

Training neural networks

Sigmund Rolfsjord

Today's lecture

- Learning from small data
- Active learning
- When you are not learning
- Surrogat losses

Curriculum:

 How transferable are features in deep neural networks?

(http://papers.nips.cc/paper/5347-how-transferable-are-features-indeep-neural-networks.pdf)

<u>Cost-Effective Active Learning for Deep Image</u>

Classification (https://arxiv.org/pdf/1701.03551.pdf)

- Tracking Emerges by Colorizing Videos

(https://arxiv.org/abs/1806.09594)

 <u>Unsupervised Learning of Depth and Ego-Motion</u> from Monocular Video Using 3D Geometric <u>Constraints</u>

(http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjouri an_Unsupervised_Learning_of_CVPR_2018_paper.pdf)

Learning from small data

ImageNet challenge: 1.2 m images (14 m in full) MSCOCO Detection challenge: 80,000 images (328,000 in full)

KITTI Road segmentation: 289 images SLIVER07 3D liver segmentation: 20 3D-images

Number of categories vs. number of instances

Sliver liver segmentation still works, why?

Number of categories vs. number of instances

Sliver liver segmentation still works, why? Homogenous data:

- Same CT-machine
- Standardised procedure KITTI Road segmentation:
 - Similar conditions
 - Similar contuition
 - Same camera
 - Roads are very similar

Number of categories vs. number of instances

Heterogeneous task, need heterogeneous data. It's not not necessarily the amount of images that counts, but rather how many **different** images you have.

- ImageNet have unspecific labels _
 - Harder to extract the essence of a given class
- MSCOCO have specific labels _
 - Easier to learn how the pixels relate to a class

-	
	saltshaker, salt shaker
	pill bottle
	water bottle
	lotion
	hair spray
	beer bottle

Col-	
	hatchet

pitcher, ewer

coffeepot

mask

cup

Sign .	2	
	18	-interrigial
chipper	ke	
chinnard	ce.	

iker	reel
	stethoscope
	whistle
	ice lolly, lolly
	hair spray

maypole

schipperke
schipperke
groenendael
doormat, welcome mat
teddy, teddy bear

jigsaw puzzle

Explore MSCOCO

What I learned from competing against a ConvNet on ImageNet

Transfer learning from pretrained network

- Neural networks share representations across classes
- A network train on many classes and many examples have more general representation
- You can reuse these features for many different applications
- Retrain train the last layer of the network, for a different number of classes

Transfer learning: Study

- Study done with plentiful data (split ImageNet in two)
- Locking weights deprecate performance
 - Remember lots of data
- More data improves performance, even if it's different classes.

OBS! Everything may not be applicable with new initialization schemes, Resnet and batch-norm

How transferable are features in deep neural networks?

Transfer learning: Study

- Study done with plentiful data (split ImageNet in two)
- Locking weights deprecate performance
 - Remember lots of data
- More data improves performance, even if it's different classes

OBS! Everything may not be applicable with new initialization schemes, Resnet and batch-norm

How transferable are features in deep neural networks?

FFI

Transfer learning: Study

- Study done with plentiful data (split ImageNet in two)
- Locking weights deprecate performance
 - Remember lots of data
- More data improves performance, even if it's different classes.

OBS! Everything may not be applicable with new initialization schemes and batch-norm

How transferable are features in deep neural networks?

FFI

What can you transfer to?

- Detecting special views in Ultrasound
- Initially far from ImageNet
- Benefit from fine-tuning imagenet features
- 300 patients, 11000 images

Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks

Transfer learning from pretrained network

With less parameters to train, you are less likely to overfit.

Features is often invariant to many different effects.

Need a lot less time to train.

OBS! Since networks trained on ImageNet have a lot of layers, it is still possible to overfit.

Transfer learning from pretrained network

Generally:

Very little data: train only last layer Some data: train the last layer**s**, finetune (small learning rate) the other layers

Multitask learning

- Many small datasets
- Different targets
- Share base-representation

Same data with different labels can also have a regularizing effect.

Multitask learning: pose and body part

- Without multitask learning regression task is not learning
- With only a small input (10⁻⁹) from the other task they train well
- With equal weight between tasks the test error is best for both tasks

Same task different domain

- Different domains with similar tasks
- Both text and different images
- Some categories not available for all modalities
- Learn jointly by sharing mid-level representation
- Training first part of the network from scratch

Same task different domain

- The network display better semantic alignment
- The network differentiate between classes and not modalities
- For B and C they also use regularization to force similar statistics in upper part of base-network

