Generative neural networks

Sigmund Rolfsjord

Practical

INF5860 - searching for teaching assistants (spring 2019)

https://www.uio.no/studier/emner/matnat/ifi/INF5 860/v18/ Overview of wasserstein GAN:

https://medium.com/@jonathan_hui/gan-wasser stein-gan-wgan-gp-6a1a2aa1b490

Generating data with deep networks

We are already doing it.

- How to make it "look" realistic
- What loss function can we optimize

Autoencoders

- A neural network transforming the input
- Often into a smaller dimension

Autoencoders

- A neural network transforming the input
- Often into a smaller dimension
- Then a decoder network reconstructs the input

Old idea Modular Learning in Neural Networks 1987, Ballard

Autoencoders - Generating images

- A neural network transforming the input
- Often into a smaller dimension
- Then a decoder network reconstructs the input

- With different values of Z, you can generate new images

Autoencoders

- A neural network transforming the input
- Often into a smaller dimension
- Then a decoder network reconstructs the input
- Restrictions are put on **z** either through loss functions, or **size**

- Often used with convolutional architectures for images

Autoencoders

- Restrictions are put on **z** either through loss functions, or **size**
- Often minimizing I2 loss:

$$L(x) = (x - x^*)^2$$

Autoencoders - Semi-supervised learning

- The encoded feature is sometimes used as features for supervised-learning

Autoencoders - Compressed representation

You don't have control over the features learned:

- Even though the features compress the data, they may not be good for categorization.

Pixel wise difference may not be relevant.

 Pixel wise a black cat on a red carpet, can be opposite from a white cat on green grass

Pixel wise difference may not be relevant.

- Pixel wise a black cat on a red carpet, can be opposite from a white cat on green grass
- The image is compressed through blurring, not concept abstraction

You don't have control over the features learned:

- Even though the features compress the data, they may not be good for categorization.
- Where should you sample Z?
 - Values of Z may only give reasonable results in some locations

Variational Autoencoder

Find the data distribution instead of reconstructing simple images

- Assume some prior distribution
- Use the encoder to estimate distribution parameters
- Sample a **z** from the distribution and try to reconstruct

Variational Autoencoder - loss function

Find the data distribution instead of reconstructing simple images

Often

- L2 loss between images
- KL-divergence between estimated distribution and prior distribution
 - Typically unit gaussian

Variational Autoencoder - loss function

Find the data distribution instead of reconstructing simple images

Often

- L2 loss between images
- KL-divergence between estimated distribution and prior distribution
 - Typically unit gaussian

Alternatively:

- Decode image distribution
- Loss is then the log likelyhood of the inputed image, given the outputted distribution.

Variational Autoencoder - loss function

Find the data distribution instead of reconstructing simple images

- Force similar data into overlapping distribution
- To really separate some data, you need small variance
 - You pay a cost for lowering variance
 - Have to be weighted by gain in reconstruction
- You train the network to reconstruct "any" input
- Interpolating between samples should give viable results

Sample from distribution

Encoder

Variational Autoencoder

Interpolating between samples should give viable results

Deep Feature Consistent Variational Autoencoder

Variational Autoencoder - forcing sematics

Interpolating between samples should give viable results

We can insert specific information to do semi-supervised learning, and force the embedding to be what we want.

Deep Convolutional Inverse Graphics Network

Variational Autoencoder - compression

Perhaps not surprisingly, autoencoders work well for image compression.

End-to-end Optimized Image Compression

Variational Autoencoder - forcing sematics

Interpolating between samples should give viable results

We can insert specific information to do semi-supervised learning, and force the embedding to be what we want.

Transformation-Grounded Image Generation Network for Novel 3D View Synthesis

Variational Autoencoder - Clustering

- One option is to use k-means clustering on the reduced dimension
- An alternative is to make your prior distribution multimodal
- So your encoder has to put the encoding close to one of the K predefined modes.

