Training neural networks



Today's lecture

Learning from small data
Active learning

When you are not learning
Surrogat losses

Curriculum:

How transferable are features in deep neural

networks?
(http://papers.nips.cc/paper/5347-how-transferable-are-features-in
-deep-neural-networks.pdf)

Cost-Effective Active Learning for Deep Image

Classification (https:/arxiv.org/pdf/1701.03551.pdf)

Tracking Emerges by Colorizing Videos
(https://arxiv.org/abs/1806.09594)

Unsupervised Learning of Depth and Ego-Motion

from Monocular Video Using 3D Geometric
Constraints

(http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjour
ian_Unsupervised_Learning_of CVPR_2018_paper.pdf)
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Learning from small data



What is small data?

Number of categories vs. number of instances
ImageNet challenge: 1.2 m images (14 m in full)
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What is small data?

Sliver liver segmentation still works, why?

Instances per category

Number of categories vs. number of instances
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What is small data?

Sliver liver segmentation still works, why?
Homogenous data:

- Same CT-machine
- Standardised procedure

KITTI Road segmentation:

-  Similar conditions
- Same camera
- Roads are very similar

Instances per category

Number of categories vs. number of instances
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What is small data?

Heterogeneous task, need heterogeneous data.

It's not not necessarily the amount of images
that counts, but rather how many different
images you have.




What is small data?

- ImageNet have unspecific labels
- Harder to extract the essence of
a given class
-  MSCOCO have specific labels
- Easier to learn how the pixels
relate to a class

ballpoiat, ballpoint pen

pill bostle stethoscope vase schipperke

‘water bottle whistle pitcher, ewer groenendacl

lotion ice lolly, lolly coffeepot doormat, welcome mat
hair spray hair spray mask teddy, teddy bear

beer bottle maypole cup Jigsaw puzzle

Explore MSCOCO

What | learned from competing
against a ConvNet on ImageNet



http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://cocodataset.org/#explore

Transfer learning from pretrained network

- Neural networks share representations s & & A = @ fci s @

across classes ‘L‘ ‘L o, ‘L ‘?55 ‘dropwr aropoy ‘_. prdition i
- A network train on many classes and I

many examples have more general .

- You can reuse these features for many o \4
different applications

- Retrain train the last layer of the network,
for a different number of classes

representation | predicon \é'x



Transfer learning: Study

- Study done with plentiful data (split
ImageNet in two)

- Locking weights deprecate performance
- Remember lots of data
- More data improves performance, even if

it's different classes.

OBS! Everything may not be applicable with
new initialization schemes, Resnet and
batch-norm

How transferable are features in deep neural
networks?
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Transfer learning: Study

- Study done with plentiful data (split
ImageNet in two)

- Locking weights deprecate performance
- Remember lots of data
- More data improves performance, even if

it's different classes!

OBS! Everything may not be applicable with
new initialization schemes, Resnet and
batch-norm

How transferable are features in deep neural
networks?
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Transfer learning: Study

_ StUdy done Wlth plentlful data (Spllt 5 Tr;nsfer + fin‘é—tuning inﬁproves geheralizatior;
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Layer »n at which network is chopped and retrained

new initialization schemes and batch-norm

How transferable are features in deep neural
networks?
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What can you transfer to?

- Detecting special views in Ultrasound

- Initially far from ImageNet

- Benefit from fine-tuning imagenet features
- 300 patients, 11000 images

ROC curve
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http://ieeexplore.ieee.org/abstract/document/7090943/
http://ieeexplore.ieee.org/abstract/document/7090943/

Transfer learning from pretrained network

convl fc3 softmax

With less parameters to train, you are less likely ‘

conv:

to overfit.

Features is often invariant to many different © softman

effects. | y
prediction

Need a lot less time to train.

OBS! Since networks trained on ImageNet have
a lot of layers, it is still possible to overfit.

v2 conv3 4 convs fel fc2
max max max max | B
ﬂ. ﬂ _pool pool dropout Idropout prediction



Transfer learning from pretrained network

convl C! SO X

Generally:

Very little data: train only last layer

Ol X

Some data: train the last layers, finetune (small ‘ 1

—_

learning rate) the other layers

conv2 conv3  convd convs fe1 fc2 fc3 ftma
max nool e max max | prediction
pool pool pool pool pool dropout I dropout
3

prediction



Multitask learning

- Many small datasets
- Different targets
- Share base-representation

Same data with different labels can also have a
regularizing effect.




