bayesian Approach

We calculate

For continuous case:

p (www |YYY ,XXX ) =
p (YYY |XXX ,www) p (www)∫
P (YYY |XXX ,www) p (www) dwww

For discrete case:

P (www |YYY ,XXX ) =
p (YYY |XXX ,www)P (www)∑
www p (YYY |XXX ,www)P (www)

Calculating denominator is often intractable

Eg: Consider a weight vector www of 100 elements, each can have two
values. Then there are 2100 = 1.2× 1030 different weight vectors.
Compare this with universe’s age 13.7 billion years.

We need approximations
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Different Approaches

Monte Carlo techniques (Eg: Markov Chain Monte Carlo -MCMC)

Variational Inference

Introducing random elements in training (eg: Dropout)
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Advantages and Disadvantages of Different Approaches

Markov Chain Monte Carlo - MCMC

Asymptotically exact
Computationally expensive

Variational Inference

No guarantee of exactness
Possibility for faster computation
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Monte Carlo Techniques

We are interested in

pout = Mean(p (ŷ |x̂ ,www)) = p (ŷ |x̂ ,YYY ,XXX ) =

∫
p (ŷ |x̂ ,www) p (www |YYY ,XXX ) dwww

Var(p (ŷ |x̂ ,www)) =

∫
[p (ŷ |x̂ ,www)− pout ]

2 p (www |YYY ,XXX ) dwww

Both are integrals of the type

I =

∫
F (www) p (www |D) dwww

where D = (YYY ,XXX ) is training data.

Approximate the integral by sampling www i from p (www |D)

I ≈ 1

L

L∑
i=1

F (www i ) .
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Monte Carlo techniques

Challenge: We don’t have the posterior

p (www |D) = p (www |YYY ,XXX ) =
p (YYY |XXX ,www) p (www)∫
P (YYY |XXX ,www) p (www) dwww

”Solution”: Use importance sampling by sampling from a proposal
distribution q(www)

I =

∫
F (www)

p (www |D)

q (www)
q (www) dwww ≈ 1

L

L∑
i=

F (www i )
p (www i |D)

q (www i )

Problem: We still do not have p (www |D)
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Monte Carlo Techniques

Problem: We still do not have p (www |D)

Solution: use unnormalized posterior p̃ (www |D) = p (YYY |XXX ,www) p (www)
where normalization factor Z =

∫
P (YYY |XXX ,www) p (www) dwww such that

p (www |D) =
p̃ (www |D)

Z

Integral can be calculated with:

I ≈
∑L

i=1 F (www i ) p̃ (www i |D) /q (www i )∑L
i=1 p̃ (www i |D) /q (www i )
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Weakness of Importance Sampling

Proposal distribution must be close to the non-zero areas of original
distribution p (www |D).

In neural networks, p (www |D) is typically small except for few narrow
areas.

Blind sampling from q (www) has a high chance that they fall outside
non-zero areas of p (www |D)

We must actively try to get samples that lie close to p (www |D)

Markov Chain Monte Carlo (MCMC) is such technique.
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Metropolis Algorithm

Metropolis algorithm is an example of MCMC

Draw samples repeatedly from random walk www t+1 = www t + εεε where εεε is
a small random vector, εεε ∼ q(εεε) (eg: Gaussian noise)

Drawn sample at t = t is either accepted based on the ratio p̃(www t |D)
p̃(www t−1|D)

If p̃ (www t |D) > p̃ (www t−1|D) accept sample

If p̃ (www t |D) < p̃ (www t−1|D) accept sample with probability p̃(www t |D)
p̃(www t−1|D)

If sample accepted use it for calculating I

Can use the same formula for calculating I

I ≈
∑L

i=1 F (www i ) p̃ (www i |D) /q (www i )∑L
i=1 p̃ (www i |D) /q (www i )
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Other Monte Carlo and Related Techniques

Hybrid Monte Carlo (Hamiltonian Monte Carlo)

Similar to Metropolis algorithm
But uses gradient information rather than a random walk.

