Generative neural networks
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Practical
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(spring 2019)
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Generating data with deep networks

We are already doing it. X

- How to make it “look” realistic @
- What loss function can we optimize

Neural
network

N
Y



Autoencoders

- A neural network transforming the input
- Often into a smaller dimension

- U Encoder
SEFASE]E
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Autoencoders

- A neural network transforming the input

- Often into a smaller dimension

- Then a decoder network reconstructs the
input

X
*

Old idea Modular Learning in Neural Networks

1987, Ballard U .
Z
Encoder



https://dl.acm.org/citation.cfm?id=1863746
https://dl.acm.org/citation.cfm?id=1863746

Autoencoders - Generating images

- A neural network transforming the input

- Often into a smaller dimension

- Then a decoder network reconstructs the
input

- With different values of Z, you can
generate new images

Decoder




Autoencoders

- A neural network transforming the input

- Often into a smaller dimension

- Then a decoder network reconstructs the
input

- Restrictions are put on z either through
loss functions, or size

X
*

H Decoder
- Often used with convolutional y 4
architectures for images
— U Encoder
B2 =1 b el
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Autoencoders

Restrictions are put on z either through
loss functions, or size
Often minimizing 12 loss:

X
*

L(z) = (z — zx)*

H Decoder
Z
| . U Encoder
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Autoencoders - Semi-supervised learning

- The encoded feature is sometimes used
as features for supervised-learning y

X
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H Decoder
Z
U Encoder
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Autoencoders - Compressed representation

X
*

H Decoder
Compressed representation \
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Autoencoders - Some challenges

You don’t have control over the features

learned: y

- Even though the features compress the
data, they may not be good for
categorization.

X
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Autoencoders - Some challenges

Pixel wise difference may not be relevant.

- Pixel wise a black cat on a red carpet, can
be opposite from a white cat on green
grass




Autoencoders - Some challenges

Pixel wise difference may not be relevant.

- Pixel wise a black cat on a red carpet, can
be opposite from a white cat on green
grass

- The image is compressed through
blurring, not concept abstraction




Autoencoders - Some challenges

You don’t have control over the features
learned:

- Even though the features compress the
data, they may not be good for
categorization.

X
*

- Where should you sample Z? Decoder
- Values of Z may only give reasonable
results in some locations
U Encoder
B & R
Hae ﬂﬁlﬂ&ﬂ X




Variational Autoencoder

Find the data distribution instead of

*
reconstructing simple images X
- Assume some prior distribution Sample
- Use the encoder to estimate distribution from
parameters distribution
- Sample a z from the distribution and try to
reconstruct p 9]

Encoder




Variational Autoencoder - loss function

Find the data distribution instead of

o . *
reconstructing simple images X
Often Sample
from
- L2 loss between images distribution
- KL-divergence between estimated
distribution and prior distribution p O
- Typically unit gaussian
Encoder

E. [logpo(a? | 2)| ~ Dici(as(z | o) || po(2))



Variational Autoencoder - loss function

Find the data distribution instead of
reconstructing simple images

Often

- L2 loss between images
- KL-divergence between estimated

distribution and prior distribution
- Typically unit gaussian

Alternatively:

- Decode image distribution

- Loss is then the log likelyhood of the
inputed image, given the outputted
distribution.

E. |log pg(

XM* Xo*

Sample
from
distribution

u o

.‘l.'(i )

Encoder

X

|2)| = Dci(ao(z | 22) | pa(2))



Variational Autoencoder - loss function

x*
Find the data distribution instead of

reconstructing simple images / \

- Force similar data into overlapping Sample
distribution fr.om. _
distribution

- Toreally separate some data, you need

small variance
- You pay a cost for lowering variance
- Have to be weighted by gain in
reconstruction Encoder

- You train the network to reconstruct “any”
input
- Interpolating between samples should give
viable results v




