Training neural networks

Today's lecture

- Learning from small data
- Active learning
- When you are not learning
- Surrogat losses

Curriculum:

- How transferable are features in deep neural networks?
 - (http://papers.nips.cc/paper/5347-how-transferable-are-features-in_deep-neural-networks.pdf)
- Cost-Effective Active Learning for Deep Image
 Classification (https://arxiv.org/pdf/1701.03551.pdf)
- <u>Tracking Emerges by Colorizing Videos</u>
 - (https://arxiv.org/abs/1806.09594)
- Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints

(http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjour ian Unsupervised Learning of CVPR 2018 paper.pdf)

Learning from small data

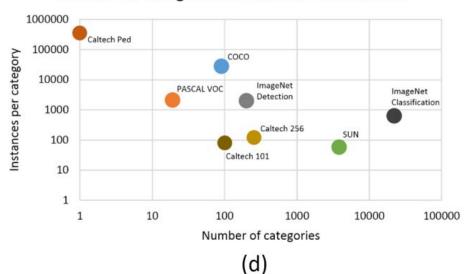
ImageNet challenge: 1.2 m images (14 m in full)

MSCOCO Detection challenge: 80,000 images (328,000 in full)

KITTI Road segmentation: 289 images

SLIVER07 3D liver segmentation: 20 3D-images

Number of categories vs. number of instances



Sliver liver segmentation still works, why?

Number of categories vs. number of instances



Sliver liver segmentation still works, why?

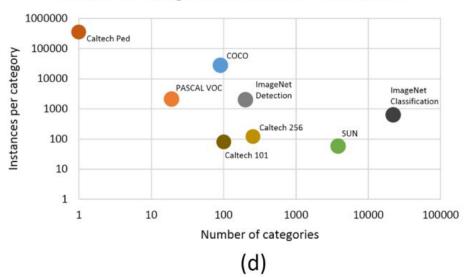
Homogenous data:

- Same CT-machine
- Standardised procedure

KITTI Road segmentation:

- Similar conditions
- Same camera
- Roads are very similar

Number of categories vs. number of instances



Heterogeneous task, need heterogeneous data.

It's not not necessarily the amount of images that counts, but rather how many **different** images you have.

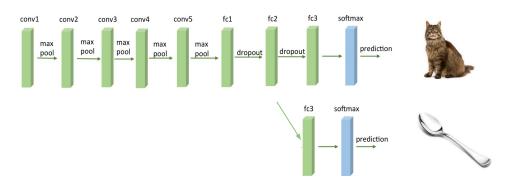
- ImageNet have unspecific labels
 - Harder to extract the essence of a given class
- MSCOCO have specific labels
 - Easier to learn how the pixels relate to a class

What I learned from competing against a ConvNet on ImageNet

Explore MSCOCO

Transfer learning from pretrained network

- Neural networks share representations across classes
- A network train on many classes and many examples have more general representation
- You can reuse these features for many different applications
- Retrain train the last layer of the network, for a different number of classes



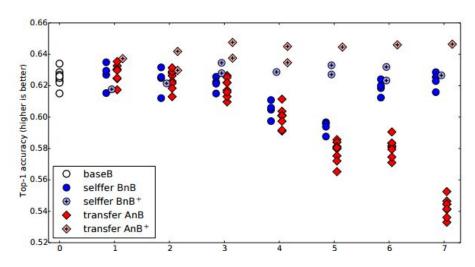
Transfer learning: Study

- Study done with plentiful data (split ImageNet in two)
- Locking weights deprecate performance
 - Remember lots of data
- More data improves performance, even if it's different classes.

OBS! Everything may not be applicable with new initialization schemes, Resnet and batch-norm

How transferable are features in deep neural networks?



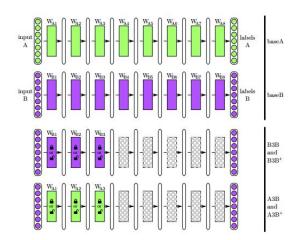


Transfer learning: Study

- Study done with plentiful data (split ImageNet in two)
- Locking weights deprecate performance
 - Remember lots of data
- More data improves performance, even if
 it's different classes.

OBS! Everything may not be applicable with new initialization schemes, Resnet and batch-norm

How transferable are features in deep neural networks?

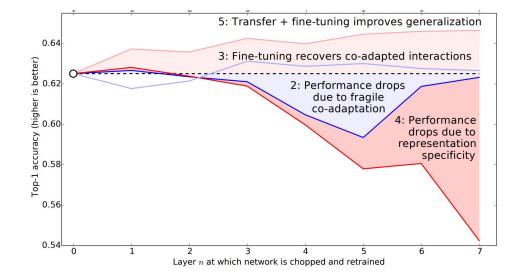




Transfer learning: Study

- Study done with plentiful data (split ImageNet in two)
- Locking weights deprecate performance
 - Remember lots of data
- More data improves performance, even if it's different classes.

