
Introduction to tensorflow

Why do you need a deep learning framework?

Speed:
- Fast implementations of matrix multiply,

convolutions and backpropagation
- Cuda implementations that are simple to

use
Automatic differentiations:

- Finished implementations of the most
common gradients

Reuse:
- Reuse other people's models
- Evaluate other models correctly

Updates:
- Updates your implementation to new

hardware
The more code you write yourself, the more
errors

Why Tensorflow?

- The right level of abstraction
- Good for research
- Good for production

- No extra work to run on different devices
- A lot of functionality
- Can be run on small embedded devices

and huge clusters
- Resource availablility
- A lot of examples
- Pretrained models
- Tensorboard/visualization
- Can be used with several languages

Disadvantages

- A lot of functionalities
- Many of which you will never need or use,

clutter up the API
- Different frameworks within the framework

- Interoperates only partially
- Static graph building

- Some implementations takes extra effort

What does it look like?

Most “standard” operations from matlab or
numpy

Overview

Overview

Estimators
- Easy to use
- Harder to make

- Easier to reuse componets etc.

Estimator

Overview

Mid-level (Layers, Dataset, Metrics,
Losses)

- Deep-learning/Machine learning
specific

- Simpler to do common tasks

Mid-level (sweet spot)

Simple to create deep networks

Overview

Low-level
- Not specific for machine learning

- Except for gradient calculation
- General computation/Linear algebra
- Simplifies GPU programming
- Same code run on many different

platforms

Low-level

- Testing out new building
blocks

- New types of
convolutions

- New losses
- New optimization

functions
- More code = more errors

Computational graph

Computational graph

Separating definition of computations from
execution.

- Build a computational graph
- Use a session to run operations in the

graph

Session

Responsible for managing resources.
Handles execution on different devices.
Keep variables in memory for the lifetime of a
session.

Computational graph

import tensorflow as tf
 a = tf.add(2, 3)

Computational graph

import tensorflow as tf
 a = tf.add(2, 3)

Computational graph

import tensorflow as tf
 a = tf.add(2, 3)
print a
>> Tensor("Add:0", shape=(), dtype=int32)

Computational graph

import tensorflow as tf
 a = tf.add(2, 3)
print a
>> Tensor("Add:0", shape=(), dtype=int32)

This is graph definition, not computation

Evaluating the computational graph

import tensorflow as tf
 a = tf.add(2, 3)
sess = tf.Session()
print sess.run(a)
>> 8
sess.close()

Evaluating the computational graph

import tensorflow as tf
a = tf.add(3, 5)
with clause takes care
of sess.close()
with tf.Session() as sess:
 print sess.run(a)

With statement can clean up session by
calling .close()

A larger graph

x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.mul(x, y)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:
 op3 = sess.run(op3)

A larger graph - running parts only

x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.mul(x, y)
useless = tf.mul(x, op1)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:
 op3 = sess.run(op3)

A larger graph - running multiple parts

x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.mul(x, y)
useless = tf.mul(x, op1)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:
 op3, not_useless = sess.run([op3, useless])

Parts of the graph

- Operators (add, matmul, conv2d…)
- Constants
- Tensors (temporary data)
- Variables (Values consistent over multiple

graph-executions)

Creating constants

import tensorflow as tf
a = tf.constant([2, 2], name="a")
b = tf.constant([[0, 1], [2, 3]], name="b")
x = tf.add(a, b, name="add")
y = tf.mul(a, b, name="mul")
with tf.Session() as sess:
 x, y = sess.run([x, y])
 print x, y
>> [5 8] [6 12]

“Graph world” - Tensorflow
“Numbers world” - numpy

Like numpy

tf.zeros([2, 3], tf.int32) ==> [[0, 0, 0], [0, 0, 0]]
tf.ones(shape, dtype=tf.float32, name=None)
tf.fill(dims, value, name=None)
tf.fill([2, 3], 8) ==> [[8, 8, 8], [8, 8, 8]]
tf.linspace(10.0, 13.0, 4) ==> [10.0 11.0 12.0
13.0]
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]

Random generated “constants”

New each execution
tf.set_random_seed(seed) #To generate same randoms each times
tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)

Tensor (tf.Tensor)

- Input and output for operations
- Live only for one execution
- Temporary data that flow through the

graph
- To keep:

- Extract to numpy/python
- Assign to Variable

Tensor objects are not iterable
for i in tf.range(4): # TypeError
for i in tf.unstack(tf.range(4)) #Works

https://blog.interactivethings.com/notes-from-openvi
s-conference-2016-577c80cd7a01

https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01
https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01

Problems with tensors

- Don’t have values when the are created,
only during graph execution.