Variational Autoencoder

Add

Interpolating between samples should give
Smiling

viable results

Remove
Smiling

| Add
Eyeglass

Remove
Eyeglass

Deep Feature Consistent Variational Autoencoder



https://arxiv.org/abs/1610.00291

Variational Autoencoder -

Interpolating between samples should give
viable results

We can insert specific information to do
semi-supervised learning, and force the
embedding to be what we want.

forcing sematics

Q(zilx)

graphics code

Unpooling (Nearest Neighbor) +
Convolution
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Deep Convolutional Inverse Graphics Network



https://arxiv.org/abs/1503.03167

Variational Autoencoder - compression

Perhaps not surprisingly, autoencoders work
well for image compression.

End-to-end Optimized Image Compression



https://arxiv.org/abs/1611.01704

Variational Autoencoder - forcing sematics

Interpolating between samples should give
viable results

We can insert specific information to do
semi-supervised learning, and force the
embedding to be what we want.
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Transformation-Grounded Image Generation
Network for Novel 3D View Synthesis



https://arxiv.org/abs/1703.02921
https://arxiv.org/abs/1703.02921

Variational Autoencoder - Clustering

Sample
from
distribution

- One option is to use k-means clustering on *
the reduced dimension X

- An alternative is to make your prior
distribution multimodal

- So your encoder has to put the encoding
close to one of the K predefined modes.

X

DEEP UNSUPERVISED CLUSTERING WITH GAUSSIAN
MIXTURE VARIATIONAL AUTOENCODERS



https://arxiv.org/abs/1611.02648
https://arxiv.org/abs/1611.02648

Variational Autoencoder - modelling the data
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Works well if averinging photos works

Generated results are often some sort of

Can be good at modelling how the data
averaged images

varies



Generative adversarial networks (GAN)



Generating images

- Two competing networks
in one

- One Generator (G)
- One Discriminator (D) 2~ N(0:1) \_ﬂ:_—::z\i’_;::::js |-

- Generator knows how to

change in order to better Generator Network
fool the discriminator

Discriminator Network

—< |

Gradient Gradient




Generating images

- Input of generator
network is a random

vector
i | RS | | AR AR | (B | DR KT D(2,¢(t))
- Sampled with some N0 \—0‘4 g EUEEEEES L O ARG . e e
strategy g\l O | e |

Generator Network Discriminator Network
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< Gradient

Gradient




Generating images

Discriminator maximizes:

— log D(z®) 4+ — _
;:1 og D(z*) + ;Zlﬁlog(l D(ge

Generator minimizes:

" log(1 — D(ge(=))

(=)

% :=G(z, (1))

Discriminator Network

_< ]

Gradient Gradient

Generator Network




Generating images

&:= Gz, (1))

Discriminator maximizes:

i . | i .
=) "log D(z¥) + =) "log(1 — (%)
m 2= og D(x )+m 2 og(1 — D(ge(2'")))

Generator Network

Generator minimizes: e . < '

Gradent Gradient

— > log(1 — D(gs(")))

X< %

How do you know that you are improving?




What does z mean, if anything

The network is trained to:

- Generate a feasible
image for all possible
values of z

2~ N(0,1) - g
5

Generator Network

Discriminator Network

—-<

Gradient Gradient



A manifold representation view

- Since all z are “valid” images, it means we
have found a transformation from the
image manifold to pixel space

& 1= G(z, @)

(&, 2 (1))

O




A manifold representation view

- Since all z are “valid” images, it means we
have found a transformation from the
image manifold to pixel space

- Or at least an approximation...