Multitask learning: pose and body part

- Without multitask learning
regression task is not learning

- With only a small input (10®) from
the other task they train well

- With equal weight between tasks
the test error is best for both tasks

107

pose regression task
training error test error

part detection tasks

training error

test error
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Heterogeneous Multi-task Learning for Human Pose

Estimation with Deep Convolutional Neural Network



http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/LI_Heterogeneous_Multi-task_Learning_2014_CVPR_paper.pdf
http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/LI_Heterogeneous_Multi-task_Learning_2014_CVPR_paper.pdf

Different domains with similar
tasks

Both text and different images
Some categories not available
for all modalities

Learn jointly by sharing
mid-level representation
Training first part of the
network from scratch

Same task different domain

R |

Sketches Spatial text Descriptions
= o |y There is a bed with a striped bedspread. Beside
- this is a nightstand with a drawer. There is also a

tall dresser and a chair with a blue cushion. On
the dresser is a jewelry box and a clock.

Bedroom

e

1]
‘! e things. This room is filled with pillows and a
| e C - comfortable bed. There are stuffed animals

everywhere. | have posters on the walls. My

1
|
|
|
I[1'am inside a room surrounded by my favorite
|
|
"_jewelry box is on the dresser.

There are brightly colored wooden tables with
little chairs. There is a rug in one corner with
ABC blocks on it. There is a bookcase with
picture books, a larger teacher's desk and a
chalkboard.

The young students gather in the room at their
tables to color. They leam numbers and letters
and play games. At nap time they all pull out
mats and go to sleep.
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Spatial Text

Descriptions



https://arxiv.org/abs/1610.09003

Same task different domain

The network display better
semantic alignment
The network differentiate
between classes and not
modalities
For B and C they also use

regularization to force similar

statistics in upper part of
base-network
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https://arxiv.org/abs/1610.09003

When do we have enough?



mean AP —

When do we have enough? Never?
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When do we have enough? Never?

When things work good enough.

Algorithm improvement can be more effective.

Detection Leaderboard
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Active learning



Active learning r - :ﬂ

- Typical active learning
scheme

- Not representative...
- decades of research

Predict valuable
samples




Active learning

Often rely on measures:

E E Auto Pseudo-Labeling

. : Progres'sively E - E
) Conflder_]ce e E Majority & Clearly Classified Samplés
- Sample importance g

Typically: ! i
Unlabeled Dataset ) & Most Informative Samples

- Entropy
- Softmax confidence Cost-Effective Active Learning for Deep Image Classification
- Variance

- Margin


https://arxiv.org/pdf/1701.03551.pdf

Measuring uncertainty

- Dropout
- Ensembles
- Stochastic weights

- Far from cluster center (Suggestive
Annotation: A Deep Active Learning
Framework for Biomedical Image
Segmentation)

The power of ensembles for active learning in
image classification



https://arxiv.org/pdf/1706.04737.pdf
https://arxiv.org/pdf/1706.04737.pdf
https://arxiv.org/pdf/1706.04737.pdf
https://arxiv.org/pdf/1706.04737.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Beluch_The_Power_of_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Beluch_The_Power_of_CVPR_2018_paper.pdf

Measuring uncertainty

- Ensembles seem to work best for now

- Relative small effect on large important
datasets like ImageNet

- More research needed

My opinion:

- Relevant for institutions that work with
different and large quantities of data
- Need a large problem to justify effort

The power of ensembles for active learning in

........
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........ MC-Random

0 2000 4000 6000 8000 10000
Number of trainina imaaes

40k 80k 120k 160k 200k 240k 280k
Random 0.159 0.257 0.321 0.372 0.407 0.439 0470
(0.004)  (0.003)  (0.006)  (0.003)  (0.007)  (0.001)
VarR 0.152  0.257 0.324 0.383 0.427 0.458 0.494
(0.003)  (0.004)  (0.002)  (0.002)  (0.004)  (0.004)

image classification



http://openaccess.thecvf.com/content_cvpr_2018/papers/Beluch_The_Power_of_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Beluch_The_Power_of_CVPR_2018_paper.pdf

When you are not learning



Network is learning nothing

107!

pose regression task

part detection tasks

training error test error training error test error
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Network is learning nothing

You probably screwed up!