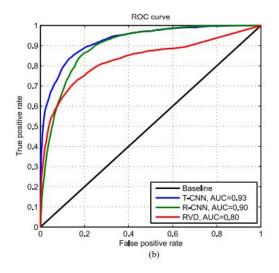
OBS! Everything may not be applicable with new initialization schemes and batch-norm

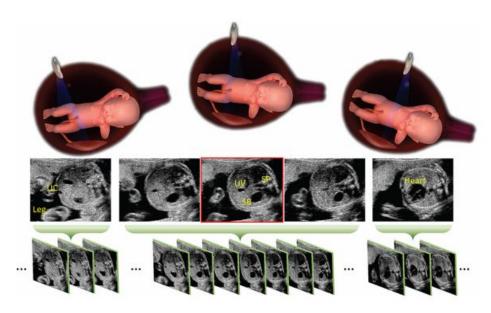


How transferable are features in deep neural networks?

What can you transfer to?

- Detecting special views in Ultrasound
- Initially far from ImageNet
- Benefit from fine-tuning imagenet features
- 300 patients, 11000 images





<u>Standard Plane Localization in Fetal Ultrasound via Domain Transferred</u>
<u>Deep Neural Networks</u>

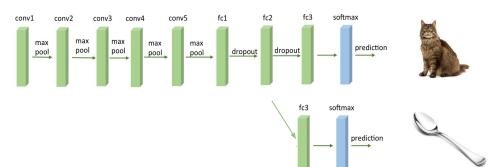
Transfer learning from pretrained network

With less parameters to train, you are less likely to overfit.

Features is often invariant to many different effects.

Need a lot less time to train.

OBS! Since networks trained on ImageNet have a lot of layers, it is still possible to overfit.



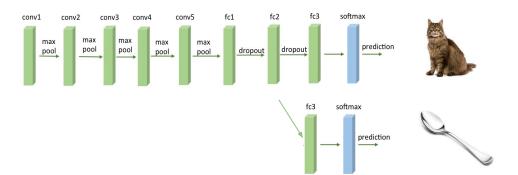
Transfer learning from pretrained network

Generally:

Very little data: train only last layer

Some data: train the last layers, finetune (small

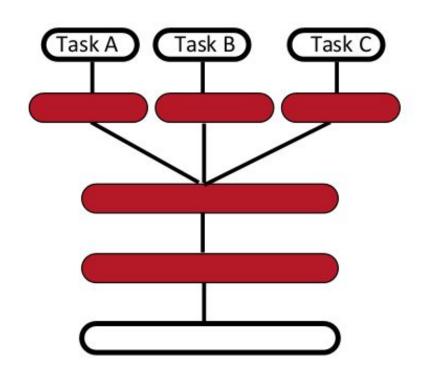
learning rate) the other layers



Multitask learning

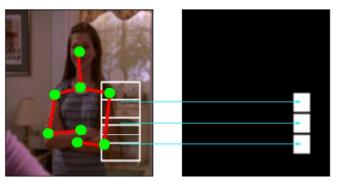
- Many small datasets
- Different targets
- Share base-representation

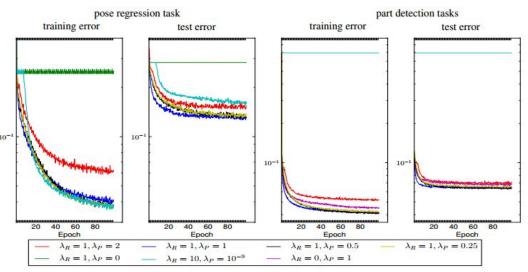
Same data with different labels can also have a regularizing effect.



Multitask learning: pose and body part

- Without multitask learning regression task is not learning
- With only a small input (10⁻⁹) from the other task they train well
- With equal weight between tasks the test error is best for both tasks

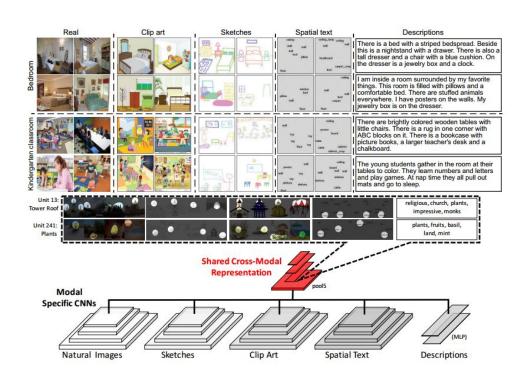




<u>Heterogeneous Multi-task Learning for Human Pose</u> Estimation with Deep Convolutional Neural Network

