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Robotics = Physical Autonomous Systems
• An autonomous system is  a  system that can auotomatically perform a  

predefined set of tasks under real world conditions 
• Examples:

– Autonomous vehicles (navigation)
– Autonomous manipulator systems (manipulation)
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Designing Autonomous System Intelligence
• Main components

– Understand/Interpret the sensor signals
– Plan appropriate actions

• Going from manual design to automatic learning 
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Reinforcement  Learning

• We can cast the learning problem as a reinforcement learning 
problem
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Example 1 (Manipulation)

• Controlling robotic arm
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Environment

Interpreter 
(Perception)

State = Joint angles of the robot, 

                  Position of the objects 

Reward

Agent 

Observation = Image from 
                                onboard camera



Example 2 (Navigation)

• Controlling an autonomous vehicle

Policy (Act)

Action = Steering angle

Environment
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State = Heading of the vehicle, 

                  Position of other objects 
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Observation = Image from 
                                onboard camera



Learnable Modules

• Policy/Control  (state-to-action)
• Perception  (observations-to-state)
• Policy+Perception (observations-to-action)
• Environment model (action+ current state -to- next state)
• Reward function (action+ current state -to-  reward/cost)
• Expected rewards (Value functions Q, V)  



Learning Perception vs. Control

• Data distribution
➢ Perception learning uses iid assumption and it is reasonable
➢ Control learning cannot use iid  assumption,  because data are 

correlated. 
• Errors can grow: compounding errors

• Supervision signal
➢ Perception learning can be based on supervised learning
➢ Control learning with direct supervision is not straight-forward.

 
• Data collection

➢ Perception learning can use offline data
➢ Control learning with offline data is difficult

• Simulators
• Can lead to realty gap



Weaknesses of Reinforcement Learning

• Learning through mostly trial and error 
– High cost in terms of time and resources

• Need a suitable reward function (manually designed)
– In many cases designing reward  function difficult

Try to exploit other information in learning instead of or 
in addition to reinforcement learning

● Expert demonstrations
● Optimal control

 



Main Approaches
• Manual design of actions (Learn perception only) 

– Mediated Perception
– Direct Perception 

• Learn actions (policy)
– Pure reinforcement learning

• DQN (Deep Q-Network)
• DDPG (Deep Deterministic Policy Gradient)
• NAF (Normalized Advantage Function)
• A3C (Asynchronous Advantage Actor Critic)
• TRPO (Trust Region Policy Optimisation) 
• PPO (Proximal Policy Optimization)
• ACKTR (Actor Critic Kronecker Factored Trust Region)

– Optimal control and reinforcement  learning 
• GPS (Guided Policy Search)

– Pure expert demonstration based learning
• Behavior cloning/Behavioural reflex

– Combined expert demonstration and reinforcement learning
• Maximum entropy deep Inverse reinforcement learning
• Guided Cost Learning (GCL)
• Generative Adversarial Imitation Learning (GAIL)



Manual Design of Control/Actions



Mediated Perception

- Segmentation and detection
- Depth and 3D understanding
- Estimating your posistion and 

orientation (pose)
- Tracking and re-identification
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Direct Perception

• Learn «Affordance Indicators» from input image
– Eg: Distance to the left lane/right lane,  distance to the next car

• Use a manually designed algorithm to  convert affordance 
indicators to actions.
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Expert Demonstrations Only 



Behaviour Cloning

• A type of imitation learning
• Direct learning of the mapping between input observations and  

actions
• Supervised learning problem with training data given by the expert 

demonstrations
• Mostly applied in controlling autonomous vehicles
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Issues of Behavioral Cloning  

• Compounding Errors
• Due to supervised learning assuming iid samples 

• Reactive Policies
• Ignore temporal dependencies (long term goals are not 

considered)
• Blind imitation of the expert demonstrations 



DAgger (Dataset Aggegation) 

• Algorithm proposed to combat «compounding errors»
• Iteratively interleaves execution and training. 

1. Use the expert demonstrations to train a policy
2. Use the policy to gather data
3. Label data using the expert
4. Add new data to the dataset
5. Train a new policy on new data (supervised learning)
6. Repeat from step 2



NVIDIA Deep Driving (Training)



NVIDIA Deep Driving (Testing)  



CARLA- Car Learning to Act

• Conditional Imitation Learning.
• More than driving straight 
• Supervised training with expert demonstrations

– Observertion = Forward Camera Image
– Command = follow the lane, straight, left, right 
– Action= Steering parameters
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Reinforcement Learning with Optimal Control



Guided Policy Search (GPS)

• Reinforcement learning algorithm
• Use optimal control to find optimal state-action trajectories
• Use optimal-state action trajectories to guide  policy learning. 
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● Consider an episode, of length T: 

● Controller                     and  environment dynamics                      
can define the trajectory   

● Assume that each state-action pair is associated with a reward 
(cost)

● We want to optimize the total cost         

GPS Problem Formulation



GPS Problem Formulation
● We want to optimize the total cost 

with respect to  

● We also want that policy should give us the correct action:

 

● We can formulate the problem with Lagrange multipliers



How to Solve this Optimization? 

