Forsvarets forskningsinstitutt

Deep Learning for Control in Robotics

Narada Warakagoda

Robotics = Physical Autonomous Systems

- An autonomous system is a system that can auotomatically perform a predefined set of tasks under real world conditions
- Examples:
 - Autonomous vehicles (navigation)
 - Autonomous manipulator systems (manipulation)

Designing Autonomous System Intelligence

- Main components
 - Understand/Interpret the sensor signals
 - Plan appropriate actions
- Going from manual design to automatic learning

Reinforcement Learning

• We can cast the learning problem as a reinforcement learning problem

Example 1 (Manipulation)

Controlling robotic arm

Example 2 (Navigation)

• Controlling an autonomous vehicle

Learnable Modules

- Policy/Control (state-to-action)
- Perception (observations-to-state)
- Policy+Perception (observations-to-action)
- Environment model (action+ current state -to- next state)
- Reward function (action+ current state -to- reward/cost)
- Expected rewards (Value functions Q, V)

Learning Perception vs. Control

- Data distribution
 - Perception learning uses iid assumption and it is reasonable
 - Control learning cannot use iid assumption, because data are correlated.
 - Errors can grow: compounding errors
- Supervision signal
 - Perception learning can be based on supervised learning
 - Control learning with direct supervision is not straight-forward.
- Data collection
 - Perception learning can use offline data
 - Control learning with offline data is difficult
 - Simulators
 - Can lead to realty gap

Weaknesses of Reinforcement Learning

- Learning through mostly trial and error
 - High cost in terms of time and resources
- Need a suitable reward function (manually designed)
 - In many cases designing reward function difficult

Try to exploit other information in learning instead of or in addition to reinforcement learning

- Expert demonstrations
- Optimal control

Main Approaches

- Manual design of actions (Learn perception only)
 - Mediated Perception
 - Direct Perception
- Learn actions (policy)
 - Pure reinforcement learning
 - DQN (Deep Q-Network)
 - DDPG (Deep Deterministic Policy Gradient)
 - NAF (Normalized Advantage Function)
 - A3C (Asynchronous Advantage Actor Critic)
 - TRPO (Trust Region Policy Optimisation)
 - PPO (Proximal Policy Optimization)
 - ACKTR (Actor Critic Kronecker Factored Trust Region)
 - Optimal control and reinforcement learning
 - GPS (Guided Policy Search)
 - Pure expert demonstration based learning
 - Behavior cloning/Behavioural reflex
 - Combined expert demonstration and reinforcement learning
 - Maximum entropy deep Inverse reinforcement learning
 - Guided Cost Learning (GCL)
 - Generative Adversarial Imitation Learning (GAIL)

Manual Design of Control/Actions

Mediated Perception

Direct Perception

- Learn «Affordance Indicators» from input image
 - Eg: Distance to the left lane/right lane, distance to the next car
- Use a manually designed algorithm to convert affordance indicators to actions.

Expert Demonstrations Only

Behaviour Cloning

- A type of imitation learning
- Direct learning of the mapping between input observations and actions
- Supervised learning problem with training data given by the expert demonstrations
- Mostly applied in controlling autonomous vehicles

Issues of Behavioral Cloning

- Compounding Errors
 - Due to supervised learning assuming iid samples
- Reactive Policies
 - Ignore temporal dependencies (long term goals are not considered)
 - Blind imitation of the expert demonstrations

DAgger (Dataset Aggegation)

- Algorithm proposed to combat «compounding errors»
- Iteratively interleaves execution and training.

- 1. Use the expert demonstrations to train a policy
- 2. Use the policy to gather data
- 3. Label data using the expert
- 4. Add new data to the dataset
- 5. Train a new policy on new data (supervised learning)
- 6. Repeat from step 2

NVIDIA Deep Driving (Training)

NVIDIA Deep Driving (Testing)

CARLA- Car Learning to Act

- Conditional Imitation Learning.
- More than driving straight
- Supervised training with expert demonstrations
 - Observertion = Forward Camera Image
 - Command = follow the lane, straight, left, right
 - Action= Steering parameters

Reinforcement Learning with Optimal Control

Guided Policy Search (GPS)

Reinforcement learning algorithm

ingsinstitutt

- Use optimal control to find optimal state-action trajectories
- Use optimal-state action trajectories to guide policy learning.