Same task different domain

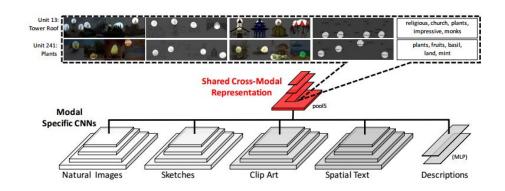
- Different domains with similar tasks
- Both text and different images
- Some categories not available for all modalities
- Learn jointly by sharing mid-level representation
- Training first part of the network from scratch

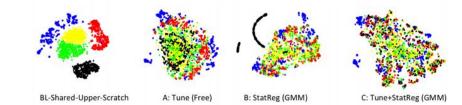


Same task different domain

- The network display better semantic alignment
- The network differentiate between classes and not modalities
- For B and C they also use regularization to force similar statistics in upper part of base-network

						-																
Cross Modal Query		NAT			CLP			SPT			LDR			DSC				Mean				
Retrieval	Target	CLP	SPT	LDR	DSC	NAT	SPT	LDR	DSC	NAT	CLP	LDR	DSC	NAT	CLP	SPT	DSC	NAT	CLP	SPT	LDR	mAP
BL-Individual		17.9	11.9	10.0	1.3	12.2	10.3	9.2	1.3	7.0	9.1	5.2	1.1	5.7	8.8	5.4	1.2	0.9	1.4	1.5	1.2	6.1
BL-Shared-Upper-Scratch		7.0	7.8	4.1	10.9	5.5	5.0	3.2	9.2	5.2	4.5	2.7	8.9	3.1	3.0	3.0	5.2	5.8	5.1	6.3	3.2	5.4
BL-Shared-Upper		10.4	12.4	4.5	14.6	9.1	7.2	3.7	10.1	6.8	5.5	3.0	8.9	3.3	3.8	3.6	4.6	4.3	4.8	6.6	3.3	6.5
A: Tune		13.3	11.3	6.7	21.9	10.1	8.5	5.7	15.8	6.3	4.8	3.4	11.4	5.4	5.2	4.5	9.5	8.9	5.5	9.0	3.6	8.5
A: Tune (Free)		14.0	16.0	7.9	20.6	9.6	8.1	4.7	14.8	11.3	8.0	5.2	18.0	5.2	4.6	4.5	8.7	7.7	4.2	9.4	3.4	9.3
B: StatReg (Gaussian)		17.3	11.9	10.1	1.6	12.6	8.9	9.7	1.3	6.6	8.6	4.9	1.4	5.4	8.0	5.3	1.2	1.2	1.8	1.8	1.6	6.1
B: StatReg (GMM)		18.2	11.3	10.5	1.2	14.5	10.7	10.1	1.2	7.0	7.9	4.9	1.2	7.9	9.9	6.5	1.0	0.8	1.0	1.2	1.0	6.4
C: Tune + StatReg (GMM)		13.2	16.9	7.2	24.5	10.9	10.4	5.7	16.5	10.1	8.3	5.0	18.8	5.7	5.7	6.0	8.8	19.5	15.8	21.4	8.0	11.9



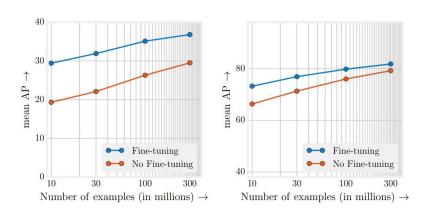


Modalities

Spatial Text

When do we have enough?

When do we have enough? Never?



Method	mAP@0.5	mAP@[0.5,0.95]
He <i>et al</i> . [16]	53.3	32.2
ImageNet	53.6	34.3
300M	56.9	36.7
ImageNet+300M	58.0	37.4
Inception ResNet [38]	56.3	35.5

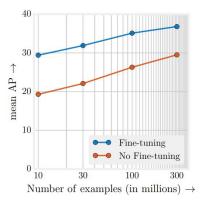
When do we have enough? Never?

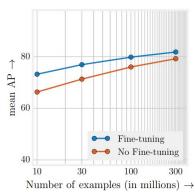
When things work good enough.

Algorithm improvement can be more effective.

Detection Leaderboard

BBOX:



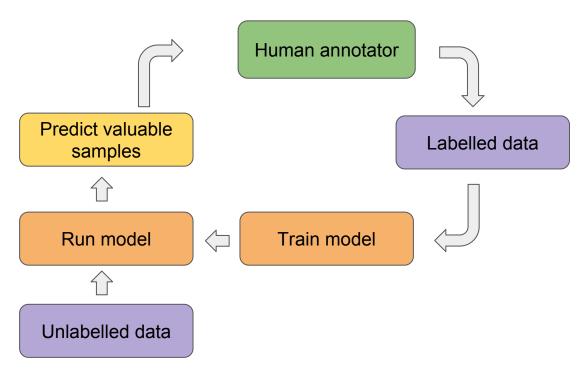


Method	mAP@0.5	mAP@[0.5,0.95]
He et al. [16]	53.3	32.2
ImageNet	53.6	34.3
300M	56.9	36.7
ImageNet+300M	58.0	37.4
Inception ResNet [38]	56.3	35.5

