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The dimension of time

� Inputs arrive in a sequence

� Actions performed one after another

Why process data serially?

� Need to respond immediately

� Limited bandwidth for �sensor� inputs

� Limited computational capability

� Limited storing capability

� More e�cient to divide work into subtasks?
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How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't

mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt

tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset

can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but

the wrod as a wlohe.

� One character at a time?

� One word at a time?

� What if you were new to the language?

� What if all letters where mirrored?

� Will look at models that combines serial and parallel

processing for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't

mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt

tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset

can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but

the wrod as a wlohe.

� One character at a time?

� One word at a time?

� What if you were new to the language?

� What if all letters where mirrored?

� Will look at models that combines serial and parallel

processing for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't

mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt

tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset

can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but

the wrod as a wlohe.

� One character at a time?

� One word at a time?

� What if you were new to the language?

� What if all letters where mirrored?

� Will look at models that combines serial and parallel

processing for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't

mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt

tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset

can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but

the wrod as a wlohe.

� One character at a time?

� One word at a time?

� What if you were new to the language?

� What if all letters where mirrored?

� Will look at models that combines serial and parallel

processing for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't

mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt

tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset

can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but

the wrod as a wlohe.

� One character at a time?

� One word at a time?

� What if you were new to the language?

� What if all letters where mirrored?

� Will look at models that combines serial and parallel

processing for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't

mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt

tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset

can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but

the wrod as a wlohe.

� One character at a time?

� One word at a time?

� What if you were new to the language?

� What if all letters where mirrored?

� Will look at models that combines serial and parallel

processing for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Example applications

Example applications

� Machine translation

� Sentiment analysis

� Time series models

� Image captioning

� Language modeling in general, character and word based

� State representation RL

Categories

� Sequence-to-vector

� Vector-to-sequence

� Sequence-to-sequence

� Sequence-to-sequence of di�erent lengths. . .
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Formal model

� Let S t ∈ Rd represent our state at time t

� Let X t ∈ Rm denote the input at time t

� Let Y t ∈ Rn denote the output at time t

In our model we have Y t = f (S t)
How do we update beliefs and plans? Models of the form

S t = h(X t , S t−1,Y t−1)
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RNN I

Figure: RNN model with initial state s, unrolled three time steps. The
output of f �owing to the next state at time t is the output y t .
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RNN II

Figure: RNN model, unrolled four time steps
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RNN III

Figure: RNN model, unrolled �ve time steps
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RNN IV - single output
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RNN V - single input
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RNN V - single input, single output
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RNN VI - no input
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Vanilla RNN
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Model

h(x , s, y) = a(Ux + Vs + Wy + b) (1)

� U ∈ Rd×m

� V ∈ Rd×d

� W ∈ Rd×n

� b ∈ Rd

Note: Equation (1) equivalent to a(M[x , s, y ] + b) where

M = [U,V ,W ].
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Vanilla RNN

Figure: Each node is an operation. Black square represents
concatenation, rest given from equation (1). a is an activiation function.
The bias is not depicted in the graph, you may assume that it is part of
the M operation. f is unspeci�ed.
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Preprocessing

Figure: RNN preprocessing of input

� Both input and output can be preprocessed!
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LSTM
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Residual / skip connection

r t = a(Urx
t + Vr s

t−1 + Wry
t−1 + br )

st = st−1 + r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Residual / skip connection

r t = a(Urx
t + Vr s

t−1 + Wry
t−1 + br )

st = st−1 + r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Input gate

i t = σ(Uix
t + Vi s

t−1 + Wiy
t−1 + bi )

st = st−1 + i t � r t
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Input gate

i t = σ(Uix
t + Vi s

t−1 + Wiy
t−1 + bi )

st = st−1 + i t � r t
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Forget gate

Figure: NOTE: The two f's are not related to each other!

f t = σ(Uf x
t + Vf s

t−1 + Wf y
t−1 + bf )

st = f t � st−1 + i t � r t
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t + Vf s
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Output gate

ot = σ(Uox
t + Vos

t−1 + Woy
t−1 + bo)

s̄t = ot � g(st)

� g is an activation function
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LSTM in a slide

r t = a(Urx
t + Vr s̄

t−1 + Wry
t−1 + br )

i t = σ(Uix
t + Vi s̄

t−1 + Wiy
t−1 + bi )

f t = σ(Uf x
t + Vf s̄

t−1 + Wf y
t−1 + bf )

ot = σ(Uox
t + Vo s̄

t−1 + Woy
t−1 + bo)

st = f t � st−1 + i t � r t

s̄t = ot � a(st)

y t = f (s̄t)
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Depth in RNN



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Multilayer perceptron

� Let h be a multilayer perceptron!

� If l layers, error propagation path will increase by factor l
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Stacking RNNs
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Complexity of RNN
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What kind of complexity?

� Space: Memory usage

� Time: Number of serial steps

� Compute: FLOPs used

Shall look at how these scales with sequence length
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Complexity

Table: RNN complexity as a function sequence length

Memory Compute Serial steps

Inference O(1) O(T) O(T)

Training BPTT O(T) O(T) O(T)

Training BPTT h(x, y*) O(1) O(T) O(1)

� Note that complexity for training depends on training

algorithm!
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A special case

� Only feed output to next time step (not state)

� During training we may use target values as input and thus

parallelize training

st = h(x t , y t−1)
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Conclusion
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Extensions:

� Next time!

Alternatives

� Convolutional neural networks

� Feedforward attentional networks

� Can also be combined
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