Simulated Annealing
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Variational Inference

Goal: computation of posterior p (www |D), i.e. the parameters of the
neural network www given data D = (YYY ,XXX )

But this computation is often intractable

Idea: find a distribution q(www) from a family of distributions Q such
that q(www) can closely approximate p(www |D)

How to measure the distance between q(www) and p(www |D) ?

Kullback-Leibler Distance KL
(
q(www)||p(www |D)

)
The problem can be formulated as

p̂(www |D) = arg min
q(www)

KL
(
q(www)||p(www |D)

)
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Minimizing KL Distance

Using the definition of KL distance

KL
(
q(www)||p(www |D)

)
=

∫
q (www) ln

q (www)

p (www |D)
dwww

Cannot minimize this directly, because we do not know p (www |D)

But we can manipulate it further, and transform it to another
equivalent optimization problem involving a quantity known as
Evidence Lower Bound (ELBO)
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Evidence Lower Bound (ELBO)

KL
(
q(www)||p(www |D)

)
=

∫
q (www) ln

q (www)

p (www |D)
dwww

=

∫
q (www) ln

q (www) p(D)

p (www ,D)
dwww

=

∫
q (www) ln

q (www)

p (www ,D)
dwww +

∫
q (www) ln p(D)dwww

= Eq(www) ln
q (www)

p (www ,D)
+ ln p(D)

∫
q (www) dwww

ln p(D) = Eq(www) ln
p (www ,D)

q (www)
+ KL

(
q(www)||p(www |D)

)

Since ln p(D) is constant, minimizing KL
(
q(www)||p(www |D)

)
is

equivalent to maximizing ELBO
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Another Look at ELBO

ELBO = Eq(www) ln
p (www ,D)

q (www)

=

∫
q (www) ln p(www ,D)dwww −

∫
q (www) ln q(www)dwww

=

∫
q (www) ln[p(D|www)p(www)]dwww −

∫
q (www) ln q(www)dwww

=

∫
q (www) ln p(D|www)dwww −

∫
q (www) ln

q(www)

p(www)
dwww

= Eq(www)p(D|www)− KL
(
q(www)||p(www)

)
We maximize ELBO with respect to q(www)
First term Eq(www)p(D|www) is equivalent to maximizing q(www)’s ability
explain training data
Second term KL

(
q(www)||p(www)

)
is equivalent to minimizing q(www)’s

distance to p(www)
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Outline of Procedure with ELBO

Start with ELBO

ELBO = L = Eq(www) ln
p (www ,D)

q (www)
= Eq(www)

[
ln p (www ,D)− ln q (www)

]
Rewrite with parameter λ of q (www) and expand expectation

L(λ) =

∫
ln[p (www ,D)]q (www , λ) dwww −

∫
ln[q (www , λ)]q (www , λ) dwww

Maximize L(λ) with respect to λ

λ? = arg max
λ
L(λ)

Use the optimized q witn respect to λ as posterior

q (www , λ?) = p(www ,D)

Narada Warakagoda (FFI) Short title November 1, 2018 28 / 56



How to Maximize ELBO

Analytical methods are not practical for deep neural networks

We resort to gradient methods with Monte Carlo sampling

We discuss two methods:

Black box variational inference: Based on log derivative trick
Bayes by Backprop: Based on re-parameterization trick
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Black Box Variational Inference

Start with ELBO:

L(λ) =

∫
ln[p (www ,D)]q (www , λ) dwww −

∫
ln[q (www , λ)]q (www , λ) dwww

Differentiate with respect to λ.

∇λL(λ) =

∫
ln[p (www ,D)]∇λ[q (www , λ)]dwww

−
∫

ln[q (www , λ)]∇λ[q (www , λ)]dwww

−
∫
∇λ
[

ln[q (www , λ)]
]
q (www , λ) dwww

The last term is zero (Can you prove it?)
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Black Box Variational Inference

Now we have

∇λL(λ) =

∫
ln[p (www ,D)]∇λ[q (www , λ)]dwww

−
∫

ln[q (www , λ)]∇λ[q (www , λ)]dwww

=

∫ [
[p (www ,D)]− ln[q (www , λ)]

]
∇λ[q (www , λ)]dw

We want to write this as an expectation with respect to q

Use the log derivative trick

∇λ[q (www , λ)] = ∇λ[ln q (www , λ)]q (www , λ)
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Black Box Variational Inference

