
Introduction to tensorflow



Why do you need a deep learning framework?

Speed:
- Fast implementations of matrix multiply, 

convolutions and backpropagation
- Cuda implementations that are simple to 

use
Automatic differentiations:

- Finished implementations of the most 
common gradients

Reuse:
- Reuse other people's models
- Evaluate other models correctly

Updates:
- Updates your implementation to new 

hardware
The more code you write yourself, the more 
errors



Why Tensorflow?

- The right level of abstraction
- Good for research
- Good for production

- No extra work to run on different devices
- A lot of functionality
- Can be run on small embedded devices 

and huge clusters
- Resource availablility
- A lot of examples
- Pretrained models
- Tensorboard/visualization
- Can be used with several languages



Disadvantages

- A lot of functionalities
- Many of which you will never need or use, 

clutter up the API
- Different frameworks within the framework

- Interoperates only partially
- Static graph building

- Some implementations takes extra effort



What does it look like?



Most “standard” operations from matlab or 
numpy



Overview



Overview

Estimators
- Easy to use
- Harder to make

- Easier to reuse componets etc.



Estimator



Overview

Mid-level (Layers, Dataset, Metrics, 
Losses)

- Deep-learning/Machine learning 
specific

- Simpler to do common tasks



Mid-level (sweet spot)

Simple to create deep networks



Overview

Low-level
- Not specific for machine learning

- Except for gradient calculation
- General computation/Linear algebra
- Simplifies GPU programming
- Same code run on many different 

platforms



Low-level

- Testing out new building 
blocks

- New types of 
convolutions

- New losses
- New optimization 

functions
- More code = more errors



Computational graph



Computational graph

Separating definition of computations from 
execution.

- Build a computational graph
- Use a session to run operations in the 

graph



Session

Responsible for managing resources.
Handles execution on different devices.
Keep variables in memory for the lifetime of a 
session.



Computational graph

import tensorflow as tf
 a = tf.add(2, 3)



Computational graph

import tensorflow as tf
 a = tf.add(2, 3)



Computational graph

import tensorflow as tf
 a = tf.add(2, 3)
print a
>> Tensor("Add:0", shape=(), dtype=int32)



Computational graph

import tensorflow as tf
 a = tf.add(2, 3)
print a
>> Tensor("Add:0", shape=(), dtype=int32)

This is graph definition, not computation



Evaluating the computational graph

import tensorflow as tf
 a = tf.add(2, 3)
sess = tf.Session()
print sess.run(a)
>> 8 
sess.close() 



Evaluating the computational graph

import tensorflow as tf
a = tf.add(3, 5) 
# with clause takes care
# of sess.close()
with tf.Session() as sess:
    print sess.run(a) 

With statement can clean up session by 
calling .close()



A larger graph

x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.mul(x, y)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:
    op3 = sess.run(op3)



A larger graph - running parts only

x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.mul(x, y)
useless = tf.mul(x, op1) 
op3 = tf.pow(op2, op1)
with tf.Session() as sess:
    op3 = sess.run(op3)



A larger graph - running multiple parts

x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.mul(x, y)
useless = tf.mul(x, op1) 
op3 = tf.pow(op2, op1)
with tf.Session() as sess:
    op3, not_useless = sess.run([op3, useless])



Parts of the graph

- Operators (add, matmul, conv2d…)
- Constants
- Tensors (temporary data)
- Variables (Values consistent over multiple 

graph-executions)



Creating constants

import tensorflow as tf
a = tf.constant([2, 2], name="a")
b = tf.constant([[0, 1], [2, 3]], name="b")
x = tf.add(a, b, name="add")
y = tf.mul(a, b, name="mul")
with tf.Session() as sess:
    x, y = sess.run([x, y])
    print x, y 
# >> [5 8] [6 12] 

“Graph world” - Tensorflow
“Numbers world” - numpy



Like numpy

tf.zeros([2, 3], tf.int32) ==> [[0, 0, 0], [0, 0, 0]]
tf.ones(shape, dtype=tf.float32, name=None)
tf.fill(dims, value, name=None) 
tf.fill([2, 3], 8) ==> [[8, 8, 8], [8, 8, 8]]
tf.linspace(10.0, 13.0, 4) ==> [10.0 11.0 12.0 
13.0] 
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]



Random generated “constants”

New each execution
tf.set_random_seed(seed) #To generate same randoms each times
tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) 
tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None) 



Tensor (tf.Tensor)

- Input and output for operations
- Live only for one execution
- Temporary data that flow through the 

graph
- To keep:

- Extract to numpy/python
- Assign to Variable

Tensor objects are not iterable 
for i in tf.range(4): # TypeError
for i in tf.unstack(tf.range(4)) #Works

https://blog.interactivethings.com/notes-from-openvi
s-conference-2016-577c80cd7a01

https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01
https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01


Problems with tensors

- Don’t have values when the are created, 
only during graph execution.