Variational Autoencoder - modelling the data

- Can be good at modelling how the data varies
- Generated results are often some sort of averaged images
 - Works well if averinging photos works

666 6 Do. 6 000 6 5 в 6 6 a 6 5 5

Generative adversarial networks (GAN)

- Two competing networks in one
- One Generator (G)
- One Discriminator (D)
- Generator knows how to change in order to better fool the discriminator

- Input of generator network is a random vector
- Sampled with some strategy

Discriminator maximizes:

$$rac{1}{m}\sum_{i=1}^m \log D(x^{(i)}) + rac{1}{m}\sum_{i=1}^m \log(1-D(g_ heta(z^{(i)})))$$

Generator minimizes:

$$rac{1}{m}\sum_{i=1}^m \log(1-D(g_ heta(z^{(i)})))$$

Discriminator maximizes:

$$rac{1}{m}\sum_{i=1}^m \log D(x^{(i)}) + rac{1}{m}\sum_{i=1}^m \log(1-D(g_ heta(z^{(i)})))$$

Generator minimizes:

$$rac{1}{m}\sum_{i=1}^m \log(1-D(g_ heta(z^{(i)})))$$

How do you know that you are improving?

What does *z* mean, if anything

The network is trained to:

- Generate a feasible image for all possible values of *z*

A manifold representation view

- Since all *z* are "valid" images, it means we have found a transformation from the image manifold to pixel space

A manifold representation view

- Since all *z* are "valid" images, it means we have found a transformation from the image manifold to pixel space
- Or at least an approximation...

Moving along the manifold

- Small changes in input generally generally give small changes in output
- This means that you can interpolate between *z* vectors and get gradual changes in images

Moving along the manifold

- Similar results as variational autoencoder
- Interesting arithmetic effects
- May be an effect of the way networks effectively stores representations... *shared*
- Still some work to find representational vectors

Looking into the Z-vector

- Manual work to find "glasses" representation etc.
- Need multiple examples

Conditional image generation

(a) StackGAN Stage-I 64x64 images This bird is white with some black on its head and wings, and has a long orange beak This bird ha yellow belly tarsus, grey wings, and b throat, nape a black face

This bird has a
yellow belly and
tarsus, grey back,
wings, and brown
throat, nape with
a black faceThis flower has
overlapping pink
pointed petals
surrounding a ring
of short yellow
filaments

Generated images

StackGAN

Generated images

This bird is white with some black on its head and wings, and has a long orange beak

This bird has a This flower has yellow belly and overlapping pink tarsus, grey back, pointed petals wings, and brown surrounding a ring throat, nape with of short yellow a black face filaments

(a) StackGAN Stage-I 64x64 images

(b) StackGAN Stage-II 256x256 images

(c) Vanilla GAN 256x256 images

StackGAN

Generated images

StackGAN

InfoGAN - Unsupervised

Add code: Input a code in addition to the random noise

InfoGAN - Unsupervised

- 1. Add code
- Guess c: Let the discriminator network also estimated a probability distribution of the code (given G(x,c))

InfoGAN - Unsupervised

- 1. Add code
- 2. Guess c
- Favors generated images that clearly show it's code

Adding a regularization loss, basically guessing code:

 $\lambda L_I(G,Q)$

8 \boldsymbol{Q} 6 8 6 8 5 ь 345678 9 9 9

(a) Varying c_1 on InfoGAN (Digit type)

(b) Varying c_1 on regular GAN (No clear meaning)

8 3 3 3 3 3 З 3 3 ⊰ 3 ≺ ≺ --4 5 0

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

(a) Azimuth (pose) (b) Elevation

(a) Azimuth (pose)

(b) Presence or absence of glasses

(c) Hair style

(d) Emotion

At least seems to work for data with clear modes of variance.

A manifold representation view

- Unfortunately it is not representing the whole manifold
- Not even your dataset

Generative adversarial networks (GAN)

Problems and improvements

A problem with standard GAN approach

- Imagine that the distribution in the eye of the **Discriminator** is overlapping
- So green is the true population
- Then the **Discriminator** know that it should *enhance* features moving the generated to the left
- The **Generator** know it should enhance features moving the distribution to the right

A problem with standard GAN approach

We can view adversarial learning as trying to move the output distribution of the **discriminator**.

The **generator** moves the distribution to overlap with the real images.

But what about this scenario?

But what about this scenario?

- Overlap is less than noise level

But what about this scenario?

