
Deep Learning for Control in
Robotics

Narada Warakagoda

Robotics = Physical Autonomous Systems
• An autonomous system is a system that can auotomatically perform a

predefined set of tasks under real world conditions
• Examples:

– Autonomous vehicles (navigation)
– Autonomous manipulator systems (manipulation)

Environment

System Intelligence

Sense Act

Autonomous
System

Designing Autonomous System Intelligence
• Main components

– Understand/Interpret the sensor signals
– Plan appropriate actions

• Going from manual design to automatic learning

Environment

Understand
and

Interpret

Sense Act

Plan
Actions

System Intelligence

Reinforcement Learning

• We can cast the learning problem as a reinforcement learning
problem

Policy (Act)

Action

Environment

Interpreter
(Perception)

State

Reward

Agent

Observation

Example 1 (Manipulation)

• Controlling robotic arm

Policy (Act)

Action = Motor torque

Environment

Interpreter
(Perception)

State = Joint angles of the robot,

 Position of the objects

Reward

Agent

Observation = Image from
 onboard camera

Example 2 (Navigation)

• Controlling an autonomous vehicle

Policy (Act)

Action = Steering angle

Environment

Interpreter
(Perception)

State = Heading of the vehicle,

 Position of other objects

Reward

Agent

Observation = Image from
 onboard camera

Learnable Modules

• Policy/Control (state-to-action)
• Perception (observations-to-state)
• Policy+Perception (observations-to-action)
• Environment model (action+ current state -to- next state)
• Reward function (action+ current state -to- reward/cost)
• Expected rewards (Value functions Q, V)

Learning Perception vs. Control

• Data distribution
➢ Perception learning uses iid assumption and it is reasonable
➢ Control learning cannot use iid assumption, because data are

correlated.
• Errors can grow: compounding errors

• Supervision signal
➢ Perception learning can be based on supervised learning
➢ Control learning with direct supervision is not straight-forward.

• Data collection

➢ Perception learning can use offline data
➢ Control learning with offline data is difficult

• Simulators
• Can lead to realty gap

Weaknesses of Reinforcement Learning

• Learning through mostly trial and error
– High cost in terms of time and resources

• Need a suitable reward function (manually designed)
– In many cases designing reward function difficult

Try to exploit other information in learning instead of or
in addition to reinforcement learning

● Expert demonstrations
● Optimal control

Main Approaches
• Manual design of actions (Learn perception only)

– Mediated Perception
– Direct Perception

• Learn actions (policy)
– Pure reinforcement learning

• DQN (Deep Q-Network)
• DDPG (Deep Deterministic Policy Gradient)
• NAF (Normalized Advantage Function)
• A3C (Asynchronous Advantage Actor Critic)
• TRPO (Trust Region Policy Optimisation)
• PPO (Proximal Policy Optimization)
• ACKTR (Actor Critic Kronecker Factored Trust Region)

– Optimal control and reinforcement learning
• GPS (Guided Policy Search)

– Pure expert demonstration based learning
• Behavior cloning/Behavioural reflex

– Combined expert demonstration and reinforcement learning
• Maximum entropy deep Inverse reinforcement learning
• Guided Cost Learning (GCL)
• Generative Adversarial Imitation Learning (GAIL)

Manual Design of Control/Actions

Mediated Perception

- Segmentation and detection
- Depth and 3D understanding
- Estimating your posistion and

orientation (pose)
- Tracking and re-identification

Manually
designed

algorithm (policy)Input
 Image

ActionWorld
model

Deep Learning

Direct Perception

• Learn «Affordance Indicators» from input image
– Eg: Distance to the left lane/right lane, distance to the next car

• Use a manually designed algorithm to convert affordance
indicators to actions.

Perception

Manually
Designed
algorithm
(Policy)Input Image ActionAffordance

Indicators

Deep Learning

Expert Demonstrations Only

Behaviour Cloning

• A type of imitation learning
• Direct learning of the mapping between input observations and

actions
• Supervised learning problem with training data given by the expert

demonstrations
• Mostly applied in controlling autonomous vehicles

Policy

Expert Demonstrations

Observations Actions
Perception

Deep Learning

Issues of Behavioral Cloning

• Compounding Errors
• Due to supervised learning assuming iid samples

• Reactive Policies
• Ignore temporal dependencies (long term goals are not

considered)
• Blind imitation of the expert demonstrations

DAgger (Dataset Aggegation)

• Algorithm proposed to combat «compounding errors»
• Iteratively interleaves execution and training.

1. Use the expert demonstrations to train a policy
2. Use the policy to gather data
3. Label data using the expert
4. Add new data to the dataset
5. Train a new policy on new data (supervised learning)
6. Repeat from step 2

NVIDIA Deep Driving (Training)

NVIDIA Deep Driving (Testing)

CARLA- Car Learning to Act

• Conditional Imitation Learning.
• More than driving straight
• Supervised training with expert demonstrations

– Observertion = Forward Camera Image
– Command = follow the lane, straight, left, right
– Action= Steering parameters

Policy
Observation

Command
Action

Deep Learning

Reinforcement Learning with Optimal Control

Guided Policy Search (GPS)

• Reinforcement learning algorithm
• Use optimal control to find optimal state-action trajectories
• Use optimal-state action trajectories to guide policy learning.