GPS Problem Formulation

• Consider an episode, of length T:

$$au = [\mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, \mathbf{u}_2, \mathbf{x}_3, \mathbf{u}_3, \dots, \mathbf{x}_T, \mathbf{u}_T]$$

- Controller $p(\pmb{u}_t|\pmb{x}_t)$ and environment dynamics $p(\pmb{x}_{t+1}|\pmb{x}_t,\pmb{u}_t)$ can define the trajectory τ
- Assume that each state-action pair is associated with a reward (cost) $c_t = c(\pmb{x}_t, \pmb{u}_t)$
- We want to optimize the total cost

$$c(\tau) = \sum_{t=1}^{T} c(\boldsymbol{x}_t, \boldsymbol{u}_t)$$

GPS Problem Formulation

• We want to optimize the total cost

$$c(\tau) = \sum_{t=1}^{T} c(\boldsymbol{x}_t, \boldsymbol{u}_t)$$

with respect to $\, au \,$

• We also want that policy should give us the correct action:

$$\boldsymbol{u}_t = \pi_{\theta}(\boldsymbol{x}_t)$$

• We can formulate the problem with Lagrange multipliers

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$
$$\bar{\mathcal{L}}(\tau,\theta,\lambda) = c(\tau) + \sum_{t=1}^T \lambda_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t)$$

How to Solve this Optimization?

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$
$$\bar{\mathcal{L}}(\tau,\theta,\lambda) = c(\tau) + \sum_{t=1}^T \lambda_t(\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t)$$

• Use dual gradient descent:

1. Find
$$\tau \leftarrow \arg \min_{\tau} \bar{\mathcal{L}}(\tau, \theta, \lambda)$$

2. Find $\theta \leftarrow \arg \min_{\theta} \bar{\mathcal{L}}(\tau, \theta, \lambda)$
3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$ where $g = \bar{\mathcal{L}}(\tau^*, \theta^*, \lambda)$

4. Repeat from 1

Dual Gradient Descent (DGD) Steps

- Step 1: Find $\tau \leftarrow \arg \min_{\tau} \bar{\mathcal{L}}(\tau, \theta, \lambda)$
 - This is a typical optimal control problem.
 - Algorithms such as LQR (Linear Quadratic Regulator) can be used.
 - Using the current values of $\,\lambda,\theta\,$ we can find the optimal trajectory τ
- Step 2: Find $\theta \leftarrow \arg \min_{\theta} \overline{\mathcal{L}}(\tau, \theta, \lambda)$
 - Use the current values of $\, au,\lambda\,$ we will optimize

$$\bar{\mathcal{L}}(\tau, \theta, \lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t (\pi_\theta(\mathbf{x}_t) - \mathbf{u}_t)$$

This is just supervised learning

$$\sum_{t=1}^T \pi_{\theta}(\boldsymbol{x}_t) - \boldsymbol{u}_t$$

GPS Summary

Reference: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-13.pdf

FFF Forsvarets forskningsinstitutt

Combining Reinforcement Learning with Expert Demonstrations

Inverse Reinforcement Learning (IRL)

- Motivation
 - In reinforcement learning, we assume that a reward/cost function is known (Manually designed reward function).
 - However, in many real world applications the reward structure is unclear.
 - In inverse reinforcement learning, we learn the reward function based on expert demonstrations.

IRL vs. RL

- Reinforcement Learning (RL)
 - States $oldsymbol{x}$ and actions $oldsymbol{u}$ are drawn from a given set
 - Direct interaction with the environment or an environment model is known. $p(x_{t+1}|x_t, u_t)$
 - Reward function $r_{\psi}(\pmb{x},\pmb{u})$ is known
 - Learn the optimal policy $\pi^{\star}(\boldsymbol{u}|\boldsymbol{x})$
- Inverse Reinforcement Learning (IRL)
 - States and actions are drawn from a given set
 - Direct interaction with the environment or an environment model is known
 - Expert demonstrations (state-action pairs generated by an expert) are given $\tau_i = [\mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, \mathbf{u}_2, \mathbf{x}_3, \mathbf{u}_3, \dots, \mathbf{x}_T, \mathbf{u}_T]$
 - Assume expert demonstrations are samples from an optimal policy
 - Learn the reward function $r_\psi(\pmb{x},\pmb{u})$ and then optimal policy $\pi^\star(\pmb{u}|\pmb{x})$.