107!

pose regression task

part detection tasks

training error test error training error test error
I
1 1w
10 41 10t
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Network is learning nothing

pose regression task part detection tasks

YO u p ro b a b Iy screwe d u p ' training error test error training error test error

- Data and labels not aligned
- Not updating batch norm

parameters
- Wrong learning rate = |
- eftc. &&
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Epoch Epoch Epoch Epoch
— Ap=1lLAp=2 — Ap=1,Ap=1 —_— Ag=1Ap =105 Ap=1,Ap=0.25

— Ar=1,2Ap=0 Ag =10, 2p = 10"° — Ar=0,Ap=1




Target is not learnable

Why do we use softmax, when performance is
often measured in accuracy (% of correct)?

- A small change in weights does not
change loss function
- Might be an obvious example...

Where to
go?

|

y/

A



Target is not learnable

Why do we use softmax, when performance is
often measured in accuracy (% of correct)?

- A small change in weights does not
change loss function
- Might be an obvious example...

Softmax can “always” improve

Where to
go?

|

y/

A



Target is not learnable

Answer the question: do all slopes have the
same sign.

The loss is not very smooth, as a small change 1 . g 1

in slope on one image totally change the target. r "

J s

To train on the correct solution directly is not
working if you have more than 2 images.

If you train with two targets: Is slope positive and
do all slopes have the same sign, works.




Target is not learnable

- Without multitask learning
regression task is not learning

- With only a small input (10®) from
the other task they train well

- With equal weight between tasks
the test error is best for both tasks

107

pose regression task
training error test error

part detection tasks

training error

test error
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Heterogeneous Multi-task Learning for Human Pose

Estimation with Deep Convolutional Neural Network



http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/LI_Heterogeneous_Multi-task_Learning_2014_CVPR_paper.pdf
http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/LI_Heterogeneous_Multi-task_Learning_2014_CVPR_paper.pdf

Surrogat losses



Auxiliary task

Pixel control: )
D) DeepMind Auxiliary Tasks
_ . o _ Live Play
- Find actions to maximize pixel Reward [ ] ;
Pixel Control
changes :

Reward prediction:

- Sample history and predict
reward in the next frame

- Evenly sampled: reward,
neutral and punishment

Still used in newer research

Actions Value Function

Reinforcement Learning with Unsupervised Auxiliary Tasks



https://arxiv.org/abs/1611.05397

Auxiliary task
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https://arxiv.org/abs/1611.05397

Auxiliary task - learned

- Using both previous auxiliary targets
- Learning an additional target function by
evolution

Agent observation raw pixels

Outdoor map overview

Human-level performance in first-person multiplayer games with population-based deep reinforcement

learning


http://www.youtube.com/watch?v=OjVxXyp7Bxw
https://arxiv.org/abs/1807.01281
https://arxiv.org/abs/1807.01281

Auxiliary task - learned

- Using both previous auxiliary targets TralhingiGames Played

. . . A tEl 0K 150K 300K 450K
- Learning an additional target function by 93“160‘(’) L ! ! !
evolution 1500 FTW
1400 -
1300 Strong Human
1200 Self-play + RS
1100 - A .
1000 - verage Auman
900 -
600 S
500 — L\/—\/\/_/_\——8e"-play



Tracking by colorization

---------

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking Emerges by Colorizing Videos



https://arxiv.org/abs/1806.09594

Tracking by colorization

Reference Frame What color is this?




Tracking by colorization




Tracking by colorization

Where to get color from?

Weighted average of colors
For every pixel




Tracking by colorization - Loss

1 - 8 »
L T -4 .o - P
o B 1 = B \ %l - #y
R ¥ A N« - . 2 P
e 3
) el ) s v Lo
- - AW

- Simplify/quantize
color

- Use softmax cross
entropy loss

- Colors are now
simple categories

- Why not just just use
mean squared loss?



Tracking by colorization - Fun!




Vid2depth - 3D Geometric Constraints

Depth Estimate Dt

= e

Egomotion

Unsupervised Learning of Depth
Estimation

and Eqo-Motion from Monocular

Video Using 3D Geometric Input Frame X,_, | ZLD Pixel Input Frame X,
. \ osses
Constraints + ‘ ¥

‘ A A
Warped Frame Xt_1 Warped Frame Xt


http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjourian_Unsupervised_Learning_of_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjourian_Unsupervised_Learning_of_CVPR_2018_paper.pdf
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http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjourian_Unsupervised_Learning_of_CVPR_2018_paper.pdf

Vid2depth - 3D Geometric Constraints

You want a 3D map of the world
First try to estimate depth

UNIK4690



https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_08/lecture_8_1_multiple_view_geometry.pdf

Vid2depth - 3D Geometric Constraints
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https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_08/lecture_8_1_multiple_view_geometry.pdf