- Can have flexible shape/size
Looping through tensor:

- Python for-loop with tf.unstack etc.
- Easy to interpret and debug
- You need to know the size of the 

dimension your iterating
- Using tf.py_func

- Get numpy array, and do whatever you 
want in a function

- Use tf.scan, tf.while_loop
- Fast, but hard to debug

- Don’t - use vectorized functions

https://blog.interactivethings.com/notes-from-openvi
s-conference-2016-577c80cd7a01

https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01
https://blog.interactivethings.com/notes-from-openvis-conference-2016-577c80cd7a01


tf.Variables()

# create variable a with scalar value 
a = tf.Variable(2, name="scalar") 
# create variable b as a vector 
b = tf.Variable([2, 3], name="vector") 
# create variable c as a 2x2 matrix
c = tf.Variable([[0, 1], [2, 3]], name="matrix") 
# create variable W as 784 x 10 tensor, filled 
with zeros 
W = tf.Variable(tf.zeros([784,10])) 

Big V in tf.Variables, is because Variables is a 
class



tf.Variables() live in the graph world

# create variable a with scalar value 
a = tf.Variable(2, name="scalar") 
# create variable b as a vector 
b = tf.Variable([2, 3], name="vector") 
# create variable c as a 2x2 matrix
c = tf.Variable([[0, 1], [2, 3]], name="matrix") 
# create variable W as 784 x 10 tensor, filled 
with zeros 
W = tf.Variable(tf.zeros([784,10])) 

Big V in tf.Variables, is because Variables is a 
class.

- Live for the lifetime of a Session
- To keep after a session is dead

- Save checkpoint
- Extract to numpy/python and store 

however you want



Variables have to be initialized

The easiest way is initializing all variables at 
once: 
init = tf.global_variables_initializer() 
with tf.Session() as sess:
    sess.run(init)
#Initialize only a subset of variables: 
init_ab = tf.variables_initializer([a, b], 
name="init_ab")
with tf.Session() as sess: 
    sess.run(init_ab) 

Initialize a single variable 
W = tf.Variable(tf.zeros([784,10])) 
with tf.Session() as sess: 
    sess.run(W.initializer) 

If you run the initialization again, the 
variables are reset



Assigning to variables in the graph-world

W = tf.Variable(10) 
W.assign(100) 
with tf.Session() as sess: 
    sess.run(W.initializer) 
    print sess.run(W) 



Assigning to variables in the graph-world

W = tf.Variable(10) 
W.assign(100) 
with tf.Session() as sess: 
    sess.run(W.initializer) 
    print sess.run(W) # >> 10 

Why?



Assigning to variables in the graph-world

W = tf.Variable(10) 
W.assign(100) 
with tf.Session() as sess: 
    sess.run(W.initializer) 
    print sess.run(W) # >> 10 

Why?
Assign works in the graph-world and create an 
operator for assigning to W



Assigning to variables in the graph-world

W = tf.Variable(10) 
assign_op = W.assign(100) 
with tf.Session() as sess: 
    sess.run(W.initializer) 
    sess.run(assign_op) 
    print sess.run(W) # >> 100 

Why?
Assign works in the graph-world and create an 
operator for assigning to W



Assigning to variables in the numbers-world

W = tf.Variable(10) 
with tf.Session() as sess: 
    sess.run(W.initializer) 
    print sess.run(W, feed_dict={W: 100}) 
    # >> 100
    print sess.run(W) # >> 10

feed_dict input variables temporarily into any 
point in the graph (any feedable tensor 
tf.Graph.is_feedable(tensor))



Distributed computation

# Creates a graph.
with tf.device('/gpu:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],name='b')
  c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True. 
sess=tf.Session(config=tf.ConfigProto(log_device_placement=True
)) 
# Runs the op.
 print sess.run(c)



Building a deep network with 
tensorflow
The dirty details



Basic setup and imports

- Numpy is generally needed
- Tensorflow

 # Imports

import numpy as np

import tensorflow as tf



Inputting data - feeding

Endless possibilities…
Data can be feed and and retrieved to and from 
anywhere in the grap
sess = tf.Session()
sess.run(W, feed_dict={b: 3})
You can also use string for the tensor names
sess.run(“W:0”, feed_dict={“b:0”: 3})
Why use any other method?



Inputting data - python generator

You don’t want reading data to block you 
application. (Keep your GPU running, if you 
have one)

- Continues loop after yield
- When asked for a new value the 

generator continues its loop



Inputting data - generator to tensorflow



Inputting data - generator to tensorflow



Inputting data - generator to tensorflow



Inputting data - reading images

Read data with whatever you want...



tf.data.Dataset - process your data



tf.data.Dataset - process your data



Training your model



Saving and restoring models

You can decide what variabels you are saving or 
restoring when creating your Saver with a 
var_list.



MonitoredSession

Helps you:
- Save or restore your variables
- Save summaries
- Run other Hooks like profiling

Create hooks, otherwise use Session as 
normal.



Tensorboard and summaries

- SummarySaverHook, saves your 
summaries to an output_dir

- run $tensorboard --logdir ‘output_dir’
- open webbrowser to localhost:6006



Reusing your model

- Run new data through the 
same network

- Easy to mess up



Loading a pretrained model - easy way

Tensorflow hub:
- Very easy
- Problem with fixed image size
- Not a “nice” way to get 

intermediate results

module = 
hub.Module("https://tfhub.dev/google/imagenet/mobilenet_v
2_140_224/classification/2")

height, width = hub.get_expected_image_size(module)

images = ...  # A batch of images with shape [batch_size, 
height, width, 3].

logits = module(images)  # Logits with shape [batch_size, 

num_classes].



Loading a pretrained model - harder way

Tensorflow slim/detection api:
- More flexible
- Get endpoints
- More work

https://github.com/tensorflow/models/tre
e/master/research/slim
https://github.com/tensorflow/models/tre
e/master/research/object_detection

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection


Loading a pretrained model - harder way



Endnote - protip

- Create global step

- Nasty batch normalization