Now we get

∇λL(λ) =

∫
ln[p (www ,D)]∇λ[ln q (www , λ)]q (www , λ) dwww

−
∫

ln[q (www , λ)]∇λ[ln q (www , λ)]q (www , λ) dwww

Rearranging terms

∇λL(λ) =

∫ [
ln[p (www ,D)]− ln q (www , λ)

]
∇λ[ln q (www , λ)]q (www , λ) dwww

This is the same as Expectation with respect to q

∇λL(λ) = Eq(www ,λ)

[
ln[p (www ,D)]− ln q (www , λ)

]
∇λ[ln q (www , λ)]
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BBVI optimization procedure

Assume a distribution q (www , λ) parameterized by λ.

Draw S samples of www from the distribution using the current value of
λ = λt

Estimate the gradient of ELBO using the sample values:

∇λL̂(λ) =
1

S

S∑
s=1

[
ln[p (www s ,D)]− ln q (www s , λ)

]
∇λ[ln q (www s , λ)]

Update λ
λt+1 = λt + ρ∇λL̂(λ)

repeat from step 2
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Bayes by Backprop

Try to approximate ELBO directly by sampling from the q(www , λ)

ELBO = L(λ) = Eq(www ,λ)

[
ln p (www ,D)− ln q (www , λ)

]
with

L̂(λ) =
1

S

S∑
s=1

[
ln p (www s ,D)− ln q (www s , λ)

]
But we need ∇λL̂(λ) and we can not differentiate L̂(λ) because it is
not a smooth function of λ

Use the re-parameterization trick

www s = www(λ,εεεs)

where εεεs is drawn from for example a standard Gaussian distribution.
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Bayes by BackProp (BbB)

The estimated ELBO now

L̂(λ) =
1

S

S∑
s=1

[
ln p (www(λ,εεεs),D)− ln q (www(λ,εεεs), λ)

]
Now this is a smooth function of λ and can differentiate

∇λL̂(λ) =
1

S

S∑
s=1

[
∂L̂s
∂www

∂www

∂λ
+
∂L̂s
∂λ

]

where L̂s = ln p (www(λ,εεεs),D)− ln q (www(λ,εεεs), λ)

Once the gradients are known, optimum λ? and hence q(www , λ?) can
be found by gradient descent.
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Performance of BBVI and BbB

Both methods estimate approximate gradients by sampling

High variance of the estimated gradients is a problem

In practice, these algorithms need modifications to tackle high
variance

BbB tends to have a lower variance estimates than BBVI
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Bayesian Deep Learning through Randomization in
Training

Stochastic gradient descent and Dropout can be given Bayesian
interpretations

Dropout procedure in testing can be used for estimating the
uncertainty of model outputs (Monte Carlo Dropout).

Enable dropout and feed the network S times with data and collect the
outputs f (s), s = 1, 2, · · · ,S
Output variance = 1

S

∑
s(f (s)− f̄ (s))2 where f̄ (s) = 1

S

∑
s f (s)
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Restricted Boltzmann Machines
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Stochastic Neurons

We consider stochastic binary neurons, i.e. y can be either 1 or 0

p(y = 1) = σ(b +
∑
i

wixi )

p(y = 0) = 1− p(y = 1)
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Boltzmann Machine

A Boltzmann machine is a recurrent network with stochastic neurons

Weights are symmetrical

At the equilibrium, the relationships of the neuron outputs can be
represented using an undirected graphical model
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Restricted Boltzmann Machine (RBM)

Neurons are divided into two groups: Visible and Hidden

Restricted architecture: No connections within visible group or hidden
group
Network parameters:

Bias vector hidden units, bbb = [b1, b2, · · · , bH ]
Bias vector visible units, ccc = [c1, c2, · · · , cV ]
Connection weights, W = {wi,j}

Network values are binary random vectors: vvv = [v1, v2, · · · , vV ] and
hhh = [h1, h2, · · · , hH ]
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How the network parameters and values are related?