Vid2depth - 3D Geometric Constraints
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https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_08/lecture_8_1_multiple_view_geometry.pdf

Vid2depth - 3D Geometric Constraints
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https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_08/lecture_8_1_multiple_view_geometry.pdf

Vid2depth - 3D Geometric Constraints

i = DY . K1, 4,1]T -
2,3, 11" = KTt(Dij - K43, 4, 1]T) / \
A 14 \C'“ /> - v,/«{«C,}
K = X2y {C}
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https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_08/lecture_8_1_multiple_view_geometry.pdf

Vid2depth - Image Reconstruction Loss

TR T e &4
EEANTEE I
Estimate
Ego-motion

[2’57 1]T = KTt(DzJ ’ K_l[ivja 1]T)

g zg
X =X,

Lo = Y_IX7 - X))




Vid2depth - Image Reconstruction Loss

TR T e &4
EEANTEE I
Estimate
Ego-motion

[%’37 1]T = KTt(DEJ ’ K_l[iaja 1]T)

>ij _ yrid
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Vid2depth - Principled Mask

TR T e &4
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Vid2depth - Principled Mask
ij — D? ’ K_l[ivjv 1]T
[%a.}v 1]T — KTt(DzJ ’ K_l[ivja 1]T)

ij _ i
X =X,

rec—ZII( X2 )M




Vid2depth - Principled Mask
Y =Dy - K~'i,5,1]"

5351 = BR(DY - K[, 1)

X9 = x5,

rec—ZII( X2 )M

OBS! Missing depth test




Vid2depth - Image Reconstruction Loss

Not accounted for changes:
Reflections
[llumination
etc.

Noisy loss
Artifacts
Regularization cause blur

NVIDIA

Lrec — Z ”(XZJ o XZJ)MZJ”

L)



Vid2depth - 3D Point Cloud Alignment Loss

Remember our point cloud Q e

;=D K[, 4, 1"




Vid2depth - 3D Point Cloud Alignment Loss

Remember our point cloud Q

1. Finding alignment between point clouds
with Iterative Closest Point

a. Align pairs of points (closest pairs of
points)

b. Find a transform that minimizes
point-to-point distances

c. Apply transform

d. Realign pairs with transformed point cloud

e. Outputs “best” transform T and residuals r

1 N N
Ve % T/ ) Az_y . Bc(zg) 2
argTr,nan %7- | |



Vid2depth - 3D Point Cloud Alignment Loss

Remember our point cloud Q Adust T .. ICP Transform
- 1.9
1. Finding alignment between point clouds ’C" — Qt-l

with Iterative Closest Point (ICP) g / Qi1 (7“
2. Perfect estimated ego-motion should give | ( ( \
identity, transform from ICP

[
[

177 = 111

\:JICPResidual_
I’t




Vid2depth - 3D Point Cloud Alignment Loss

Remember our point cloud Q

1. Finding alignment between point clouds
with Iterative Closest Point (ICP)

2. Perfect estimated ego-motion should give
identity, transform from ICP

3. Perfect estimated depth image should give
zero residuals from ICP

7|1



Vid2depth - 3D Point Cloud Alignment Loss

Remember our point cloud Q

1. Finding alignment between point clouds
with Iterative Closest Point (ICP)

2. Perfect estimated ego-motion should give
identity, transform from ICP

3. Perfect estimated depth image should give
zero residuals from ICP

Lsp = [|T; — Illx + [I7ela,



Vid2depth- Structured Similarity

. : - 20, 20,
- Quality of image predictions SSIM(z,y) = ( (2{‘}_ fuzy_{:*:l))(g"lz‘*‘ii) )
- Calculated for local patches Hop Ty T L I\ T Ty 2

- Difference between image and

reconstructed image Lssim = Z [1 = SSIM(XZj, ij)]M:j

1]




Vid2depth- Depth smoothness loss

Edges of depth image should correspond
to edges in input image
Often correct, but not always

Lon =Y [|0:D%||e~1% X"l 1 |9, D¥]| ¢8I

i,]