&= G (= ()
Do (8)

0,1 22550
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oo
Generator Network 4

Discriminator Network




Moving along the manifold
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Small changes in input generally generally

give small changes in output
This means that you can interpolate

between z vectors and get gradual

changes in images



Moving along the manifold

- Similar results as variational
autoencoder

- Interesting arithmetic effects

- May be an effect of the way
networks effectively stores
representations... shared

- Still some work to find
representational vectors

-H+[=

man man woman
with glasses without glasses without glasses

woman with glasses



Looking into the Z-vector

- Manual work to find “glasses”
representation etc.
- Need multiple examples

E

-H+[=

man man woman
with glasses without glasses without glasses

woman with glasses



Conditional image generation

Conditioning | | Stage-l GeneratorG, | ————
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(a) StackGAN
Stage-1
64x64

StackGAN images |


https://arxiv.org/abs/1612.03242

Generated images
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Generated images
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https://arxiv.org/abs/1612.03242

Generated images

StackGAN


https://arxiv.org/abs/1612.03242

InfoGAN - Unsupervised

Probability input is
real:
D(x) or D(G(z))

1. Add code: Input a Generator
e

code in addition to m/ Network

the random noise

G(z c) Network

Real Data
X

Estimation of ¢

InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets



https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf

InfoGAN - Unsupervised
1. Add code Generator

Neural

2. Guessc: Let the m/ P —

discriminator
network also
estimated a
probability Estimation of ¢
distribution of the

code (given G(x,c))

Probability input is
real:
D(x) or D(G(z))

G(z c) Network

Real Data
X

InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets



https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf

InfoGAN - Unsupervised

1.  Add code Generator Fake Dat Discriminator Probability input is
2 G Neural Neural real:
- uess ¢ m Network ' Network D(x) or D(G(z))

3. Favors generated
images that clearly
show it's code

Real Data
X

Estimation of ¢

Adding a regularization
loss, basically guessing
code:

InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets



https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf

InNfoGAN - Results

)

ing

InfoGAN (Digit type) (b) Varying c1 on regular GAN (No clear meani

(a) Varying c; on

2 to 2 on InfoGAN (Width)

(c) Varying c2 from —2 to 2 on InfoGAN (Rotation) (d) Varying c3 from

INfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets



https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf

InNfoGAN - Results
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InfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets



https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf

InNfoGAN - Results
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InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets
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InNfoGAN - Results
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INfoGAN: Interpretable Representation Learning by

(d) Emotion

() Hair style

Information Maximizing Generative Adversarial Nets
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A manifold representation view

- Unfortunately it is not representing the
whole manifold
- Not even your dataset

& 1= G(z, @)

©. 1 = h ] N = D (&> 2 (£))
oo
Generator Network N Discriminator Network




Generative adversarial networks (GAN)

Problems and improvements



A problem with standard GAN approach

- Imagine that the distribution in the eye of True
the Discriminator is overlapping Generated

- So green is the true population

- Then the Discriminator know that it
should enhance features moving the
generated to the left = ~

- The Generator know it should enhance
features moving the distribution to the right




A problem with standard GAN approach

We can view adversarial learning as trying to
move the output distribution of the Generated
discriminator.

True

The generator moves the distribution to overlap
with the real images.




But what about this scenario?

True




But what about this scenario?

- Overlap is less than noise level True




But what about this scenario?

- The discriminator cannot improve because
it is already “perfect” - O loss

- There are no “small-step” that can improve
the generator

- Of course we know it should move to the

right...
- But gradient descent can only see in very
small steps (short sighted)

Generated

True




An improved loss function (Wasserstein GAN)

1. Don’t use a standard classification loss True
(softmax cross-entropy)

Wasserstein GAN

A "simpified article"



https://arxiv.org/abs/1701.07875
http://www.alexirpan.com/2017/02/22/wasserstein-gan.html

An improved loss function (Wasserstein GAN)

1. Don’t use a standard classification loss Generated True
(softmax cross-entropy)

2. Simply let the generator maximize the
distance from the mean of the generated

examples for each real sample

Wasserstein GAN

A "simpified article"



https://arxiv.org/abs/1701.07875
http://www.alexirpan.com/2017/02/22/wasserstein-gan.html

An improved loss function (Wasserstein GAN)