Active learning

Active learning

- Typical active learning scheme
- Not representative...
 - decades of research



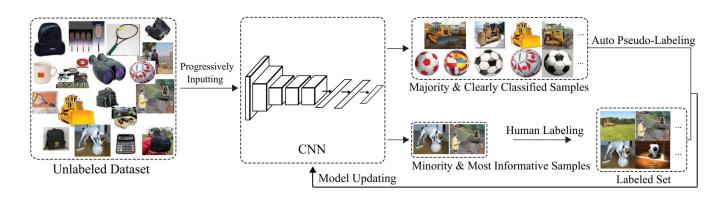
Active learning

Often rely on measures:

- Confidence
- Sample importance

Typically:

- Entropy
- Softmax confidence
- Variance
- Margin



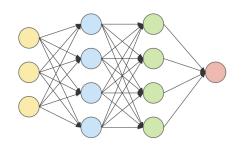
Cost-Effective Active Learning for Deep Image Classification

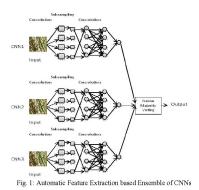
Measuring uncertainty

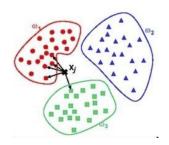
- Dropout
- Ensembles
- Stochastic weights

- Far from cluster center (Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation)

The power of ensembles for active learning in image classification





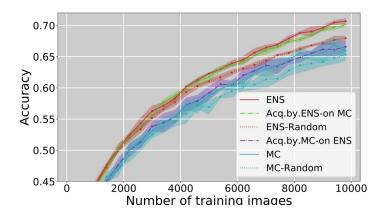


Measuring uncertainty

- Ensembles seem to work best for now
- Relative small effect on large important datasets like ImageNet
- More research needed

My opinion:

- Relevant for institutions that work with different and large quantities of data
- Need a large problem to justify effort

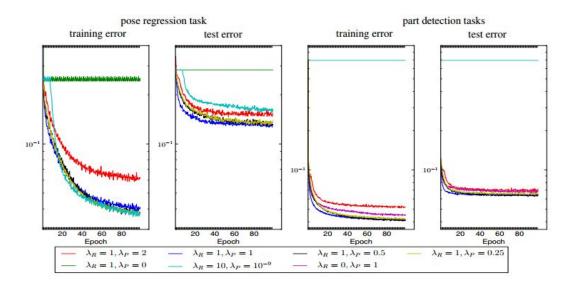


	40k	80k	120k	160k	200k	240k	280k
Random	0.159 (0.004)	0.257 (0.003)	0.321	0.372 (0.003)	0.407 (0.007)	0.439 (0.001)	0.470
VarR	$\underset{(0.003)}{0.152}$	$\underset{(0.004)}{0.257}$	$\underset{(0.002)}{0.324}$	$\underset{(0.002)}{0.383}$	$\underset{(0.004)}{0.427}$	$\underset{(0.004)}{0.458}$	0.494

The power of ensembles for active learning in image classification

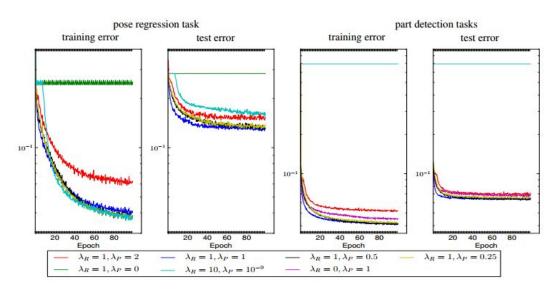
When you are not learning

Network is learning nothing



Network is learning nothing

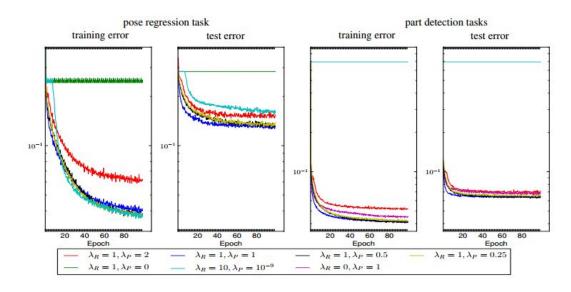
You probably screwed up!



Network is learning nothing

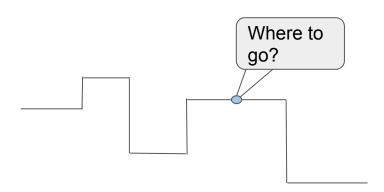
You probably screwed up!