Came Madal Query			N	AT			CI	LP			SI	T			LD	R			DS	C		Mean
Retrieval	Target	CLP	SPT	LDR	DSC	NAT	SPT	LDR	DSC	NAT	CLP	LDR	DSC	NAT	CLP	SPT	DSC	NAT	CLP	SPT	LDR	mAP
BL-Individua	d	17.9	11.9	10.0	1.3	12.2	10.3	9.2	1.3	7.0	9.1	5.2	1.1	5.7	8.8	5.4	1.2	0.9	1.4	1.5	1.2	6.1
BL-Shared-U	pper-Scratch	7.0	7.8	4.1	10.9	5.5	5.0	3.2	9.2	5.2	4.5	2.7	8.9	3.1	3.0	3.0	5.2	5.8	5.1	6.3	3.2	5.4
BL-Shared-Uj	pper	10.4	12.4	4.5	14.6	9.1	7.2	3.7	10.1	6.8	5.5	3.0	8.9	3.3	3.8	3.6	4.6	4.3	4.8	6.6	3.3	6.5
A: Tune		13.3	11.3	6.7	21.9	10.1	8.5	5.7	15.8	6.3	4.8	3.4	11.4	5.4	5.2	4.5	9.5	8.9	5.5	9.0	3.6	8.5
A: Tune (Free	.)	14.0	16.0	7.9	20.6	9.6	8.1	4.7	14.8	11.3	8.0	5.2	18.0	5.2	4.6	4.5	8.7	7.7	4.2	9.4	3.4	9.3
B: StatReg (G	aussian)	17.3	11.9	10.1	1.6	12.6	8.9	9.7	1.3	6.6	8.6	4.9	1.4	5.4	8.0	5.3	1.2	1.2	1.8	1.8	1.6	6.1
B: StatReg (G	MM)	18.2	11.3	10.5	1.2	14.5	10.7	10.1	1.2	7.0	7.9	4.9	1.2	7.9	9.9	6.5	1.0	0.8	1.0	1.2	1.0	6.4
C: Tune + Sta	tReg (GMM)	13.2	16.9	7.2	24.5	10.9	10.4	5.7	16.5	10.1	8.3	5.0	18.8	5.7	5.7	6.0	8.8	19.5	15.8	21.4	8.0	11.9

When do we have enough?

When do we have enough? Never?

	TES.	.Y	S	
	-			
1				
Li	EL TH	E GR		ator.net

Method	mAP@0.5	mAP@[0.5,0.95]
He <i>et al</i> . [16]	53.3	32.2
ImageNet	53.6	34.3
300M	56.9	36.7
ImageNet+300M	58.0	37.4
Inception ResNet [38]	56.3	35.5

When do we have enough? Never?

When things work good enough.

Algorithm improvement can be more effective.

Detection Leaderboard

BBOX:	Dev	Standard15	Chal15	Chal16	Chal17	
SEGM:	Dev	Standard15	Chal15	Chal16	Chal17	Chal18

Copy to Clipboard	E	xport to	CSV	Search:										
	÷	AP 🔻	AP ⁵⁰	AP ⁷⁵ ♦	AP ^S	AP ^M ∳	AP ^L ∳	AR ¹ ♦	AR ¹⁰	AR ¹⁰⁰	AR ^S	AR ^M ♦	ARL	date 🔶
O Megvii (Face++)		0.526	0.730	0.585	0.343	0.556	0.660	0.391	0.645	0.689	0.513	0.727	0.827	2017-10- 05
O UCenter		0.510	0.705	0.558	0.326	0.539	0.648	0.392	0.640	0.678	0.497	0.720	0.829	2017-10- 05
O MSRA		0.507	0.717	0.566	0.343	0.529	0.627	0.379	0.638	0.690	0.524	0.720	0.824	2017-10- 05
FAIR Mask R-CNN		0.503	0.720	0.558	0.328	0.537	0.627	0.380	0.622	0.659	0.485	0.704	0.800	2017-10- 05
Trimps- Soushen+QINIU		0.482	0.681	0.534	0.310	0.512	0.610	0.373	0.611	0.652	0.466	0.688	0.801	2017-10- 05
bharat_umd		0.482	0.694	0.536	0.312	0.514	0.606	0.365	0.605	0.647	0.456	0.696	0.793	2017-10- 05

Method	mAP@0.5	mAP@[0.5,0.95]
He et al. [16]	53.3	32.2
ImageNet	53.6	34.3
300M	56.9	36.7
ImageNet+300M	58.0	37.4
Inception ResNet [38]	56.3	35.5

Revisiting Unreasonable Effectiveness of Data in Deep Learning Era

Active learning

Active learning

- Typical active learning scheme
- Not representative...
 - decades of research

Active learning

Often rely on measures:

- Confidence
- Sample importance

Typically:

- Entropy
- Softmax confidence
- Variance
- Margin

Cost-Effective Active Learning for Deep Image Classification

Measuring uncertainty

- Dropout

FF

- Ensembles
- Stochastic weights
- Far from cluster center (<u>Suggestive</u> <u>Annotation: A Deep Active Learning</u> <u>Framework for Biomedical Image</u> <u>Segmentation</u>)

The power of ensembles for active learning in image classification

Measuring uncertainty

- Ensembles seem to work best for now
- Relative small effect on large important datasets like ImageNet
- More research needed

My opinion:

- Relevant for institutions that work with different and large quantities of data
- Need a large problem to justify effort

When you are not learning

Network is learning nothing

Network is learning nothing

You probably screwed up!

