

Introduction to tensorflow

Why do you need a deep learning framework?

Speed:

- Fast implementations of matrix multiply, convolutions and backpropagation
- Cuda implementations that are simple to use

Automatic differentiations:

- Finished implementations of the most common gradients

Reuse:

- Reuse other people's models
- Evaluate other models correctly

Updates:

- Updates your implementation to new hardware

The more code you write yourself, the more errors

Why Tensorflow?

- The right level of abstraction
 - Good for research
 - Good for production
- No extra work to run on different devices
- A lot of functionality
- Can be run on small embedded devices and huge clusters
- Resource availablility
- A lot of examples
- Pretrained models
- Tensorboard/visualization
- Can be used with several languages

Disadvantages

- A lot of functionalities
 - Many of which you will never need or use, clutter up the API
- Different frameworks within the framework
 - Interoperates only partially
- Static graph building
 - Some implementations takes extra effort

What does it look like?

In [9]:	<pre>import tensorflow as tf</pre>
	<pre>sess = tf.Session()</pre>
	<pre>a = tf.zeros((2,2)); b = tf.ones((2,2)); c = tf.constant([3., 5.])</pre>
	a.get_shape()
Out[9]:	<pre>TensorShape([Dimension(2), Dimension(2)])</pre>
In [10]:	<pre>sum_b = tf.reduce_sum(b) sess.run(sum_b)</pre>
Out[10]:	4.0
In [14]:	<pre>mul_b_c = tf.matmul(b, tf.reshape(c, [-1, 1])) sess.run(mul_b_c)</pre>
Out[14]:	array([[8.], [8.]], dtype=float32)

Most "standard" operations from matlab or numpy

- tf.diag(diagonal, name=None)
- tf.diag_part(input, name=None)
- tf.trace(x, name=None)
- tf.transpose(a, perm=None, name=transpose)
- tf.matrix_diag(diagonal, name=None)
- tf.matrix_diag_part(input, name=None)
- tf.matrix_band_part(input, num_lower, num_upper, name=None)
- tf.matrix_set_diag(input, diagonal, name=None)
- tf.matrix_transpose(a, name=matrix_transpose)
- tf.matmul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None)
- tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None)
- THE REAL PROPERTY AND ADDRESS AND ADDRESS ADDR

- tf.log(x, name=None)
- tf.ceil(x, name=None)
- tf.floor(x, name=None)
- tf.maximum(x, y, name=None)
- tf.minimum(x, y, name=None)
- tf.cos(x, name=None)
- tf.sin(x, name=None)
- tf.lbeta(x, name=lbeta)
- tf.tan(x, name=None)
- tf.acos(x, name=None)
- tf.asin(x, name=None)
- tf.atan(x, name=None)
- tf.lgamma(x, name=None)

Overview

Overview

Estimators

- Easy to use
- Harder to make
- Easier to reuse componets etc.

Estimator

```
# Build a DNN with 2 hidden layers and 10 nodes in each hidden layer.
classifier = tf.estimator.DNNClassifier(
   feature_columns=my_feature_columns,
    # Two hidden layers of 10 nodes each.
   hidden_units=[10, 10],
    # The model must choose between 3 classes.
   n_classes=3)
```

Train the Model. classifier.train(input_fn=lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size), steps=args.train_steps)

Evaluate the model.
eval_result = classifier.evaluate(
 input_fn=lambda:iris_data.eval_input_fn(test_x, test_y, args.batch_size))

print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))

Overview

Mid-level (Layers, Dataset, Metrics, Losses)

- Deep-learning/Machine learning specific
- Simpler to do common tasks

Mid-level (sweet spot)

Simple to create deep networks

Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

Flatten the data to a 1-D vector for the fully connected layer fc1 = tf.contrib.layers.flatten(conv2)

Fully connected layer (in tf contrib folder for now)
fc1 = tf.layers.dense(fc1, 1024)
Apply Dropout (if is_training is False, dropout is not applied)
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

Output layer, class prediction
out = tf.layers.dense(fc1, n_classes)

Overview

Low-level

- Not specific for machine learning
 - Except for gradient calculation
- General computation/Linear algebra
- Simplifies GPU programming
- Same code run on many different platforms

Low-level

- Testing out new building blocks
 - New types of convolutions
 - New losses
 - New optimization functions
- More code = more errors

```
out = tf.nn.relu(tf.nn.conv2d(x, kernel, strides=(1, 2, 2, 1), padding='SAME') + bias)
tf.summary.histogram('activations', out)
return out
```


Separating definition of computations from execution.