Challenges of IRL

- Ill-posed problem
- Expert demonstrations are not drawn from the optimal policy

Maximum Entropy IRL

- Trajectory $au_i = [\mathbf{x}_1^i, \mathbf{u}_1^i, \mathbf{x}_2^i, \mathbf{u}_2^i, \mathbf{x}_3^i, \mathbf{u}_3^i, \dots, \mathbf{x}_T^i, \mathbf{u}_T^i]$
- Expert demonstrations $\mathcal{D} = \{ au_i\}$

• Reward
$$R_{\psi}(\tau) = \sum_{t} r_{\psi}(\boldsymbol{x}_{t}, \boldsymbol{u}_{t})$$

• Define the probability of a given trajectory as

$$p(\tau) = \frac{1}{Z} \exp(R_{\psi}(\tau))$$
$$Z = \sum \exp(R_{\psi}(\tau))$$

 $\tau \in \mathcal{D}_{all}$

where

- Objective of maximum entropy IRL is to maximize the probability of expert demonstrations with respect to $\ \psi$

$$\mathcal{L}(\psi) = \sum_{\tau \in \mathcal{D}} \log p_{r_{\psi}}(\tau)$$

Maxent IRL Optimization with Dynamic Programming

$$\begin{split} \max_{\psi} \mathcal{L}(\psi) &= \sum_{\tau \in \mathcal{D}} \log p_{r_{\psi}}(\tau) \\ &= \sum_{\tau \in \mathcal{D}} \log \frac{1}{Z} \exp(R_{\psi}(\tau)) \\ &= \sum_{\tau \in \mathcal{D}} R_{\psi}(\tau) - M \log Z \\ &= \sum_{\tau \in \mathcal{D}} R_{\psi}(\tau) - M \log \sum_{\tau} \exp(R_{\psi}(\tau)) \end{split}$$

$$\nabla_{\psi} \mathcal{L}(\psi) = \sum_{\tau \in \mathcal{D}} \frac{dR_{\psi}(\tau)}{d\psi} - M \frac{1}{\sum_{\tau} \exp(R_{\psi}(\tau))} \sum_{\tau} \exp(R_{\psi}(\tau)) \frac{dR_{\psi}(\tau)}{d\psi}$$

Maxent IRL Optimization with Dynamic Programming

$$\nabla_{\psi} \mathcal{L}(\psi) = \sum_{\tau \in \mathcal{D}} \frac{dR_{\psi}(\tau)}{d\psi} - M \frac{1}{\sum_{\tau} \exp(R_{\psi}(\tau))} \sum_{\tau} \exp(R_{\psi}(\tau)) \frac{dR_{\psi}(\tau)}{d\psi}$$

• But by definition
$$\frac{1}{\sum_{\tau} \exp(R_{\psi}(\tau))} \exp(R_{\psi}(\tau)) = p(\tau)$$

- Therefore the second term becomes $-M\sum_{\tau}p(\tau)\frac{dR_{\psi}(\tau)}{d\psi}$
- We can compute this at the state level, rather than at the trajectory level

$$-M\sum_{\pmb{x}} p(\pmb{x}) \frac{dr_{\psi}(\pmb{x})}{d\psi}$$

- We can use dynamic programming to calculate $~~p(oldsymbol{x})$

Maxent IRL Optimization with Dynamic Programming

- We calculate $p(\boldsymbol{x})$ = probability of visiting state \boldsymbol{x}
- Assume probability of visiting state $oldsymbol{x}$ at t=t is $p(oldsymbol{x},t)=\mu_t(oldsymbol{x})$ ٠
- Then by the rules of dynamic programming ٠

$$\mu_{t+1}(\boldsymbol{x'}) = \sum_{\boldsymbol{u}} \sum_{\boldsymbol{x}} \mu_t(\boldsymbol{x}) \pi(\boldsymbol{u}|\boldsymbol{x}) p(\boldsymbol{x'}|\boldsymbol{x}, \boldsymbol{u})$$