- Data and labels not aligned
- Not updating batch norm parameters
- Wrong learning rate
- etc.



Why do we use **softmax**, when performance is often measured in **accuracy** (% of correct)?

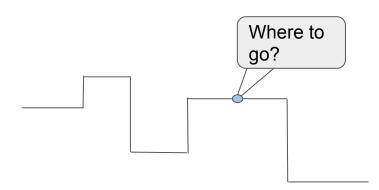
- A small change in weights does not change loss function
- Might be an obvious example...



Why do we use **softmax**, when performance is often measured in **accuracy** (% of correct)?

- A small change in weights does not change loss function
- Might be an obvious example...

Softmax can "always" improve

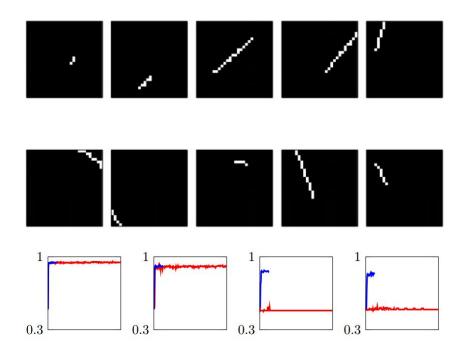


Answer the question: do all slopes have the same **sign**.

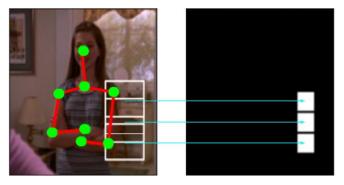
To train on the correct solution directly is not working if you have more than 2 images.

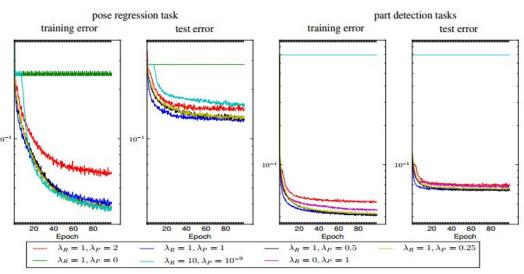
If you train with two targets: Is slope positive and do all slopes have the same sign, works.

The loss is not very smooth, as a small change in slope on one image totally change the target.



- Without multitask learning regression task is not learning
- With only a small input (10⁻⁹) from the other task they train well
- With equal weight between tasks the test error is best for both tasks





<u>Heterogeneous Multi-task Learning for Human Pose</u> <u>Estimation with Deep Convolutional Neural Network</u>

Surrogat losses

Auxiliary task

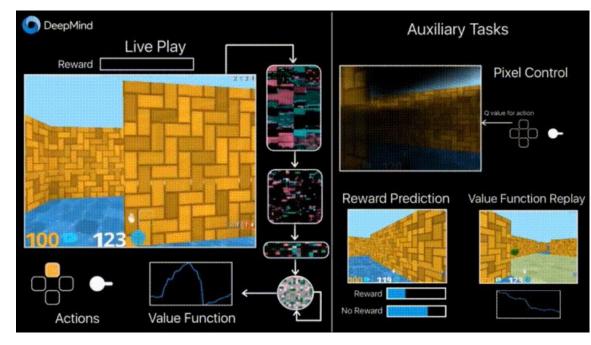
Pixel control:

 Find actions to maximize pixel changes

Reward prediction:

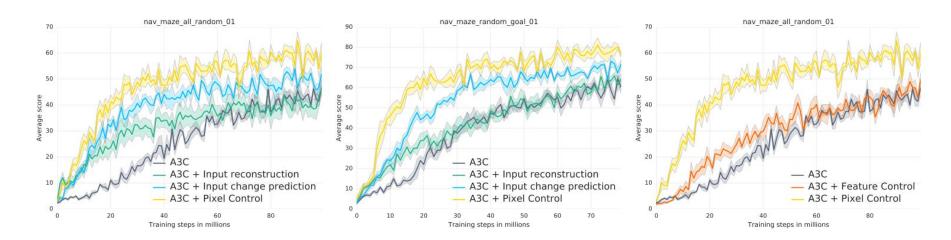
- Sample history and predict reward in the next frame
- Evenly sampled: reward, neutral and punishment

Still used in newer research



Reinforcement Learning with Unsupervised Auxiliary Tasks

Auxiliary task



Reinforcement Learning with Unsupervised Auxiliary Tasks

Auxiliary task - learned

- Using both previous auxiliary targets
- Learning an additional target function by evolution

Agent observation raw pixels

Outdoor map overview

Auxiliary task - learned

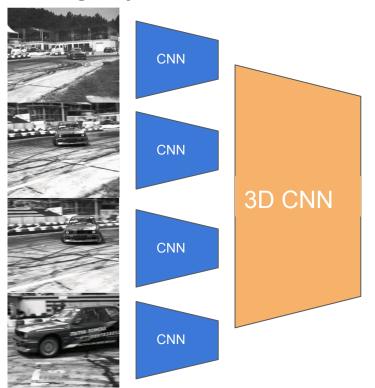
- Using both previous auxiliary targets
- Learning an additional target function by evolution