Environment

Controller

PolicyPerception

Measurement

Action

State

Observation

● Consider an episode, of length T:

● Controller and environment dynamics
can define the trajectory

● Assume that each state-action pair is associated with a reward
(cost)

● We want to optimize the total cost

GPS Problem Formulation

GPS Problem Formulation
● We want to optimize the total cost

with respect to

● We also want that policy should give us the correct action:

● We can formulate the problem with Lagrange multipliers

How to Solve this Optimization?

● Use dual gradient descent:

1.

2.

3.

4. Repeat from 1

Dual Gradient Descent (DGD) Steps

● Step 1:

● This is a typical optimal control problem.

● Algorithms such as LQR (Linear Quadratic Regulator) can be
used.

● Using the current values of we can find the optimal
trajectory

● Step 2:

● Use the current values of we will optimize

● This is just supervised learning

GPS Summary

Reference: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-13.pdf

Combining Reinforcement Learning with Expert
Demonstrations

Inverse Reinforcement Learning (IRL)

● Motivation

● In reinforcement learning, we assume that a reward/cost function
is known (Manually designed reward function).

● However, in many real world applications the reward structure is
unclear.

● In inverse reinforcement learning, we learn the reward function
based on expert demonstrations.

IRL vs. RL

● Reinforcement Learning (RL)
● States and actions are drawn from a given set
● Direct interaction with the environment or an environment model is

known.
● Reward function is known
● Learn the optimal policy

● Inverse Reinforcement Learning (IRL)
● States and actions are drawn from a given set
● Direct interaction with the environment or an environment

model is known
● Expert demonstrations (state-action pairs generated by an expert) are

given
● Assume expert demonstrations are samples from an optimal policy
● Learn the reward function and then optimal policy .

Challenges of IRL

Expert
Demonstrations

Inverse Reinforcement Learning

Reward

()Policy

)(State s ()Action a

● Ill-posed problem

● Expert demonstrations are not drawn from the optimal policy

Maximum Entropy IRL

● Trajectory

● Expert demonstrations

● Reward

● Define the probability of a given trajectory as

where

● Objective of maximum entropy IRL is to maximize the probability of expert demonstrations with
respect to

Maxent IRL Optimization with Dynamic
Programming

Maxent IRL Optimization with Dynamic
Programming

● But by definition

● Therefore the second term becomes

● We can compute this at the state level, rather than at the trajectory level

● We can use dynamic programming to calculate

Maxent IRL Optimization with Dynamic
Programming

● We calculate = probability of visiting state

● Assume probability of visiting state at t=t is

● Then by the rules of dynamic programming

● Then

● This procedure is expensive if the number of states of the system is large.

Maxent IRL Optimization with Dynamic
Programming

● The whole algorithm

1. Gather demonstrations

2. Initialize

3. Find the optimal policy with the reward function
(standard RL)

4. Find state visitation frequency (dynamic programming
procedure)

5. Compute gradient

6. Update with gradient ascent

7. Repeat from step 3

Maxent IRL Optimization with Sampling

● Dynamic programming approach not suitable for

● Large state-spaces

● Unknown dynamics

● The problem is the denominator (Partition function)

● Use sampling to estimate instead of exact calculation: Guided
Cost Learning (GCL).

Guided Cost Learning (GCL)
● Start with the log likelihood (per trajectory) of the expert trajectories

● Substituting we get

● In notation used in paper (and),

● Partition function Z is given by where
is a uniform distribution.

● Z is an expectation and therefore, we approximate Z by using M samples drawn from a proposal
distribution

Guided Cost Learning (GCL)

● We obtain gradients of wrt

● Where and

● If is implemented using a neural network we can back-
propagate

● If

● If

Guided Cost Learning (GCL) Summary

Reference: https://arxiv.org/pdf/1603.00448.pdf

Guided Cost Learning (GCL) Summary

Similarity to Generative Adversarial Networks
(GANs)

Generator
(G)

Discriminator
 (D)

Noise z

Generated signal x

Data

Similarity to Generative Adversarial Networks
(GANs)

GCL GAN

Trajectory Sample

Policy Generator

Reward Discriminator

Expert demonstrations Real data (eg: real images)

● It can be proved that generator and discriminator loss functions for the
GCL have a similar form to those of GAN

Generative Adversarial Imitation Learning (GAIL)

● Very similar to GCL

● But does not aim to learn a reward function, instead it uses a
classifier (discriminator)

● Trajectory samples are drawn using the TRPO (Trust Region Policy
Optimization) algorithm

GCL vs GAIL

Reference: http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_12_irl.pdf

Thank You

	Slide 1
	Robotics = Physical Autonomous Systems
	Designing Autonomous System Intelligence
	Reinforcement Learning
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Weaknesses of Reinforcement Learning
	Main Approaches
	Slide 11
	Mediated Perception
	Direct Perception
	Slide 14
	Behaviour Cloning
	Slide 16
	DAgger (Dataset Aggegation)
	NVIDIA Deep Driving (Training)
	NVIDIA Deep Driving (Testing)
	CARLA- Car Learning to Act
	Slide 21
	Guided Policy Search (GPS)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