1. Don’t use a standard classification loss Generated True
(softmax cross-entropy)

2. Simply let the generator maximize the
distance from the mean of the generated

examples for each real sample
3. Without constraints this would favour to

just to spread everything out (large
Weights) Wasserstein GAN

A "simpified article"



https://arxiv.org/abs/1701.07875
http://www.alexirpan.com/2017/02/22/wasserstein-gan.html

An improved loss function (Wasserstein GAN)

1. Don’t use a standard classification loss Generated True
(softmax cross-entropy)

2. Simply let the generator maximize the
distance from the mean of the generated

examples for each real sample
3. Without constraints this would favour to
just to spread everything out (large
Weights) Wasserstein GAN
4. Clip the weights with a constant to avoid
this.

A "simpified article"



https://arxiv.org/abs/1701.07875
http://www.alexirpan.com/2017/02/22/wasserstein-gan.html

An improved loss function (Wasserstein GAN)

Discriminator loss:

- Simply making output from frue images
give high values and from false images
low values

Generator loss:

- False images should give high values
- Putting the examples where the true
images are.

Generated

True

Discriminator loss

Juw < vw [1n Z"l fw(x(l ) m

Generator loss

go < Vo

iy fuw(ge(2))

ie1 fuw(g0(21))]



WGAN - Nasty gradient clipping

Weight clipping

. 2 — Weight clipping (¢ = 0.001)

- ®
WGAN performance is very dependent on g 101 Weight clipping (¢ = 0.01) /
the clipping constant & —— Weight clipping (c = 0.1)

- Clipping the Weights Wi” draStiCa”y :E/ ()- Gradiont penalty —002 —0.01 0.00 0.01 0.02
. . . . — Weights
increase training time s L

=]

+ —107

=

=

g

= —201

O T T T T T —-0.50 —0.25 []:(l() 0.25 0.50

13 10 ¥4 4 1 Weights

Discriminator layer

Improved Training of Wasserstein GANs



https://arxiv.org/pdf/1704.00028

Weight clipping

WGAN - Nasty gradient clipping

—— Weight clipping (¢ = 0.001) /
] =—— Weight clipping (c = 0.01)

——  Weight clipping (¢ = 0.1)

- WGAN performance is very dependent on
the clipping constant

- Clipping the weights will drastically
increase training time

- Adding an additional cost to the gradient
size, improves this

- Restricting the “movement” of the
discriminator

—
o

| m=—= Gradient penalty

fe)

—002 —001 000 001 002
———— Weights

Gradient penalty

|
L
o

5

|
N
S

Gradient norm (log scale

T T T T T —-0.50 —0.25 [];00 0.25 0.50
13 10 7 1 1 Weights
Discriminator layer

L=_E [D@)- E D@)]+) E [(IVsD@)l2-17].

~

Original critic loss Our gradient penalty

Improved WGAN blog post Improved Training of Wasserstein GANs



https://arxiv.org/pdf/1704.00028
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Generative adversarial networks (GAN)

More examples



CycleGAN - unpaired image to image translation

1. Unpaired images
from two different
domains

_.| Generator L Decision [0,1]

Discriminator A

-

Discriminator B ‘

Decision [0,1]

CycleGAN blog

Unpaired Image-to-Image
Translation using
Cycle-Consistent
Adversarial Networks



https://hardikbansal.github.io/CycleGANBlog/
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN - unpaired image to image translation

1. Unpaired images
from two different

domains
2. Use image from one
domain as Z Discriminator A - Ge;l\;r;tor .