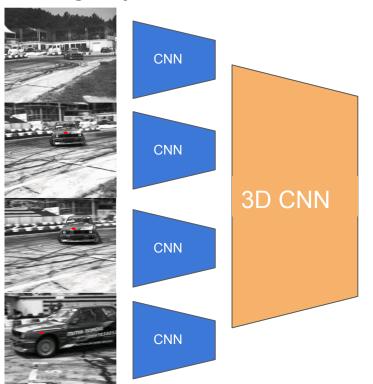
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

<u>Tracking Emerges by Colorizing Videos</u>

Reference Frame

What color is this?





Where to get color from?

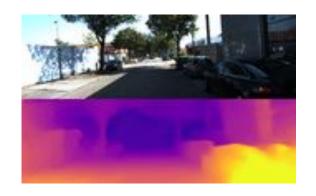
- Weighted average of colors
- For every pixel

Tracking by colorization - Loss

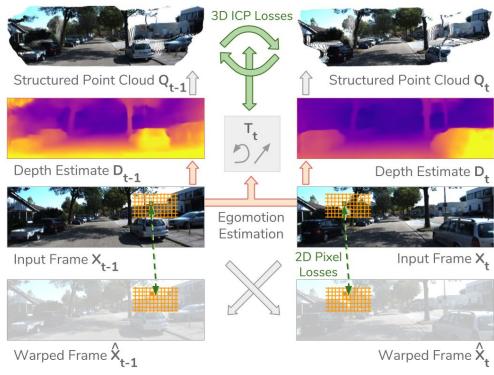
- Simplify/quantize color
- Use softmax cross entropy loss
- Colors are now simple categories

 Why not just just use mean squared loss?

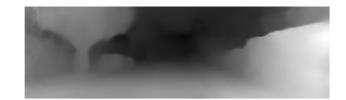
Tracking by colorization - Fun!



Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints

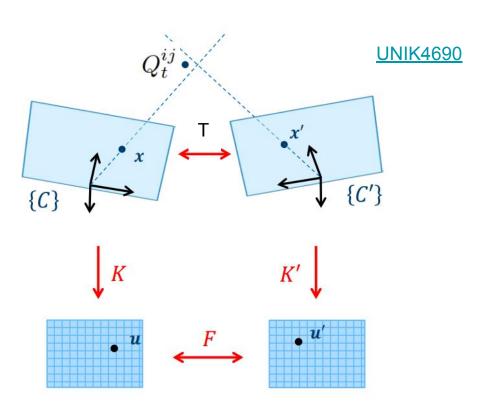


- You want a 3D map of the world
- First try to estimate depth



UNIK4690

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$



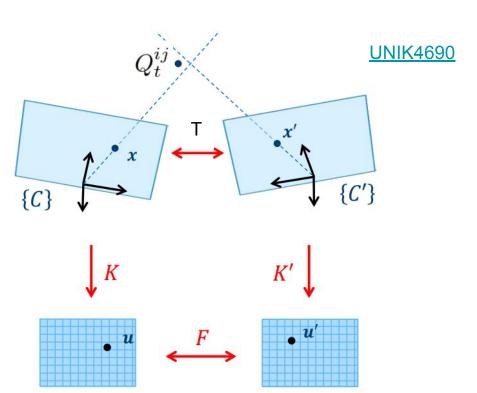
$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i,j,1]^T$$

$$Q_t^{ij} \cdot K^{-1}[i,j,1]^T$$

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t (D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$



$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i,j,1]^T$$

$$\hat{[i,\hat{j},1]}^T = KT_t \left(D_t^{ij} \cdot K^{-1}[i,j,1]^T\right)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

Vid2depth - Image Reconstruction Loss

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t (D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) \quad \|$$

Vid2depth - Image Reconstruction Loss

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t(D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) \quad \|$$

Vid2depth - Principled Mask

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t(D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$

Vid2depth - Principled Mask

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t (D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$

Vid2depth - Principled Mask

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$

$$[\hat{i}, \hat{j}, 1]^T = KT_t (D_t^{ij} \cdot K^{-1}[i, j, 1]^T)$$

$$\hat{X}_t^{ij} = X_{t-1}^{\hat{i}\hat{j}}$$

$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$

OBS! Missing depth test



Vid2depth - Image Reconstruction Loss

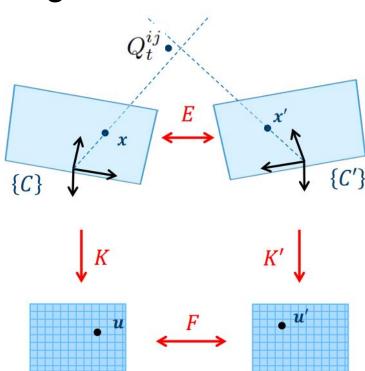
Not accounted for changes:

- Reflections
- Illumination
- etc.
- Noisy loss
- Artifacts
- Regularization cause blur

NVIDIA

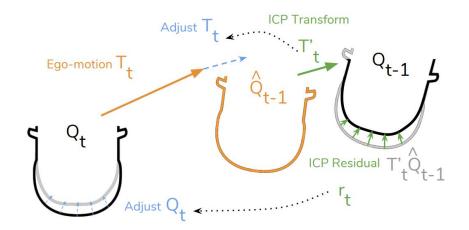
$$L_{\text{rec}} = \sum_{ij} \| (X_t^{ij} - \hat{X}_t^{ij}) M_t^{ij} \|$$

$$Q_t^{ij} = D_t^{ij} \cdot K^{-1}[i, j, 1]^T$$



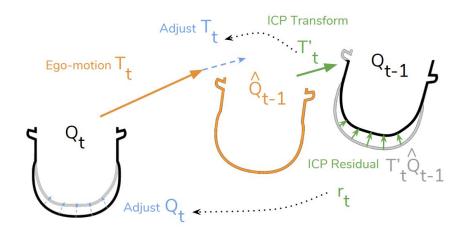
- Finding alignment between point clouds with Iterative Closest Point
 - Align pairs of points (closest pairs of points)
 - b. Find a transform that minimizes point-to-point distances
 - c. Apply transform
 - d. Realign pairs with transformed point cloud
 - e. Outputs "best" transform **T** and residuals **r**

$$\underset{T'}{\operatorname{arg\,min}} \frac{1}{2} \sum_{ij} \| T' \cdot A^{ij} - B^{c(ij)} \|^2$$



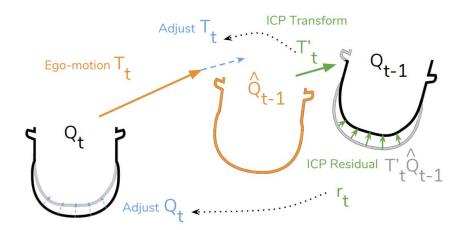
- Finding alignment between point clouds with Iterative Closest Point (ICP)
- Perfect estimated ego-motion should give identity, transform from ICP

$$||T_t'-I||_1$$

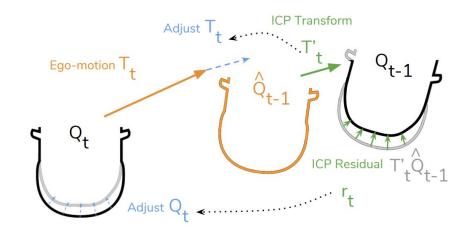


- Finding alignment between point clouds with Iterative Closest Point (ICP)
- Perfect estimated ego-motion should give identity, transform from ICP
- 3. Perfect estimated depth image should give zero residuals from ICP

$$||r_t||_1$$



- Finding alignment between point clouds with Iterative Closest Point (ICP)
- 2. Perfect estimated ego-motion should give identity, transform from ICP
- Perfect estimated depth image should give zero residuals from ICP



$$L_{3D} = ||T_t' - I||_1 + ||r_t||_1,$$

Vid2depth- Structured Similarity

- Quality of image predictions
- Calculated for local patches
- Difference between image and reconstructed image

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x + \sigma_y + c_2)}$$

$$L_{\text{SSIM}} = \sum_{ij} \left[1 - \text{SSIM}(\hat{X}_t^{ij}, X_t^{ij}) \right] M_t^{ij}$$

Vid2depth- Depth smoothness loss

- Edges of depth image should correspond to edges in input image
- Often correct, but not always

$$L_{\rm sm} = \sum_{i,j} \|\partial_x D^{ij} \| e^{-\|\partial_x X^{ij}\|} + \|\partial_y D^{ij} \| e^{-\|\partial_y X^{ij}\|}$$