Vid2depth - results depth

Method Supervision | Dataset | Cap || AbsRel | SqRel | RMSE | RMSElog | 6 < 1.25 | § < 1.257 | § < 1.25°
Train set mean - K 80m || 0.361 4.826 | 8.102 0.377 0.638 0.804 0.894
Eigen et al. [6] Coarse Depth K 80m || 0.214 1.605 | 6.563 0.292 0.673 0.884 0.957
Eigen et al. [6] Fine Depth K 80m || 0.203 1.548 | 6.307 0.282 0.702 0.890 0.958
Liu et al. [18] Depth K 80m || 0.201 1.584 | 6.471 0.273 0.68 0.898 0.967
Zhou et al. [32] - K 80m || 0.208 1.768 | 6.856 0.283 0.678 0.885 0.957
Zhou et al. [32] - CS+K | 80m || 0.198 1.836 | 6.565 0.275 0.718 0.901 0.960
Ours - K 80m || 0.163 1.240 | 6.220 0.250 0.762 0.916 0.968
Ours - CS+K | 80m || 0.159 1.231 | 5912 0.243 0.784 0.923 0.970
Garg et al. [¢] Stereo K 50m || 0.169 1.080 | 5.104 0.273 0.740 0.904 0.962
Zhou et al. [32] - K 50m || 0.201 1.391 | 5.181 0.264 0.696 0.900 0.966
Zhou et al. [32] - CS+K | 50m || 0.190 1.436 | 4.975 0.258 0.735 0.915 0.968
Ours - K 50m || 0.155 0.927 | 4.549 0.231 0.781 0.931 0.975
Ours - CS+K | 50m || 0.151 0.949 | 4.383 0.227 0.802 0.935 0.974

Table 1.

Garg et al

w©
©
>
2
N

Ours

Figure 5. Sample depth estimates from the KITTI Eigen test set, generated by our approach (4th row), compared to Garg et al. [8], Zhou et
al. [32], and ground truth [9]. Best viewed in color.

Depth evaluation metrics over the KITTI Eigen [6] test set. Under the Dataset column, K denotes training on KITTI [10] and CS
denotes Lrammg on Cityscapes [5]. § denotes the ratio between estimates and ground truth. All results, except [6], use the crop from [&].

Absolute Relative KITTI Depth Prediction Evaluation Error (cap 80m)

Absolute Relative KITTI Depth Prediction Evaluation Error (cap 80m)
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CS -> KITTI (no ICP)
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No ICP =--x---
No SSIM =
No Principled Masks
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Vid2depth - results depth

Method Dataset | Cap || AbsRel | SqRel | RMSE | RMSElog | § < 1.25 | 6 < 1.25% | § < 1.25°
All losses CS+K | 80m 0.159 1.231 | 5912 0.243 0.784 0.923 0.970
All losses K 80m 0.163 1.240 | 6.220 0.250 0.762 0.916 0.968
No ICP loss K 80m 0.175 1.617 6.267 0.252 0.759 0.917 0.967
No SSIM loss K 80m 0.183 1410 | 6.813 0.271 0.716 0.899 0.961
No Principled Masks K 80m 0.176 1.386 6.529 0.263 0.740 0.907 0.963
Zhou et al. [32] K 80m 0.208 1.768 | 6.856 0.283 0.678 0.885 0.957
Zhou et al. [32] CS+K | 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960
All losses Bike 80m 0.211 1.771 7.741 0.309 0.652 0.862 0.942
No ICP loss Bike 80m 0.226 2.525 | 7.750 0.305 0.666 0.871 0.946

- Removing
artifacts

- Regularizing

- Blurring?

Figure 7. Example depth estimation results from training without
the 3D loss (middle), and with the 3D loss (bottom).

Absolute Relative KITTI Depth Prediction Evaluation Error (cap 80m)

Absolute Relative KITTI Depth Prediction Evaluation Error (cap 80m)

0.22

0.21 - ¥

T T T
KITTI only (ICP) —+—
KITTI only (No ICP) =--x---
CS -> KITTI (ICP) =
CS -> KITTI (no ICP)

" " L L . "
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Epoch

Alllosses —+—
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No Principled Masks @




Vid2depth - results path

Matches state-of-art on KITTI

odometry:

Without LIDAR
Only 3 - frames at the
time (no loop closure)

Method Seq. 09 Seq. 10
ORB-SLAM (full) 0.014 £0.008 0.012 +0.011
ORB-SLAM (short) 0.064 + 0.141 0.064 4+ 0.130
Mean Odom. 0.032 4+ 0.026 0.028 £+ 0.023
Zhou et al. [32] (5-frame)  0.021 £ 0.017 0.020 £ 0.015
Ours, no ICP (3-frame) 0.014 + 0.010 0.013 +0.011
Ours, with ICP (3-frame) 0.013 +0.010 0.012 +0.011




Vid2depth - problem

- Assumes static environment
- Too much moving object cause noise in
learning and inference