- Build a computational graph
- Use a session to run operations in the graph

Session

Responsible for managing resources. Handles execution on different devices. Keep variables in memory for the lifetime of a session.

import tensorflow as tf
a = tf.add(2, 3)

import tensorflow as tf
a = tf.add(2, 3)

import tensorflow as tf
a = tf.add(2, 3)
print a
>> Tensor("Add:0", shape=(), dtype=int32)

import tensorflow as tf
 a = tf.add(2, 3)
print a
>> Tensor("Add:0", shape=(), dtype=int32)

This is graph definition, not computation

Evaluating the computational graph

import tensorflow as tf
a = tf.add(2, 3)
sess = tf.Session()
print sess.run(a)
>> 8
sess.close()

Evaluating the computational graph

With statement can clean up session by calling .close()

import tensorflow as tf
a = tf.add(3, 5)
with clause takes care
of sess.close()
with tf.Session() as sess:
 print sess.run(a)

A larger graph

x = 2 y = 3 op1 = tf.add(x, y) op2 = tf.mul(x, y) op3 = tf.pow(op2, op1) with tf.Session() as sess: op3 = sess.run(op3)

A larger graph - running parts only

A larger graph - running multiple parts

Parts of the graph

- Operators (add, matmul, conv2d...)
- Constants
- Tensors (temporary data)
- Variables (Values consistent over multiple graph-executions)

Creating constants

```
import tensorflow as tf
a = tf.constant([2, 2], name="a")
b = tf.constant([[0, 1], [2, 3]], name="b")
x = tf.add(a, b, name="add")
y = tf.mul(a, b, name="mul")
with tf.Session() as sess:
    x, y = sess.run([x, y])
    print x, y
# >> [5 8] [6 12]
```

"Graph world" - Tensorflow "Numbers world" - numpy

Like numpy

tf.zeros([2, 3], tf.int32) ==> [[0, 0, 0], [0, 0, 0]] tf.ones(shape, dtype=tf.float32, name=None) tf.fill(dims, value, name=None) tf.fill([2, 3], 8) ==> [[8, 8, 8], [8, 8, 8]] tf.linspace(10.0, 13.0, 4) ==> [10.0 11.0 12.0 13.0] tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]

Random generated "constants"

New each execution

tf.set_random_seed(seed) #To generate same randoms each times tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)

Tensor (tf.Tensor)

- Input and output for operations
- Live only for one execution
- Temporary data that flow through the graph
- To keep:
 - Extract to numpy/python
 - Assign to Variable

Tensor objects are not iterable for i in tf.range(4): # TypeError for i in tf.unstack(tf.range(4)) #Works

https://blog.interactivethings.com/notes-from-openvi s-conference-2016-577c80cd7a01

Problems with tensors

- Don't have values when the are created, only during graph execution.
- Can have flexible shape/size
- Looping through tensor:
 - Python for-loop with tf.unstack etc.
 - Easy to interpret and debug
 - You need to know the size of the dimension your iterating
 - Using tf.py_func
 - Get numpy array, and do whatever you want in a function
 - Use tf.scan, tf.while_loop
 - Fast, but hard to debug
 - Don't use vectorized functions

https://blog.interactivethings.com/notes-from-openvi s-conference-2016-577c80cd7a01

tf.Variables()

create variable a with scalar value a = tf.Variable(2, name="scalar") # create variable b as a vector b = tf.Variable([2, 3], name="vector") # create variable c as a 2x2 matrix c = tf.Variable([[0, 1], [2, 3]], name="matrix") # create variable W as 784 x 10 tensor, filled with zeros W = tf.Variable(tf.zeros([784,10])) Big V in tf.Variables, is because Variables is a class

tf.Variables() live in the graph world

Big V in tf.Variables, is because Variables is a class.

