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Convolutional Architectures
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Template matching

Figure: Illustration from
http://pixuate.com/technology/template-matching/

1. Try to match template at each location by �sliding over
window�

2. Threshold for detection

For 2D-objects, kind of possible but di�cult

http://pixuate.com/technology/template-matching/
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Convolution

Which �lter has produces the activation map on the right?
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Convolutional layer

�> Glori�ed template matching

� Many templates (aka output �lters)

� We learn the templates, the weights are the templates

� Intermediate detection results only means to an end

� treat them as features, which we again match new templates to

� Starting from the second layer we have �nonlinear �lters�
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Hyperparameters of convolutional layer

1. Kernel height and width -
template sizes

2. Stride - skips between template
matches

3. Dilation rate
� �Wholes� in template where

we don't care
� Larger �eld-of-view without

more weights. . .

4. Number of output �lters -
number of templates

5. Padding - expand image,
typically with zeros

Figure: Image from
http://neuralnetworksanddeeplearning.com/
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Detector / activation function

� Non-saturating activation functions as ReLU, leaky ReLU
dominating

Figure: Sigmoid
function

Figure: Tanh function
Figure: ReLU function
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Basic CNN architecture for image classi�cation

Image �> [Conv �> ReLU]xN �> Fully Connected �> Softmax

� Increase �lter depth when using stride

Improve with:

� Batch normalization

� Skip connections ala ResNet or DenseNet

� No fully connected, average pool predictions instead
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Training
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How do we �t model?

How do we �nd parameters θ for our network?
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Supervised learning

� Training data comes as (X ,Y ) pairs, where Y is the target

� Want to learn f (x) ∼ p(y |x), conditional distribution of Y
given X

� De�ne di�erentiable surrogate loss function, e.g. for a single
sample

l(f (X ),Y ) = (f (X )− Y )2regression (1)

l(f (X ),Y ) = −
∑
c

Yc log(f (X )c)classi�cation (2)
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Gradient

� The direction for which the function increases the most

Figure: Gradient of the function f (x2, y2) = x/ex
2+y

2

[By Vivekj78 [CC BY-SA
3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons]
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Backpropagation

� E�cient bookkeeping scheme when applying chain rule for
di�erentiation

� Biologically implausible?
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(Stochastic) gradient descent
Taking steps in the opposite direction of the gradient

Figure: [By Vivekj78 [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from
Wikimedia Commons]

� Full gradient too expensive / not necessary

N∑
i=1

∇θl(f (Xi ),Yi ) ≈
n∑
i=1

∇θl(f (XP(i)),YP(i)) (3)

for a random permutation P .

Many di�erent extensions to standard SGD
� SGD with momentum, RMSprop, ADAM.
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Network, loss, optimization

� Weight penalty added to loss term, usually squared L2
normalization uniformly for all parameters

l(θ) + λ‖θ‖22 (4)

� Dropout

� Batch normalization
� Intersection of optimization and generalization
� Your best friend and your worst enemy
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More on batch normalization

For a tensor [batch_size Ö height Ö width Ö depth], normalize
�template matching scores� for each template d by

µd ←
1

N ∗ H ∗W

N∑
i=1

H∑
h=1

W∑
w=1

xi ,h,w ,d (5)

σ2
d
← 1

N ∗ H ∗W

N∑
i=1

H∑
h=1

W∑
w=1

(xi ,h,w ,d − µd )2 (6)

x̂i ,h,w ,d ←
xi ,h,w ,d − µd√

(σ2
d
+ ε)

(7)

yi ,h,w ,d ← γx̂i ,h,w ,d + β (8)

where N, H and W represents batch size, height and width.

� �Template/Feature more present than usual or not�

� During inference we use stored values for µd and σd .
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Data augmentation

Idea: apply random transformation to X that does not alter Y .

� Normally you would like result X ′ to be plausible, i.e. could
have been a sample from the distribution of interest

� Which transformation you may use is application-dependent.

Image data

� Horizontal mirroring (issue
for objects not left/right
symmetric)

� Random crop

� Scale

� Aspect ratio

� Lightning etc.

Text data

� Synonym insertion

� Back-translation: translate
and translate back with e.g.
Google Translate!!!
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Hyperparameters to search

� Learning rate (and learning rate schedule)

� Regularization params: L2, (dropout)
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Search strategies

� random search rather than grid search

� logscale when appropriate

� careful with best values on border

� may re�ne search
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Achitecture search
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Architecture search

1. De�ne the search space.

2. Decide upon the optimization algorithm
� random search, reinforcment learning, genetic algorithms
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Neural architecture search

Figure: An overview of Neural Architecture Search. Figure and caption
from [?].



Convolutional Architectures Training Achitecture search Bibliography

NAS1 - search space

Fixed structure:

� Architecture is a series of layers of the form

conv2D(FH, FW, N) −→ batch-norm −→ ReLU

Degrees of freedom:

� Parameters of conv layer
� �lter height, �lter width and number of output �lters

� Input layers to each conv layer
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NAS1 - discovered architecture

Figure: FH is �lter height, FW is �lter width and N is number of �lters.
If one layer has many input layers then all input layers are concatenated
in the depth dimension. Figure from [?].
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NAS2 - search space

Fixed structure:

Figure: Architecure for CIFAR-10 and ImageNet. Figure from [?].

Degrees of freedom:

� Some freedom in normal cell and reduction cell, shall see soon
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NAS2 - discovered convolutional cells

Normal Cell Reduction Cell
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Figure: NASNet-A identi�ed with CIFAR-10. Figure and caption from
[?].
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NAS2 - Performance(computational_cost)
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Figure: Performance on ILSVRC12 as a function of number of
�oating-point multiply-add operations needed to process an image.
Figure from [?].
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NAS2 - Performance(#parameters)
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Figure: Performance on ILSVRC12 as a function of number of
parameters. Figure from [?].
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