Then

$$p(\boldsymbol{x'}) = \frac{1}{T} \sum_{t} \mu_t(\boldsymbol{x'})$$

This procedure is expensive if the number of states of the system is large. ٠

Maxent IRL Optimization with Dynamic Programming

- The whole algorithm
 - 1. Gather demonstrations $\, \mathcal{D} \,$
 - 2. Initialize ψ
 - 3. Find the optimal policy $\pi(\pmb{u}|\pmb{x})$ with the reward function $~r_\psi$ (standard RL)
 - 4. Find state visitation frequency $p(\boldsymbol{x})$ (dynamic programming procedure)
 - 5. Compute gradient $\nabla_{\psi} \mathcal{L}$

$$_{\psi}\mathcal{L} = \sum_{\tau \in \mathcal{D}} \frac{dR_{\psi}}{d\psi}(\tau) - M \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \frac{dr_{\psi}}{d\psi}(\boldsymbol{x})$$

- 6. Update ψ with gradient ascent
- 7. Repeat from step 3

Maxent IRL Optimization with Sampling

- Dynamic programming approach not suitable for
 - Large state-spaces
 - Unknown dynamics
- The problem is the denominator (Partition function) Z

$$p(\tau) = \frac{1}{Z} \exp(R_{\psi}(\tau))$$
$$Z = \sum_{\tau \in \mathcal{D}_{all}} \exp(R_{\psi}(\tau))$$

• Use sampling to estimate Z instead of exact calculation: Guided Cost Learning (GCL).

Guided Cost Learning (GCL)

• Start with the log likelihood (per trajectory) of the expert trajectories

$$\mathcal{L}(\psi) = \frac{1}{N} \sum_{\tau \in \mathcal{D}} \log p_{r_{\psi}}(\tau)$$

• Substituting
$$p(\tau) = \frac{1}{Z} \exp(R_{\psi}(\tau))$$
 we get $\mathcal{L}(\psi) = \frac{1}{N} \sum_{\tau \in \mathcal{D}} R_{\psi}(\tau) + \log Z$

- In notation used in paper ($\psi = \theta$ and R = -c), $\mathcal{L}_{\text{IOC}}(\theta) = \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} c_{\theta}(\tau_i) + \log Z$
- Partition function Z is given by $Z = \sum_{\tau \in D_{all}} \exp(-c_{\theta}(\tau)) = \sum_{\tau \in D_{all}} \exp(-c_{\theta}(\tau))p(\tau)$ where $p(\tau)$ is a uniform distribution.
- Z is an expectation and therefore, we approximate Z by using M samples drawn from a proposal distribution $q(\tau)$

$$\mathcal{L}_{\text{IOC}}(\theta) \approx \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} c_{\theta}(\tau_i) + \log \frac{1}{M} \sum_{\tau_j \in \mathcal{D}_{\text{samp}}} \frac{\exp(-c_{\theta}(\tau_j))}{q(\tau_j)}$$

Guided Cost Learning (GCL)

• We obtain gradients of $\mathcal{L}_{IOC}(\theta)$ wrt θ

$$\frac{d\mathcal{L}_{\text{IOC}}}{d\theta} = \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} \frac{dc_{\theta}}{d\theta}(\tau_i) - \frac{1}{Z} \sum_{\tau_j \in \mathcal{D}_{\text{samp}}} w_j \frac{dc_{\theta}}{d\theta}(\tau_j)$$

• Where
$$w_j = rac{\exp(-c_{\theta}(\tau_j))}{q(\tau_j)}$$
 and $Z = \sum_j w_j$

- If $c_{\theta}(\tau)$ is implemented using a neural network we can back-propagate