- The discriminator cannot improve because it is already "perfect" 0 loss
- There are no "small-step" that can improve the generator
 - Of course we know it should move to the right...
 - But *gradient descent* can only see in very small steps (short sighted)

 Don't use a standard classification loss (softmax cross-entropy)

Wasserstein GAN

- Don't use a standard classification loss (softmax cross-entropy)
- 2. Simply let the generator maximize the distance from the mean of the generated examples for each real sample

Wasserstein GAN

- Don't use a standard classification loss (softmax cross-entropy)
- 2. Simply let the generator maximize the distance from the mean of the generated examples for each real sample
- Without constraints this would favour to just to spread everything out (large weights)

Wasserstein GAN

- Don't use a standard classification loss (softmax cross-entropy)
- 2. Simply let the generator maximize the distance from the mean of the generated examples for each real sample
- Without constraints this would favour to just to spread everything out (large weights)
- 4. Clip the weights with a constant to avoid this.

Wasserstein GAN

Discriminator loss:

- Simply making output from *true images* give high values and from *false images* low values

Generator loss:

- False images should give high values
- Putting the examples where the *true images* are.

Discriminator loss

$$g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$$

Generator loss

$$g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_w(g_{\theta}(z^{(i)}))$$

WGAN - Nasty gradient clipping

- WGAN performance is very dependent on the clipping constant
- Clipping the weights will drastically increase training time

Improved Training of Wasserstein GANs

WGAN - Nasty gradient clipping

- WGAN performance is very dependent on the clipping constant
- Clipping the weights will drastically increase training time
- Adding an additional cost to the gradient size, improves this
- Restricting the "movement" of the discriminator

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

Improved Training of Wasserstein GANs

Improved WGAN blog post

Generative adversarial networks (GAN)

More examples

 Unpaired images from two different domains

<u>Unpaired Image-to-Image</u> <u>Translation using</u> <u>Cycle-Consistent</u> Adversarial Networks

- 1. Unpaired images from two different domains
- 2. Use image from one domain as Z

- Unpaired images from two different domains
- 2. Use image from one domain as Z
- Generate image from the other domain

<u>Unpaired Image-to-Image</u> <u>Translation using</u> <u>Cycle-Consistent</u> <u>Adversarial Networks</u>

- Unpaired images from two different domains
- 2. Use image from one domain as Z
- Generate image from the other domain
- 4. Align images with cycle consistency loss

Cycle consistency loss:

 $\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1] \\ + \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1].$

 $\begin{aligned} \mathcal{L}(G, F, D_X, D_Y) = & \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) \\ &+ \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) \\ &+ \lambda \mathcal{L}_{\text{cyc}}(G, F), \end{aligned}$

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks CycleGAN blog

An awesome application - A case study

- Using GAN for photo editing
- A reverse mapping from image space to closest point on manifold

Finding the closest point on the manifold

- Train a network to predict the embedding of a generated image
- Use that network to find an embedding z
- Optimize/train that *z* vector to minimize *mean squared error*

Profit!

Church

Church

Natural Outdoor
GANs still have problems with context

On more complex image domains (ImageNet), GANs often show problems with context. Multiple heads, legs and deformed figures.

Figure 10: ImageNet 256 × 256 generations using an EBGAN-PT.

Energy-Based Generative Adverserial Networks

Attention to improve context

- For each pixel location, compute an attention map
- 2. Multiply each attention map with input features
- Use attention in top layer of both generator and discriminator
- 4. Train GAN as normal

Self-Attention Generative Adversarial Networks

Non-local Neural Networks

Attention to improve context

Inspection of attention maps for generator:

- For generating legs, the model looks at both the length and neighbour leg
- Looks at relevant context...

Self-Attention Generative Adversarial Networks

Non-local Neural Networks

Self-Attention GANs - examples

Self-Attention Generative Adversarial Networks

Self-Attention GANs - Tuning and increasing batch size

Large Scale GAN Training For High Fidelity Natural Image Synthesis

GANs - Fun, but difficult

Fun:

- Give a lot of opportunities
- Losses that are otherwise impossible or hard

Hard to train

- Discriminator win
- Training longer can make it worse
- Bigger models can be worse than smaller
- More data, does not improve the model