Vid2depth - results depth

Method	Supervision	Dataset	Cap	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$
Train set mean	-	K	80m	0.361	4.826	8.102	0.377	0.638	0.804	0.894
Eigen et al. [6] Coarse	Depth	K	80m	0.214	1.605	6.563	0.292	0.673	0.884	0.957
Eigen et al. [6] Fine	Depth	K	80m	0.203	1.548	6.307	0.282	0.702	0.890	0.958
Liu et al. [18]	Depth	K	80m	0.201	1.584	6.471	0.273	0.68	0.898	0.967
Zhou et al. [32]	-	K	80m	0.208	1.768	6.856	0.283	0.678	0.885	0.957
Zhou et al. [32]	-	CS + K	80m	0.198	1.836	6.565	0.275	0.718	0.901	0.960
Ours	-	K	80m	0.163	1.240	6.220	0.250	0.762	0.916	0.968
Ours	-	CS + K	80m	0.159	1.231	5.912	0.243	0.784	0.923	0.970
Garg et al. [8]	Stereo	K	50m	0.169	1.080	5.104	0.273	0.740	0.904	0.962
Zhou et al. [32]	-	K	50m	0.201	1.391	5.181	0.264	0.696	0.900	0.966
Zhou et al. [32]	-	CS + K	50m	0.190	1.436	4.975	0.258	0.735	0.915	0.968
Ours	-	K	50m	0.155	0.927	4.549	0.231	0.781	0.931	0.975
Ours	-	CS + K	50m	0.151	0.949	4.383	0.227	0.802	0.935	0.974

Table 1. Depth evaluation metrics over the KITTI Eigen [6] test set. Under the Dataset column, K denotes training on KITTI [10] and CS denotes training on Cityscapes [5]. δ denotes the ratio between estimates and ground truth. All results, except [6], use the crop from [8].

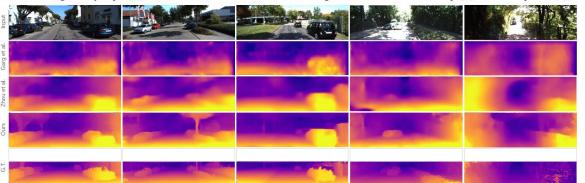
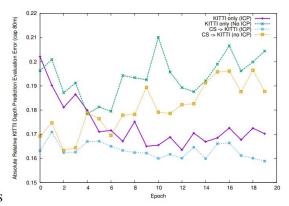
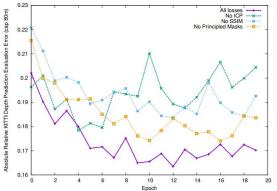


Figure 5. Sample depth estimates from the KITTI Eigen test set, generated by our approach (4th row), compared to Garg *et al.* [8], Zhou *et al.* [32], and ground truth [9]. Best viewed in color.





Vid2depth - results depth

Method	Dataset	Cap	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$
All losses	CS + K	80m	0.159	1.231	5.912	0.243	0.784	0.923	0.970
All losses	K	80m	0.163	1.240	6.220	0.250	0.762	0.916	0.968
No ICP loss	K	80m	0.175	1.617	6.267	0.252	0.759	0.917	0.967
No SSIM loss	K	80m	0.183	1.410	6.813	0.271	0.716	0.899	0.961
No Principled Masks	K	80m	0.176	1.386	6.529	0.263	0.740	0.907	0.963
Zhou et al. [32]	K	80m	0.208	1.768	6.856	0.283	0.678	0.885	0.957
Zhou et al. [32]	CS + K	80m	0.198	1.836	6.565	0.275	0.718	0.901	0.960
All losses	Bike	80m	0.211	1.771	7.741	0.309	0.652	0.862	0.942
No ICP loss	Bike	80m	0.226	2.525	7.750	0.305	0.666	0.871	0.946

- Removing artifacts
- Regularizing
- Blurring?

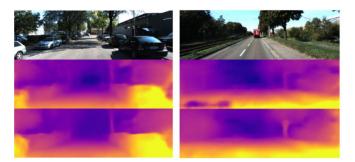
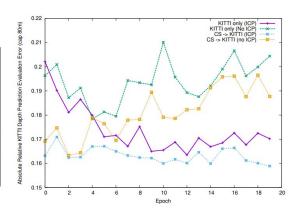
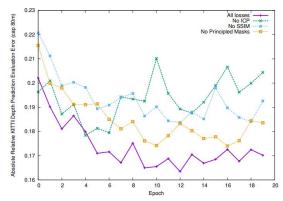


Figure 7. Example depth estimation results from training without the 3D loss (middle), and with the 3D loss (bottom).





Vid2depth - results path

Matches state-of-art on KITTI odometry:

- Without LIDAR
- Only 3 frames at the time (no loop closure)

Method	Seq. 09	Seq. 10
ORB-SLAM (full)	0.014 ± 0.008	$\boldsymbol{0.012 \pm 0.011}$
ORB-SLAM (short)	0.064 ± 0.141	0.064 ± 0.130
Mean Odom.	0.032 ± 0.026	0.028 ± 0.023
Zhou <i>et al.</i> [32] (5-frame)	0.021 ± 0.017	0.020 ± 0.015
Ours, no ICP (3-frame)	0.014 ± 0.010	0.013 ± 0.011
Ours, with ICP (3-frame)	$\boldsymbol{0.013 \pm 0.010}$	$\boldsymbol{0.012 \pm 0.011}$

Vid2depth - problem

- Assumes static environment
- Too much moving object cause noise in learning and inference