- Live for the lifetime of a Session
- To keep after a session is dead
 - Save checkpoint
 - Extract to numpy/python and store however you want

create variable a with scalar value a = tf.Variable(2, name="scalar") # create variable b as a vector b = tf.Variable([2, 3], name="vector") # create variable c as a 2x2 matrix c = tf.Variable([[0, 1], [2, 3]], name="matrix") # create variable W as 784 x 10 tensor, filled with zeros W = tf.Variable(tf.zeros([784,10]))

Variables have to be initialized

The easiest way is initializing all variables at once: init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) #Initialize only a subset of variables: init_ab = tf.variables_initializer([a, b], name="init_ab") with tf.Session() as sess: sess.run(init_ab) Initialize a single variable W = tf.Variable(tf.zeros([784,10])) with tf.Session() as sess: sess.run(W.initializer)

If you run the initialization <u>again</u>, the variables are reset

W = tf.Variable(10) W.assign(100) with tf.Session() as sess: sess.run(W.initializer) print sess.run(W)

W = tf.Variable(10) W.assign(100) with tf.Session() as sess: sess.run(W.initializer) print sess.run(W) # >> 10 Why?

W = tf.Variable(10) W.assign(100) with tf.Session() as sess: sess.run(W.initializer) print sess.run(W) # >> 10 Why?

Assign works in the **graph-world** and create an operator for assigning to W

W = tf.Variable(10) assign_op = W.assign(100) with tf.Session() as sess: sess.run(W.initializer) sess.run(assign_op) print sess.run(W) # >> 100 Why?

Assign works in the **graph-world** and create an operator for assigning to W

Assigning to variables in the numbers-world

W = tf.Variable(10)
with tf.Session() as sess:
 sess.run(W.initializer)
 print sess.run(W, feed_dict={W: 100})
 # >> 100
 print sess.run(W) # >> 10

feed_dict input variables temporarily into any point in the graph (any feedable tensor tf.Graph.is_feedable(tensor))

Distributed computation

Creates a graph.

with tf.device('/gpu:2'):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],name='a')

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],name='b')

c = tf.matmul(a, b)

Creates a session with log_device_placement set to True. sess=tf.Session(config=tf.ConfigProto(log_device_placement=Tru))

Runs the op.

print sess.run(c)

Building a deep network with tensorflow

The dirty details

Basic setup and imports

- Numpy is generally needed
- Tensorflow

Imports

import numpy as np

import tensorflow as tf

Inputting data - feeding

Endless possibilities...

Data can be feed and and retrieved to and from anywhere in the grap sess = tf.Session() sess.run(W, feed_dict={b: 3}) You can also use string for the tensor names sess.run("W:0", feed_dict={"b:0": 3}) Why use any other method?

Inputting data - python generator

You don't want reading data to block you application. (Keep your GPU running, if you have one)

- Continues loop after yield
- When asked for a new value the generator continues its loop

```
# a generator that yields items instead of returning a list
def firstn(n):
    num = 0
    while num < n:
        yield num
        num += 1
sum_of_first_n = sum(firstn(1000000))
for i in firstn(5):
        print(i)
```

Inputting data - generator to tensorflow

a generator that yields items instead of returning a list
def first100():
 num = 0
 while num < 100:
 yield num
 num += 1</pre>

Create tensorflow dataset from generator
dataset = tf.data.Dataset.from_generator(first100, output_types=[tf.int64], output_shapes=(()))
Get the actual tensor
tensor value = dataset.make one shot iterator().get next()