Through the definition of an Energy function

In RBM, the energy function is defined as

E (vvv ,hhh) = −hhhTWWWvvv − cccTvvv − bbbThhh

We assign probabilities to (vvv ,hhh) based on Boltzmann distribution

p(vvv ,hhh) =
exp(−E (vvv ,hhh))

Z

where
Z =

∑
v ′v ′v ′,h′h′h′

exp(−E (v ′v ′v ′,h′h′h′))
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What can we do with RBM?

Assume that the network parameters WWW ,bbb,ccc are known.

Can we calculate the probability of a given pair of vectors (v̂vv , ĥhh)?

This is generally not tractable, because calculating Z requires to sum
all combinations v and h values.

Can we calculate the probability of hhh given vvv or vice-versa?

Yes, this is ”inference” and possible.

Assume that a data set of vvv vectors given.

Can we estimate the network parameters WWW ,bbb,ccc ?

Yes, this is training and possible
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Inference

We want to find p(hhh|vvv) assuming WWW ,bbb,ccc are known.

We start with the Bayes rule

p(hhh|vvv) =
p(hhh|vvv)∑
h′h′h′ p(h′h′h′,v ′v ′v ′)

=
exp

(
hhhTWWWvvv + cccTvvv + bbbThhh

)
/Z∑

h′h′h′∈{0,1}H exp
(
h′h′h′TWWWv ′v ′v ′ + cccTv ′v ′v ′ + bbbTh′h′h′

)
/Z

Canceling common factors and expanding vector-matrix multiplication
as a summation

p(hhh|vvv) =
exp

(∑
j (hjWWW jvvv + bjhj)

)
∑

h′1∈{0,1}
∑

h′2∈{0,1}
. . .
∑

h′H∈{0,1}
exp(

∑
j(h
′
jWWW jvvv + bjh′j))
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Inference

We want to find p(hhh|vvv) assuming WWW ,bbb,ccc are known.

Writing exponential of sums as product of exponentials

p(hhh|vvv) =
∏

j (exp (hjWWW jvvv + bjhj))∑
h′1∈{0,1}

∑
h′2∈{0,1}

. . .
∑

h′
H
∈{0,1}

∏
j(exp(h

′
jWWW jvvv + bjh′j ))

=

∏
j (exp (hjWWW jvvv + bjhj))

(
∑

h′1∈{0,1}
exp(h′1WWW 1vvv + b1h′1)) . . . (

∑
h′
H
∈{0,1} exp(h

′
HWWW Hvvv + bHh′H))

=

∏
j (exp (hjWWW jvvv + bjhj))∏

j(
∑

h′j∈{0,1}
exp(h′jWWW jvvv + bjh′j ))

=

∏
j (exp (hjWWW jvvv + bjhj))∏

j exp(WWW jvvv + bj)

=
∏
j

(exp (hjWWW jvvv + bjhj))

exp(WWW jvvv + bj)

This implies that calculation of p(hhh|vvv) is tractable
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Inference

Let’s try to interpret

p(hhh|vvv) =
∏
j

(exp (hjWWW jvvv + bjhj))

exp(WWW jvvv + bj)

Consider the quantity q(hj) =
exp (hjWWW jvvv + bjhj)

exp(WWW jvvv + bj)

q(hj) takes two values, q(0) and q(= 1). And sum of these values are
1. Therefore it is a probability measure of hj .

Since we assumed vvv is given, q(hj) is actually p(hj |vvv)

A simple manipulation shows that p(hj = 1) = σ(WWW jvvv + bj) i.e.

The activation function of a stochastic neuron.

Narada Warakagoda (FFI) Short title November 1, 2018 46 / 56



Training

We consider maximum likelihood training with a given dataset
{vvv1,vvv2, . . . ,vvvN} with respect to the log likelihood
L = log

∏N
i p(vvv i ) =

∑N
i log p(vvv i )

We use gradient descent and therefore calculate
∂L

∂θ
the gradient of L

with respect to a model parameter θ

Derive the gradient for a single sample
∂ log (p (vvv))

∂θ
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Gradients

By definition we know that

p(vvv ,hhh) =
exp(−E (vvv ,hhh))

Z
(1)

where
Z =

∑
v ′v ′v ′,h′h′h′

exp(−E (v ′v ′v ′,h′h′h′)) (2)

