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Bidirectional RNNs

Motivation:

� Want to include future context

� Could solve with time-delay for predictions, though need to
specify �xed context.

Assumes tight coupling between prediction at time t and input at
time t.

� e.g. speech-to-text, text-to-speech
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Bidirectional RNN - single layer
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Bidirectional RNN - two layers
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Bidirectional RNN - feature extraction
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Encoder-decoder

For sequence-to-sequence problems with loose coupling between
sequences

� prediction at time t not directly related to input at time t.

Example: sentence translation

1. Encode the �meaning� of sentence in source language into
intermediate representation

2. Decode the �meaning� of the sentence into a representation in
the target language
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Encoder-decoder, shared RNN
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Encoder-decoder, separate RNN
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Encoder-decoder conclusion

Assume N source and N target languages.

� Want to be able to translate between any two of them

� Possible to share encoder and decoder?

Newer models include attention

� Bidirectional RNN may then be used as encoder
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Recursive neural networks
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RNN Memory extensions
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Addressing: location vs content-based

Assume we have memory M with memory cells M1, . . . ,MJ .

� E.g. Mj ∈ Rn

How do we address memory?
Location

� Specify where to get information, e.g. index j ∈ {1, . . . , J}
� �Give me the content at memory cell 4�

� Direct addressing

Content

� Specify what kind of information through a query q

� �When did the french revolution start?�

� Indirect addressing
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Content-based addressing

� Memory M with memory cells M1, . . . ,MJ .

� query q ∈ Rd

� key function K , e.g. K : Rn → Rd

� matching function f , e.g. inner product function

αj = f (q,K (Mj))

What is the returned result of our query?

p = softmax(α)

v(q,M) = Mj with probability pj hard addressing

v(q,M) =
J∑

j=1

pjMj soft addressing

Where does the query vector q come from?
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RNN example with external memory - read operation

Perform query based on current state

qt = Q(r)(st)

Extract key for each memory cell

ktj = K (r)(Mt−1

j )

Calculate how well memory cell match query

αt
j = f (qt , ktj )

Get resulting vector r t by

pt = softmax(αt)

r t = v(qt ,Mt−1) =
J∑

j=1

ptjM
t−1

j
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RNN example with external memory - write operation

Need to decide what to write in addition to where

� Where can be decided as with read operation
� Separate functions Q(w) and K (w).

� What: e.g. function W

w t = W (st)

How to make update?

Mt
j = (1− pwj )M

t−1

j + pwj w
t overwrite

Mt
j = Mt−1

j + pwj w
t residual update

Exists corresponding hard update rules
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RNN example with external memory - how to use it

Update function:

st = h(x t , st−1, y t−1, r t−1)

Could also add directly to output function

y t = f (st , r t)
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External memory - multiple read/write heads

� E.g. de�ne N query, key function pairs (Q
(r)
1
,K

(r)
1

), . . . ,

(Q
(r)
N ,K

(r)
N )

� Concatenate all of the retrieved vectors, r t = (r t
1
, . . . , r t

n
).

� Write operations, need to resolve possible con�icts in updates

� May use same matching function



Composing RNNs Recursive neural networks RNN Memory extensions Attention

External memory - multiple read/write heads

� E.g. de�ne N query, key function pairs (Q
(r)
1
,K

(r)
1

), . . . ,

(Q
(r)
N ,K

(r)
N )

� Concatenate all of the retrieved vectors, r t = (r t
1
, . . . , r t

n
).

� Write operations, need to resolve possible con�icts in updates

� May use same matching function



Composing RNNs Recursive neural networks RNN Memory extensions Attention

External memory - multiple read/write heads

� E.g. de�ne N query, key function pairs (Q
(r)
1
,K

(r)
1

), . . . ,

(Q
(r)
N ,K

(r)
N )

� Concatenate all of the retrieved vectors, r t = (r t
1
, . . . , r t

n
).

� Write operations, need to resolve possible con�icts in updates

� May use same matching function



Composing RNNs Recursive neural networks RNN Memory extensions Attention

Attending to previous states I
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Attending to previous states II

st = h(x t , (s1, . . . , st−1), y t−1)

Do query with respect to �memory cells� (s1, . . . , st−1).

αt
i = f (Q(st−1, x t),K (s i ))

pt = softmax(αt)

s̃t−1 =
t−1∑
i=1

pti s
i

Then proceed with �previous state� s̃t−1

st = h(x t , s̃t−1, y t−1)
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Attending to previous states III
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Image captioning with RNN and content-based attention

Figure: Illustration from "Xu, Kelvin, et al. "Show, attend and tell: Neural image caption
generation with visual attention." International conference on machine learning. 2015."

� Content based addressing with 14× 14 conv features as
�memory�
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Image classi�cation with RNN and location-based attention

Pseudoalgorithm:

� Start with center/random glimpse1 with center l0

� For t = 1, . . . , τ

1. Extract glimpse with center at l t−1.

2. Extract features for location, e.g. with convnet

3. Update state of RNN
4. � if t < τ : predict next glimpse center l t

� else: Make prediction/classi�cation based on lτ

� How to encode l t?

� Glimpse policy trained with reinforcement learning (policy
gradient)!

Usually extract some lower resolution crops as well.

1A glimpse is here de�ned as a crop of the image
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