Inputting data - generator to tensorflow

a generator that yields items instead of returning a list def first(00(): num = 0 while num < 100: yield num num += 1 # Create tensorflow dataset from generator dataset = tf.data.Dataset.from_generator(first100) output_types=[tf.int64], output_shapes=(())) # Get the actual tensor tensor_value = dataset.make_one_shot_iterator().get_next()

Inputting data - generator to tensorflow

```
# a generator that yields items instead of returning a list
def first100():
    num = 0
    while num < 100:
        yield num
        num += 1
# Create tensorflow dataset from generator
dataset = tf.data.Dataset.from_generator(first100, output_types=[tf.int64], output_shapes=(()))
# Get the actual tensor
tensor value = dataset.make one shot iterator().get next()
```


skningsinstitutt

Inputting data - reading images

Read data with whatever you want...

```
def image_data(filenames):
    import cv2
    num = 0
    for i, f in enumerate(filenames):
        yield cv2.imread(f), i
```

```
# Get the actual tensors
image, label = dataset.make one shot iterator().get next()
```


tf.data.Dataset - process your data

dataset = dataset.map(augment_data, num_parallel_calls=4)
Get the actual tensors
image, label = dataset.make one shot iterator().get next()

tf.data.Dataset - process your data

image, label = dataset.make_one_shot_iterator().get_next()

Training your model

```
# Get the actual tensors
image, label = dataset.make_one_shot_iterator().get_next()
```

```
x = tf.layers.conv2d(image, 256, 3)
loss = tf.reduce_mean((x - label)**2)
```

gradient_decent = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss)

```
sess = tf.Session()
sess.run(gradient_decent)
```


Saving and restoring models

You can decide what variabels you are saving or restoring when creating your Saver with a **var_list**.

```
saver = tf.train.Saver(var_list=tf.global_variables())
saver.save(sess, 'checkpoint_dir')
saver.restore(sess, 'checkpoint_dir')
```


MonitoredSession

Helps you:

- Save or restore your variables
- Save summaries
- Run other Hooks like profiling

Create hooks, otherwise use Session as normal.

```
saver_hook = tf.train.CheckpointSaverHook('logs', save_secs=600)
summary_saver_hook = tf.train.SummarySaverHook(
    summary_op=tf.summary.merge_all(),
    output_dir='logs',
    save_secs=600
)
```


Tensorboard and summaries

- SummarySaverHook, saves your summaries to an output_dir
- run \$tensorboard --logdir 'output_dir'
- open webbrowser to localhost:6006


```
tf.summary.scalar('loss', loss)
tf.summary.image('image', img, max_outputs=5)
tf.summary.histogram('logits', logits)
```

Reusing your model

- Run new data through the same network
- Easy to mess up

def model(img, seg): x = tf.layers.conv2d(img, 32, 5, strides=(2, 2), padding='same', activation=tf.nn.relu) x = tf.layers.conv2d(x, 64, 5, strides=(2, 2), padding='same', activation=tf.nn.relu) x = tf.layers.conv2d(x, 1, 1, padding='same') x = tf.image.resize images(x, [512, 512])loss = tf.reduce mean($(x - seq)^{**2}$) return x, loss def main(): image names, segmentation names = kitti image filenames('/data/data road') img, seg = kitti generator from filenames(image names[:-3], segmentation names[:-3], batch size=8) img val, seg val = kitti generator from filenames(image names[-3:], segmentation names[-3:], batch size=8) with tf.variable scope('model'): logits, loss = model(img, seg) with tf.variable scope('model'): logits val, loss val = model(img val, seg val) with tf.variable scope('model', reuse=True): logits val, loss val = model(img val, seg val)

Loading a pretrained model - easy way

Tensorflow hub:

- Very easy
- Problem with fixed image size
- Not a "nice" way to get intermediate results

module =

```
hub.Module("https://tfhub.dev/google/imagenet/mobilenet_v
2_140_224/classification/2")
```

height, width = hub.get_expected_image_size(module)

images = ... # A batch of images with shape [batch_size, height, width, 3].

```
logits = module(images) # Logits with shape [batch_size,
num_classes].
```

print(tf.get_default_graph().get_operations())
tensor = tf.get_default_graph()\
 .get_tensor_by_name(
 'model/module_apply_default/resnet_v2_50/block2/unit_4/bottleneck_v2/conv3/Conv2D:0'
)