Network is learning nothing

You probably screwed up!

- Data and labels not aligned
- Not updating batch norm parameters
- Wrong learning rate
- etc.

Why do we use **softmax**, when performance is often measured in **accuracy** (% of correct)?

- A small change in weights does not change loss function
- Might be an obvious example...

Why do we use **softmax**, when performance is often measured in **accuracy** (% of correct)?

- A small change in weights does not change loss function
- Might be an obvious example...

Softmax can "always" improve

Answer the question: do all slopes have the same **sign**.

To train on the correct solution directly is not working if you have more than 2 images.

If you train with two targets: Is slope positive and do all slopes have the same sign, works.

The loss is not very smooth, as a small change in slope on one image totally change the target.

- Without multitask learning regression task is not learning
- With only a small input (10⁻⁹) from the other task they train well
- With equal weight between tasks the test error is best for both tasks

Surrogat losses

Auxiliary task

Pixel control:

- Find actions to maximize pixel changes

Reward prediction:

- Sample history and predict reward in the next frame
- Evenly sampled: reward, neutral and punishment

Still used in newer research

-Reinforcement Learning with Unsupervised Auxiliary Tasks-

Auxiliary task

Reinforcement Learning with Unsupervised Auxiliary Tasks

Auxiliary task - learned

- Using both previous auxiliary targets
- Learning an additional target function by evolution

Agent observation raw pixels

Outdoor map overview

Auxiliary task - learned

- Using both previous auxiliary targets
- Learning an additional target function by evolution

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking Emerges by Colorizing Videos

Reference Frame

What color is this?

Where to get color from?

- Weighted average of colors
- For every pixel

Tracking by colorization - Loss

- Simplify/quantize color
- Use softmax cross entropy loss
- Colors are now simple categories
- Why not just just use mean squared loss?

Tracking by colorization - Fun!

Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints

- You want a 3D map of the world
- First try to estimate depth

D

$$Q_{t}^{ij} = D_{t}^{ij} \cdot K^{-1}[i, j, 1]^{T}$$

$$[\hat{i}, \hat{j}, 1]^{T} = KT_{t} \left(D_{t}^{ij} \cdot K^{-1}[i, j, 1]^{T} \right)$$

$$(C)$$

Q

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$
$$[\hat{i}, \hat{j}, 1]^T = KT_t \left(D_t^{ij} \cdot K^{-1}[i, j, 1]^T \right)$$
$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t \left(D_t^{ij} \cdot K^{-1}[i, j, 1]^T \right)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$K$$

Vid2depth - Image Reconstruction Loss

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) \|$$

Vid2depth - Image Reconstruction Loss

?!?

Vid2depth - Principled Mask

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t (D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\rm rec} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$
?!?

Vid2depth - Principled Mask

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t (D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$

Vid2depth - Principled Mask

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t (D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$

OBS! Missing depth test

Vid2depth - Image Reconstruction Loss

Not accounted for changes:

- Reflections
- Illumination
- etc.
- Noisy loss
- Artifacts
- Regularization cause blur

NVIDIA

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$

Remember our point cloud Q

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1} [i, j, 1]^T$$

Remember our point cloud Q

- 1. Finding alignment between point clouds with Iterative Closest Point
 - a. Align pairs of points (closest pairs of points)
 - b. Find a transform that minimizes point-to-point distances
 - c. Apply transform
 - d. Realign pairs with transformed point cloud
 - e. Outputs "best" transform T and residuals r

$$\underset{T'}{\arg\min} \frac{1}{2} \sum_{ij} \|T' \cdot A^{ij} - B^{c(ij)}\|^2$$

Remember our point cloud Q

- 1. Finding alignment between point clouds with Iterative Closest Point (ICP)
- 2. Perfect estimated ego-motion should give identity, transform from ICP

 $\|T_t'-I\|_1$

Remember our point cloud Q

- 1. Finding alignment between point clouds with Iterative Closest Point (ICP)
- 2. Perfect estimated ego-motion should give identity, transform from ICP
- 3. Perfect estimated depth image should give zero residuals from ICP

 $\|r_t\|_1$

Remember our point cloud Q

- 1. Finding alignment between point clouds with Iterative Closest Point (ICP)
- 2. Perfect estimated ego-motion should give identity, transform from ICP
- 3. Perfect estimated depth image should give zero residuals from ICP

$$L_{3D} = ||T_t' - I||_1 + ||r_t||_1,$$

Vid2depth- Structured Similarity

- Quality of image predictions
- Calculated for local patches
- Difference between image and reconstructed image