-

gl
Decision [0,1] Generated_B  |= ! ‘ Discriminator B ‘

Generator |, < -
B2A

CycleGAN blog

Unpaired Image-to-Image
Translation using
Cycle-Consistent
Adversarial Networks



https://hardikbansal.github.io/CycleGANBlog/
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN - unpaired image to image translation

1. Unpaired images
from two different

domains
2. Use image from one
domain as Z Discriminator A Ge;‘\;’;'tm' ~

3. Generate image
from the other
domain

-

Generated_B ) Discriminator B ‘

Decision [0,1]

Generator |, < -
B2A

CycleGAN blog

Unpaired Image-to-Image
Translation using
Cycle-Consistent
Adversarial Networks



https://hardikbansal.github.io/CycleGANBlog/
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN - unpaired image to image translation

1. Unpaired images
from two different
domains

2. Use image from one
domain as Z

3. Generate image
from the other
domain

4. Align images with
cycle consistency
loss

Unpaired Image-to-lmage
Translation using

Cycle-Consistent
Adversarial Networks

Discriminator A

¥

Decision [0,1]

CycleGAN blog

Generator
A2B

Generator
B2A

-

e
e

Decision [0,1]

Discriminator B

|


https://hardikbansal.github.io/CycleGANBlog/
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN - unpaired image to image translation

Start

Cycle consistency loss:

Loye(G F) = Eorppua(@) 1 F(G(2)) = ][]

N ‘ i Generator o
D A - A28 o Decision [0,1
+ Eypuaa () IG(F () — wll1]. | i
Generated_B "\ A': ‘ Discriminator B
£<G, F, Dx,Dy) :»CGAN(G, Dy,X, Y) Cyclic_A 4
4+ Loanld, Dx, Y, X ) - B
+ Aoy (G, F),

CycleGAN blog

Unpaired Image-to-Image
Translation using
Cycle-Consistent
Adversarial Networks



https://hardikbansal.github.io/CycleGANBlog/
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN - unpaired image to image translation
Reconstctlon F(G(x))
.e 5%"7 i

\N'

“\ ¢

: ~”"“Ih e

Unpaired Image-to-Image
Translation using
Cycle-Consistent
Adversarial Networks



https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN - unpaired image to image translation
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An awesome application - A case study

Using GAN for photo eding I

A reverse mapping from image space to
closest point on manifold Overview
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http://www.youtube.com/watch?v=9c4z6YsBGQ0

Finding the closest point on the manifold

- Train a network to predict the embedding
of a generated image

- Use that network to find an embedding z

- Optimize/train that z vector to minimize
mean squared error

& = G(z, o(1))

Generator Network




Profit!

User edits

Generated images

Nearest neighbor real photos

User edits

Generated images

User edits Generated images
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GANSs still have problems with context

On more complex image
domains (ImageNet),
GANs often show problem:s
with context. Multiple
heads, legs and deformed
figures.

Figure 10: ImageNet 256 x 256 generations using an EBGAN-PT.

Energy-Based Generative Adverserial Networks



https://openreview.net/pdf?id=ryh9pmcee

Attention to improve context

1. For each pixel location, DL,
v transpose :
attention

ComPUte an attention convolution /Ix1conv

map feature maps (x) ' - L etz i lf-attention
2. Multiply each attention 8 & e I g [l ® ﬂ feature maps (o)
map with input features LHHN ﬂ—’ | £ o
3. Use attention in top . I ® &
layer of both generator ‘
and discriminator ME
4. Train GAN as normal IxIcony -1

Self-Attention Generative Adversarial Networks Non-local Neural Networks



http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.pdf
https://arxiv.org/pdf/1805.08318.pdf

Attention to improve context

Inspection of attention maps for generator:

- For generating legs, the model looks

at both the length and neighbour leg
- Looks at relevant context...

Self-Attention Generative Adversarial Networks Non-local Neural Networks



http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.pdf
https://arxiv.org/pdf/1805.08318.pdf

Self-Attention GANs - examples

goldfish

indigo
bunting

redshank

Self-Attention Generative Adversarial Networks



https://arxiv.org/pdf/1805.08318.pdf

Self-Attention GANs - Tuning and increasing batch size

Large Scale GAN Training For High Fidelity
Natural Image Synthesis



https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm

GANSs - Fun, but difficult

Fun: Hard to train

Discriminator win

Training longer can make it worse

Bigger models can be worse than smaller
More data, does not improve the model

- Give a lot of opportunities
- Losses that are otherwise impossible or
hard