● Use dual gradient descent:

1.

2.

3.

4. Repeat from 1



Dual Gradient Descent (DGD) Steps  

● Step 1:

● This is a typical optimal control problem. 

● Algorithms such as LQR (Linear Quadratic Regulator) can be 
used.  

● Using the current values of             we can find the optimal 
trajectory 

● Step 2:

● Use the current values of             we will optimize 

     

● This is just supervised learning 



GPS Summary

Reference: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-13.pdf



Combining Reinforcement Learning with Expert 
Demonstrations



Inverse Reinforcement Learning (IRL)

● Motivation

● In reinforcement learning, we assume that a reward/cost function 
is known (Manually designed reward function).

● However, in many real world applications the reward structure is 
unclear.

● In inverse reinforcement learning, we learn the reward function 
based on expert demonstrations.



IRL vs. RL

● Reinforcement Learning (RL)
● States     and actions     are drawn from a given set
● Direct interaction with the environment or an environment model is 

known.
● Reward function                    is known
● Learn the optimal policy 

● Inverse Reinforcement Learning (IRL)
● States and actions are drawn from a given set
● Direct interaction with the environment or an environment                

model is known
● Expert demonstrations (state-action pairs generated by an expert) are 

given    
● Assume expert demonstrations are samples from an optimal policy
● Learn the reward function                   and then optimal policy                . 



Challenges of IRL
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● Ill-posed problem

● Expert demonstrations are not drawn from the optimal policy



Maximum Entropy  IRL

● Trajectory

● Expert demonstrations

● Reward

  

● Define the probability of a given trajectory as

where  

● Objective of maximum entropy IRL is to maximize the probability of expert demonstrations with 
respect to 



Maxent IRL Optimization with Dynamic 
Programming 



Maxent IRL Optimization with Dynamic 
Programming

● But by definition 

● Therefore the second term becomes

● We can compute this at the state level, rather than at the trajectory level

 

● We can use dynamic programming to calculate 



Maxent IRL Optimization with Dynamic 
Programming

● We calculate                  = probability of visiting state 

● Assume  probability of visiting state      at  t=t   is  

● Then by the rules of dynamic programming 

● Then

● This procedure is expensive if  the number of states of the system is large.  



Maxent IRL Optimization with Dynamic 
Programming

● The whole algorithm

1. Gather demonstrations  

2. Initialize

3. Find the optimal policy              with the reward function         
(standard RL)

4. Find state visitation frequency             (dynamic programming 
procedure)

5. Compute gradient

6. Update       with gradient ascent

7. Repeat from step 3



Maxent IRL Optimization with Sampling

● Dynamic programming approach not suitable for 

● Large state-spaces

● Unknown dynamics

● The problem is the denominator (Partition function)

● Use sampling to estimate         instead of exact calculation: Guided 
Cost Learning (GCL).   



Guided Cost Learning (GCL) 
● Start with the log likelihood  (per trajectory) of the expert trajectories

● Substituting                                                     we get

● In notation used in paper  (                and               ), 

● Partition function Z is given by                                                                                        where         
is a uniform distribution.  

● Z is an expectation and therefore, we approximate Z by using M samples drawn from a proposal 
distribution      



Guided Cost Learning (GCL)

● We obtain gradients of                    wrt      

● Where                                        and  

●  If                is implemented using a neural network we can back-
propagate

●       If 

●             If    



Guided Cost Learning (GCL) Summary 

Reference: https://arxiv.org/pdf/1603.00448.pdf



Guided Cost Learning (GCL) Summary 



Similarity to Generative Adversarial Networks 
(GANs) 
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Similarity to Generative Adversarial Networks 
(GANs)

GCL GAN

Trajectory Sample

Policy Generator

Reward Discriminator

Expert demonstrations Real data (eg: real images)

● It can be proved that generator and discriminator loss functions for the 
GCL have  a similar form to those of GAN 



Generative Adversarial Imitation Learning (GAIL)

● Very similar to GCL

● But does not aim to learn a reward function, instead it uses a 
classifier (discriminator)

● Trajectory samples are drawn using the TRPO (Trust Region Policy 
Optimization) algorithm 



GCL vs GAIL

Reference: http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_12_irl.pdf



Thank You


	Slide 1
	Robotics = Physical Autonomous Systems
	Designing Autonomous System Intelligence
	Reinforcement Learning
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Weaknesses of Reinforcement Learning
	Main Approaches
	Slide 11
	Mediated Perception
	Direct Perception
	Slide 14
	Behaviour Cloning
	Slide 16
	DAgger (Dataset Aggegation)
	NVIDIA Deep Driving (Training)
	NVIDIA Deep Driving (Testing)
	CARLA- Car Learning to Act
	Slide 21
	Guided Policy Search (GPS)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