•
$$rac{1}{N}$$
 If $au_i \in \mathcal{D}_{ ext{demo}}$

•
$$-\frac{w_j}{Z}$$
 If $\tau_i \in \mathcal{D}_{\mathrm{samp}}$

Guided Cost Learning (GCL) Summary

Reference: https://arxiv.org/pdf/1603.00448.pdf

Guided Cost Learning (GCL) Summary

Algorithm 1 Guided cost learning

- 1: Initialize $q_k(\tau)$ as either a random initial controller or from demonstrations
- 2: for iteration i = 1 to I do
- 3: Generate samples $\mathcal{D}_{\text{traj}}$ from $q_k(\tau)$
- 4: Append samples: $\mathcal{D}_{samp} \leftarrow \mathcal{D}_{samp} \cup \mathcal{D}_{traj}$
- 5: Use \mathcal{D}_{samp} to update cost c_{θ} using Algorithm 2
- 6: Update $q_k(\tau)$ using $\mathcal{D}_{\text{traj}}$ and the method from (Levine & Abbeel, 2014) to obtain $q_{k+1}(\tau)$
- 7: end for
- 8: **return** optimized cost parameters θ and trajectory distribution $q(\tau)$

Algorithm 2 Nonlinear IOC with stochastic gradients

- 1: for iteration k = 1 to K do
- 2: Sample demonstration batch $\hat{\mathcal{D}}_{demo} \subset \mathcal{D}_{demo}$
- 3: Sample background batch $\hat{\mathcal{D}}_{samp} \subset \mathcal{D}_{samp}$
- 4: Append demonstration batch to background batch: $\hat{\mathcal{D}}_{samp} \leftarrow \hat{\mathcal{D}}_{demo} \cup \hat{\mathcal{D}}_{samp}$
- 5: Estimate $\frac{d\mathcal{L}_{IOC}}{d\theta}(\theta)$ using $\hat{\mathcal{D}}_{demo}$ and $\hat{\mathcal{D}}_{samp}$
- 6: Update parameters θ using gradient $\frac{d\mathcal{L}_{\text{IOC}}}{d\theta}(\theta)$
- 7: end for
- 8: return optimized cost parameters θ

Similarity to Generative Adversarial Networks (GANs)

$$\mathcal{L}_{\text{discriminator}}(D) = \mathbb{E}_{\mathbf{x} \sim p} \left[-\log D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim G} \left[-\log(1 - D(\mathbf{x})) \right]$$
$$\mathcal{L}_{\text{generator}}(G) = \mathbb{E}_{\mathbf{x} \sim G} \left[-\log D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim G} \left[\log(1 - D(\mathbf{x})) \right]$$

Similarity to Generative Adversarial Networks (GANs)

GCL	GAN
Trajectory $ au$	Sample x
Policy π	Generator G
Reward $r = -c$	Discriminator D
Expert demonstrations	Real data (eg: real images)

• It can be proved that generator and discriminator loss functions for the GCL have a similar form to those of GAN

Generative Adversarial Imitation Learning (GAIL)

- Very similar to GCL
- But does not aim to learn a reward function, instead it uses a classifier (discriminator)
- Trajectory samples are drawn using the TRPO (Trust Region Policy Optimization) algorithm

Algorithm 1 Generative adversarial imitation learning

- 1: Input: Expert trajectories $\tau_E \sim \pi_E$, initial policy and discriminator parameters θ_0, w_0
- 2: for $i = 0, 1, 2, \dots$ do
- 3: Sample trajectories $\tau_i \sim \pi_{\theta_i}$
- 4: Update the discriminator parameters from w_i to w_{i+1} with the gradient

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))]$$
(17)

5: Take a policy step from θ_i to θ_{i+1} , using the TRPO rule with cost function $\log(D_{w_{i+1}}(s, a))$. Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} \left[\nabla_\theta \log \pi_\theta(a|s) Q(s,a) \right] - \lambda \nabla_\theta H(\pi_\theta),$$
where $Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{\tau_i} [\log(D_{w_{i+1}}(s,a)) \mid s_0 = \bar{s}, a_0 = \bar{a}]$
(18)

6: end for

GCL vs GAIL

Guided Cost Learning **ICML 2016** minimized maximized reward function human demonstrations robot attempt

Generative Adversarial Imitation Learning Ho & Ermon, NIPS 2016

Reference: http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_12_irl.pdf

Thank You