- Can have flexible shape/size
Looping through tensor:

- Python for-loop with tf.unstack etc.
- Easy to interpret and debug
- You need to know the size of the

dimension your iterating
- Using tf.py_func

- Get numpy array, and do whatever you
want in a function

- Use tf.scan, tf.while_loop
- Fast, but hard to debug

- Don’t - use vectorized functions

https://blog.interactivethings.com/notes-from-openvi
s-conference-2016-577c80cd7a01

https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01
https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01

tf.Variables()

create variable a with scalar value
a = tf.Variable(2, name="scalar")
create variable b as a vector
b = tf.Variable([2, 3], name="vector")
create variable c as a 2x2 matrix
c = tf.Variable([[0, 1], [2, 3]], name="matrix")
create variable W as 784 x 10 tensor, filled
with zeros
W = tf.Variable(tf.zeros([784,10]))

Big V in tf.Variables, is because Variables is a
class

tf.Variables() live in the graph world

create variable a with scalar value
a = tf.Variable(2, name="scalar")
create variable b as a vector
b = tf.Variable([2, 3], name="vector")
create variable c as a 2x2 matrix
c = tf.Variable([[0, 1], [2, 3]], name="matrix")
create variable W as 784 x 10 tensor, filled
with zeros
W = tf.Variable(tf.zeros([784,10]))

Big V in tf.Variables, is because Variables is a
class.

- Live for the lifetime of a Session
- To keep after a session is dead

- Save checkpoint
- Extract to numpy/python and store

however you want

Variables have to be initialized

The easiest way is initializing all variables at
once:
init = tf.global_variables_initializer()
with tf.Session() as sess:
 sess.run(init)
#Initialize only a subset of variables:
init_ab = tf.variables_initializer([a, b],
name="init_ab")
with tf.Session() as sess:
 sess.run(init_ab)

Initialize a single variable
W = tf.Variable(tf.zeros([784,10]))
with tf.Session() as sess:
 sess.run(W.initializer)

If you run the initialization again, the
variables are reset

Assigning to variables in the graph-world

W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:
 sess.run(W.initializer)
 print sess.run(W)

Assigning to variables in the graph-world

W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:
 sess.run(W.initializer)
 print sess.run(W) # >> 10

Why?

Assigning to variables in the graph-world

W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:
 sess.run(W.initializer)
 print sess.run(W) # >> 10

Why?
Assign works in the graph-world and create an
operator for assigning to W

Assigning to variables in the graph-world

W = tf.Variable(10)
assign_op = W.assign(100)
with tf.Session() as sess:
 sess.run(W.initializer)
 sess.run(assign_op)
 print sess.run(W) # >> 100

Why?
Assign works in the graph-world and create an
operator for assigning to W

Assigning to variables in the numbers-world

W = tf.Variable(10)
with tf.Session() as sess:
 sess.run(W.initializer)
 print sess.run(W, feed_dict={W: 100})
 # >> 100
 print sess.run(W) # >> 10

feed_dict input variables temporarily into any
point in the graph (any feedable tensor
tf.Graph.is_feedable(tensor))

Distributed computation

Creates a graph.
with tf.device('/gpu:2'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],name='b')
 c = tf.matmul(a, b)
Creates a session with log_device_placement set to True.
sess=tf.Session(config=tf.ConfigProto(log_device_placement=True
))
Runs the op.
 print sess.run(c)

Building a deep network with
tensorflow
The dirty details

Basic setup and imports

- Numpy is generally needed
- Tensorflow

 # Imports

import numpy as np

import tensorflow as tf

Inputting data - feeding

Endless possibilities…
Data can be feed and and retrieved to and from
anywhere in the grap
sess = tf.Session()
sess.run(W, feed_dict={b: 3})
You can also use string for the tensor names
sess.run(“W:0”, feed_dict={“b:0”: 3})
Why use any other method?

Inputting data - python generator

You don’t want reading data to block you
application. (Keep your GPU running, if you
have one)

- Continues loop after yield
- When asked for a new value the

generator continues its loop

Inputting data - generator to tensorflow

Inputting data - generator to tensorflow

Inputting data - generator to tensorflow

Inputting data - reading images

Read data with whatever you want...

tf.data.Dataset - process your data

tf.data.Dataset - process your data

Training your model

Saving and restoring models

You can decide what variabels you are saving or
restoring when creating your Saver with a
var_list.

MonitoredSession

Helps you:
- Save or restore your variables
- Save summaries
- Run other Hooks like profiling

Create hooks, otherwise use Session as
normal.

Tensorboard and summaries

- SummarySaverHook, saves your
summaries to an output_dir

- run $tensorboard --logdir ‘output_dir’
- open webbrowser to localhost:6006

Reusing your model

- Run new data through the
same network

- Easy to mess up

Loading a pretrained model - easy way

Tensorflow hub:
- Very easy
- Problem with fixed image size
- Not a “nice” way to get

intermediate results

module =
hub.Module("https://tfhub.dev/google/imagenet/mobilenet_v
2_140_224/classification/2")

height, width = hub.get_expected_image_size(module)

images = ... # A batch of images with shape [batch_size,
height, width, 3].

logits = module(images) # Logits with shape [batch_size,

num_classes].

Loading a pretrained model - harder way

Tensorflow slim/detection api:
- More flexible
- Get endpoints
- More work

https://github.com/tensorflow/models/tre
e/master/research/slim
https://github.com/tensorflow/models/tre
e/master/research/object_detection

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection

Loading a pretrained model - harder way

Endnote - protip

- Create global step

- Nasty batch normalization