SSIM
$$(x, y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x + \sigma_y + c_2)}$$

$$L_{\text{SSIM}} = \sum_{ij} \left[1 - \text{SSIM}(\hat{X}_t^{ij}, X_t^{ij}) \right] M_t^{ij}$$

Vid2depth- Depth smoothness loss

- Edges of depth image should correspond to edges in input image
- Often correct, but not always

$$L_{\rm sm} = \sum_{i,j} \|\partial_x D^{ij}\| e^{-\|\partial_x X^{ij}\|} + \|\partial_y D^{ij}\| e^{-\|\partial_y X^{ij}\|}$$

Vid2depth - results depth

Method	Supervision	Dataset	Cap	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
Train set mean	-	K	80m	0.361	4.826	8.102	0.377	0.638	0.804	0.894
Eigen et al. [6] Coarse	Depth	K	80m	0.214	1.605	6.563	0.292	0.673	0.884	0.957
Eigen et al. [6] Fine	Depth	K	80m	0.203	1.548	6.307	0.282	0.702	0.890	0.958
Liu et al. [18]	Depth	K	80m	0.201	1.584	6.471	0.273	0.68	0.898	0.967
Zhou et al. [32]	-	K	80m	0.208	1.768	6.856	0.283	0.678	0.885	0.957
Zhou et al. [32]	-	CS + K	80m	0.198	1.836	6.565	0.275	0.718	0.901	0.960
Ours	-	K	80m	0.163	1.240	6.220	0.250	0.762	0.916	0.968
Ours	-	CS + K	80m	0.159	1.231	5.912	0.243	0.784	0.923	0.970
Garg et al. [8]	Stereo	K	50m	0.169	1.080	5.104	0.273	0.740	0.904	0.962
Zhou et al. [32]	-	K	50m	0.201	1.391	5.181	0.264	0.696	0.900	0.966
Zhou et al. [32]	-	CS + K	50m	0.190	1.436	4.975	0.258	0.735	0.915	0.968
Ours	-	K	50m	0.155	0.927	4.549	0.231	0.781	0.931	0.975
Ours	-	CS + K	50m	0.151	0.949	4.383	0.227	0.802	0.935	0.974

Table 1. Depth evaluation metrics over the KITTI Eigen [6] test set. Under the Dataset column, K denotes training on KITTI [10] and CS denotes training on Cityscapes [5]. δ denotes the ratio between estimates and ground truth. All results, except [6], use the crop from [8].

Figure 5. Sample depth estimates from the KITTI Eigen test set, generated by our approach (4th row), compared to Garg *et al.* [8], Zhou *et al.* [32], and ground truth [9]. Best viewed in color.

Vid2depth - results depth

Method	Dataset	Cap	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
All losses	CS + K	80m	0.159	1.231	5.912	0.243	0.784	0.923	0.970
All losses	K	80m	0.163	1.240	6.220	0.250	0.762	0.916	0.968
No ICP loss	K	80m	0.175	1.617	6.267	0.252	0.759	0.917	0.967
No SSIM loss	K	80m	0.183	1.410	6.813	0.271	0.716	0.899	0.961
No Principled Masks	K	80m	0.176	1.386	6.529	0.263	0.740	0.907	0.963
Zhou et al. [32]	K	80m	0.208	1.768	6.856	0.283	0.678	0.885	0.957
Zhou <i>et al.</i> [32]	CS + K	80m	0.198	1.836	6.565	0.275	0.718	0.901	0.960
All losses	Bike	80m	0.211	1.771	7.741	0.309	0.652	0.862	0.942
No ICP loss	Bike	80m	0.226	2.525	7.750	0.305	0.666	0.871	0.946

- Removing artifacts
- Regularizing
- Blurring?

Figure 7. Example depth estimation results from training without the 3D loss (middle), and with the 3D loss (bottom).

Vid2depth - results path

Matches state-of-art on KITTI odometry:

- Without LIDAR
- Only 3 frames at the time (no loop closure)

Method	Seq. 09	Seq. 10
ORB-SLAM (full)	0.014 ± 0.008	0.012 ± 0.011
ORB-SLAM (short)	0.064 ± 0.141	0.064 ± 0.130
Mean Odom.	0.032 ± 0.026	0.028 ± 0.023
Zhou et al. [32] (5-frame)	0.021 ± 0.017	0.020 ± 0.015
Ours, no ICP (3-frame)	0.014 ± 0.010	0.013 ± 0.011
Ours, with ICP (3-frame)	0.013 ± 0.010	0.012 ± 0.011

Vid2depth - problem

- Assumes static environment
- Too much moving object cause noise in learning and inference