Loading a pretrained model - harder way

Tensorflow slim/detection api:

- More flexible
- Get endpoints
- More work

https://github.com/tensorflow/models/tre e/master/research/slim https://github.com/tensorflow/models/tre e/master/research/object_detection

```
from tensorflow.contrib import slim
from tensorflow.contrib.slim import nets
with slim.arg_scope(nets.resnet_v2.resnet_arg_scope()):
    out, end_points = nets.resnet_v2.resnet_v2_50(x, is_training=is_training, global_pool=False)
    sess = None
    enc1 = end_points['resnet_v2_50/block1']
    enc2 = end_points['resnet_v2_50/block2']
    enc3 = end_points['resnet_v2_50/block3']
    saver = tf.train.Saver(
        var_list=[v for v in tf.global_variables() if 'resnet_v2_50' in v.name]
    )
    saver.restore(sess, 'resnet_v2_50.ckpt')
```


Loading a pretrained model - harder way

Model	TF-Slim File	Checkpoint	Top-1 Accuracy	Top-5 Accuracy
Inception V1	Code	inception_v1_2016_08_28.tar.gz	69.8	89.6
Inception V2	Code	inception_v2_2016_08_28.tar.gz	73.9	91.8
Inception V3	Code	inception_v3_2016_08_28.tar.gz	78.0	93.9
Inception V4	Code	inception_v4_2016_09_09.tar.gz	80.2	95.2
Inception-ResNet-v2	Code	inception_resnet_v2_2016_08_30.tar.gz	80.4	95.3
ResNet V1 50	Code	resnet_v1_50_2016_08_28.tar.gz	75.2	92.2
ResNet V1 101	Code	resnet_v1_101_2016_08_28.tar.gz	76.4	92.9
ResNet V1 152	Code	resnet_v1_152_2016_08_28.tar.gz	76.8	93.2
ResNet V2 50^	Code	resnet_v2_50_2017_04_14.tar.gz	75.6	92.8
ResNet V2 101^	Code	resnet_v2_101_2017_04_14.tar.gz	77.0	93.7
ResNet V2 152^	Code	resnet_v2_152_2017_04_14.tar.gz	77.8	94.1
ResNet V2 200	Code	TBA	79.9*	95.2*
VGG 16	Code	vgg_16_2016_08_28.tar.gz	71.5	89.8
VGG 19	Code	vgg_19_2016_08_28.tar.gz	71.1	89.8
MobileNet_v1_1.0_224	Code	mobilenet_v1_1.0_224.tgz	70.9	89.9
MobileNet_v1_0.50_160	Code	mobilenet_v1_0.50_160.tgz	59.1	81.9
MobileNet_v1_0.25_128	Code	mobilenet_v1_0.25_128.tgz	41.5	66.3
MobileNet_v2_1.4_224^*	Code	mobilenet_v2_1.4_224.tgz	74.9	92.5
MobileNet_v2_1.0_224^*	Code	mobilenet_v2_1.0_224.tgz	71.9	91.0
NASNet-A_Mobile_224#	Code	nasnet-a_mobile_04_10_2017.tar.gz	74.0	91.6
NASNet-A_Large_331#	Code	nasnet-a_large_04_10_2017.tar.gz	82.7	96.2
PNASNet-5_Large_331	Code	pnasnet-5_large_2017_12_13.tar.gz	82.9	96.2
PNASNet-5_Mobile_224	Code	pnasnet-5_mobile_2017_12_13.tar.gz	74.2	91.9

Endnote - protip

- Create global step
- step = tf.train.get_or_create_global_step()

```
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
    train_op = tf.train.AdamOptimizer().minimize(
        loss,
        global_step=step)
```