Therefore

p(vvv) =
∑
hhh

p(vvv ,hhh) =
∑
hhh

exp(−E (vvv ,hhh))

Z
(3)

Take log and differentiate wrt θ

∂ log p(vvv)

∂θ
=
∂ log

∑
hhh exp(−E (vvv ,hhh))

∂θ
− ∂ logZ

∂θ
(4)
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Gradients

Consider the first term

∂ log
∑

hhh exp(−E (vvv ,hhh))

∂θ
= −

∑
hhh exp(−E (vvv ,hhh))

∂(E (vvv ,hhh))

∂θ∑
hhh exp(−E (vvv ,hhh))

(5)

= −
∑
hhh

exp(−E (vvv ,hhh))∑
hhh exp(−E (vvv ,hhh))

∂(E (vvv ,hhh))

∂θ
(6)

But dividing equation 1 by equation 3 we get

p(vvv ,hhh)

p(vvv)
= p(hhh|vvv) =

exp(−E (vvv ,hhh))∑
hhh exp(−E (vvv ,hhh))

(7)

Substitute equation 7 in equation 6

∂ log
∑

hhh exp(−E (vvv ,hhh))

∂θ
= −

∑
hhh

p(hhh|vvv)
∂(E (vvv ,hhh))

∂θ
(8)
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Gradients

Consider the second term in equation 4 and substitute for Z from
equation 2

∂ logZ

∂θ
=
∂ log

∑
v ′v ′v ′,h′h′h′ exp(−E (v ′v ′v ′,h′h′h′))

∂θ
(9)

= −

∑
v ′v ′v ′,h′h′h′ exp(−E (v ′v ′v ′,h′h′h′))

∂(E (v ′v ′v ′,h′h′h′))

∂θ∑
v ′v ′v ′,h′h′h′ exp(−E (v ′v ′v ′,h′h′h′))

(10)

= −
∑
vvv ,hhh

exp(−E (vvv ,hhh))∑
v ′v ′v ′,h′h′h′ exp(−E (v ′v ′v ′,h′h′h′))

∂(E (vvv ,hhh))

∂θ
(11)

From equations 1 and 2 it is clear that
exp(−E (vvv ,hhh))∑

v ′v ′v ′,h′h′h′ exp(−E (v ′v ′v ′,h′h′h′))
is

p(vvv ,hhh)
Therefore

∂ logZ

∂θ
= −

∑
vvv ,hhh

p(vvv ,hhh)
∂(E (vvv ,hhh))

∂θ
(12)
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Gradients

From equations 4, 8 and 12

∂ log p(vvv)

∂θ
= −

∑
hhh

p(hhh|vvv)
∂(E (vvv ,hhh))

∂θ
+
∑
vvv ,hhh

p(vvv ,hhh)
∂(E (vvv ,hhh))

∂θ
(13)

∂ log p(vvv)

∂θ
= −Ep(hhh|vvv)

[
∂(E (vvv ,hhh))

∂θ

]
+ Ep(vvv ,hhh)

[
∂(E (vvv ,hhh))

∂θ

]
(14)

The first term of equation 14
Known as positive phase
Depends on training data
Can be computed exactly

The second term of equation 14
Known as negative phase
independent of training data, completely model dependent
Must be estimated through Gibb’s sampling and a procedure known as
Contrastive Divergence
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Applications of RBMs

Deep belief networks

Collaborative filtering
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Deep Belief Networks

Method for initializing a multilayer network

1 Train an RBM with training data

2 Initialize the current layer with the trained parameters

3 Present training data to the RBM and sample the hidden layer values

4 Use the hidden layer values as training data and repeat from step 1.

Narada Warakagoda (FFI) Short title November 1, 2018 53 / 56



Collaborative Filtering

Application in recommendation systems. Eg: Movie
rating/recommendation

Different users rate different items (eg: movies) using a rating scale
such as 1 to 5

Problem is to estimate the rating for an unrated item by a given user
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Collaborative filtering with RBM

Train a different RBM for each user. But share weights across users

Visible units correspond to the ratings given to each movie

In training movies with missing ratings are omitted

For prediction of a missing rating, find p(hhh|vvv) and back to p(v |hhh)
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The End
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