Recurrent Neural Networks

Eilif Solberg

14.09.2018

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

Conclusion

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへの

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

Conclusion

Introduction

▲□▶ ▲圖▶ ▲필▶ ▲필▶ · 필 · のQ@

The dimension of time

- Inputs arrive in a sequence
- Actions performed one after another

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The dimension of time

- Inputs arrive in a sequence
- Actions performed one after another

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

The dimension of time

- Inputs arrive in a sequence
- Actions performed one after another

Why process data serially?

• Need to respond immediately

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The dimension of time

- Inputs arrive in a sequence
- Actions performed one after another

- Need to respond immediately
- Limited *bandwidth* for "sensor" inputs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The dimension of time

- Inputs arrive in a sequence
- Actions performed one after another

- Need to respond immediately
- Limited *bandwidth* for "sensor" inputs
- Limited computational capability

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The dimension of time

- Inputs arrive in a sequence
- Actions performed one after another

- Need to respond immediately
- Limited *bandwidth* for "sensor" inputs
- Limited computational capability
- Limited storing capability

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The dimension of time

- Inputs arrive in a sequence
- Actions performed one after another

- Need to respond immediately
- Limited *bandwidth* for "sensor" inputs
- Limited computational capability
- Limited *storing* capability
- More efficient to divide work into subtasks?

How do you process a sentence?

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe.

• One character at a time?

How do you process a sentence?

- One character at a time?
- One word at a time?

How do you process a sentence?

- One character at a time?
- One word at a time?
- What if you were new to the language?

How do you process a sentence?

- One character at a time?
- One word at a time?
- What if you were new to the language?
- What if all letters where mirrored?

How do you process a sentence?

- One character at a time?
- One word at a time?
- What if you were new to the language?
- What if all letters where mirrored?
- Will look at models that combines serial and parallel processing for sequence data

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Example applications

Example applications

- Machine translation
- Sentiment analysis
- Time series models
- Image captioning
- Language modeling in general, character and word based
- State representation RL

Categories

- Sequence-to-vector
- Vector-to-sequence
- Sequence-to-sequence
- Sequence-to-sequence of different lengths...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formal model

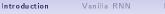
- Let $S^t \in \mathbb{R}^d$ represent our *state* at time t
- Let $X^t \in \mathbb{R}^m$ denote the input at time t
- Let $Y^t \in \mathbb{R}^n$ denote the output at time t

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Formal model

- Let $S^t \in \mathbb{R}^d$ represent our state at time t
- Let $X^t \in \mathbb{R}^m$ denote the input at time t
- Let $Y^t \in \mathbb{R}^n$ denote the output at time t

In our model we have $Y^t = f(S^t)$



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Formal model

- Let $S^t \in \mathbb{R}^d$ represent our *state* at time *t*
- Let $X^t \in \mathbb{R}^m$ denote the input at time t
- Let $Y^t \in \mathbb{R}^n$ denote the output at time t

In our model we have $Y^t = f(S^t)$ How do we update beliefs and plans? Models of the form

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Formal model

- Let $S^t \in \mathbb{R}^d$ represent our state at time t
- Let $X^t \in \mathbb{R}^m$ denote the input at time t
- Let $Y^t \in \mathbb{R}^n$ denote the output at time t

In our model we have $Y^t = f(S^t)$ How do we update beliefs and plans? Models of the form

$$S^{t} = h(X^{t}, S^{t-1}, Y^{t-1})$$

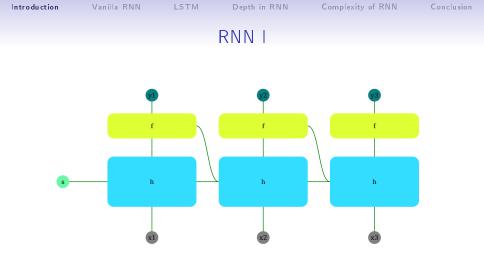


Figure: RNN model with initial state s, unrolled three time steps. The output of f flowing to the next state at time t is the output y^t .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

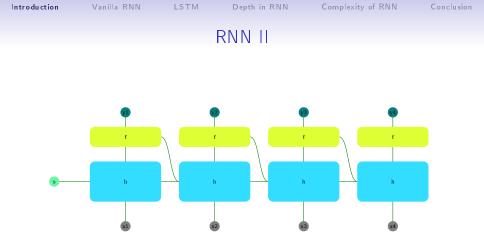


Figure: RNN model, unrolled four time steps

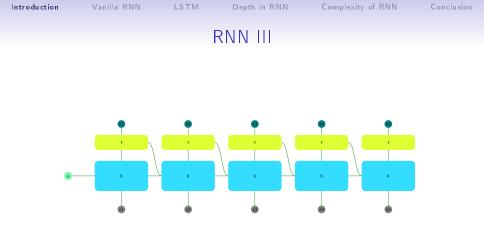
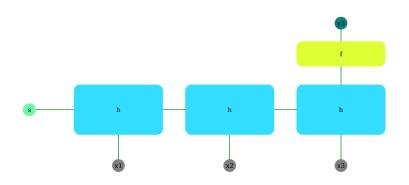


Figure: RNN model, unrolled five time steps

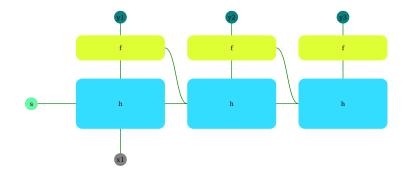
◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣。

Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN RNN IV - single output

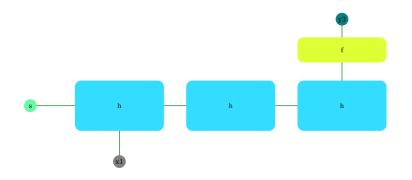


			:ti		

RNN V - single input



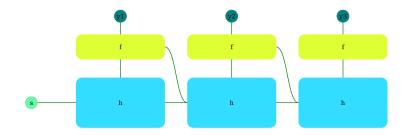
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

		cti	

RNN VI - no input



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

Conclusion

Vanilla RNN

$$h(x, s, y) = a(Ux + Vs + Wy + b)$$
⁽¹⁾

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

•
$$U \in \mathbb{R}^{d \times m}$$

- $V \in \mathbb{R}^{d \times d}$
- $W \in \mathbb{R}^{d \times n}$
- $b \in \mathbb{R}^d$

Note: Equation (1) equivalent to a(M[x, s, y] + b) where M = [U, V, W].

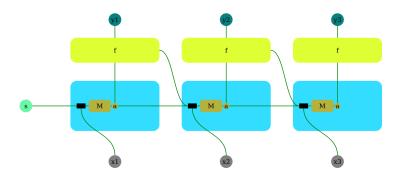
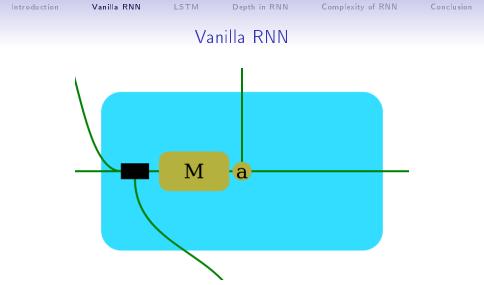


Figure: Each node is an operation. Black square represents concatenation, rest given from equation (1). a is an activiation function. The bias is not depicted in the graph, you may assume that it is part of the M operation. f is unspecified.



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Figure: Each node is an operation. Black square represents concatenation, rest given from equation (1).

Introduction	Vanilla RNN	LSTM	Depth in RNN	Complexity of RNN	Conclusion

Preprocessing

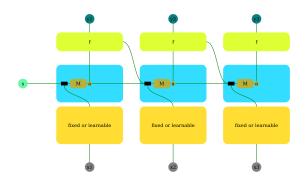


Figure: RNN preprocessing of input

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Both input and output can be preprocessed!

Vanilla RNN

LSTM

Depth in RNN

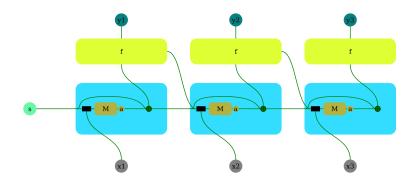
Complexity of RNN

Conclusion

LSTM

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲ ■ ● ● ●

Residual / skip connection



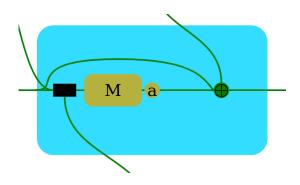
$$r^{t} = a(U_{r}x^{t} + V_{r}s^{t-1} + W_{r}y^{t-1} + b_{r})$$

 $s^{t} = s^{t-1} + r^{t}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Conclusion

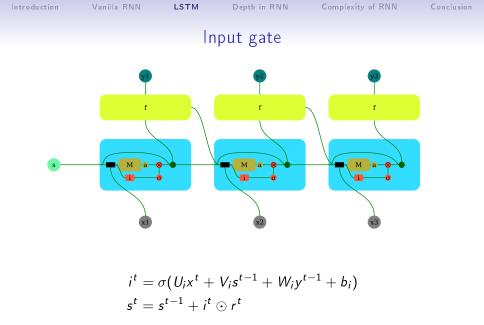
Residual / skip connection

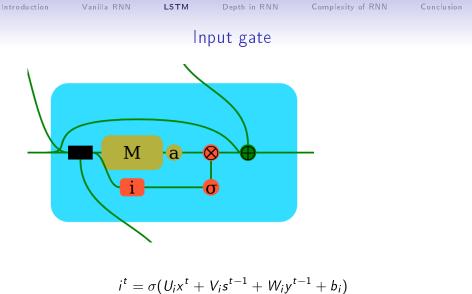


$$r^{t} = a(U_{r}x^{t} + V_{r}s^{t-1} + W_{r}y^{t-1} + b_{r})$$

$$s^{t} = s^{t-1} + r^{t}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで





$$s^t = s^{t-1} + i^t \odot r^t$$

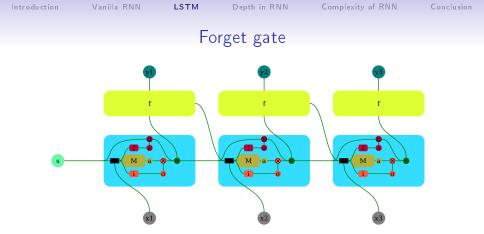
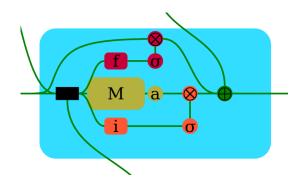


Figure: NOTE: The two f's are not related to each other!

$$f^{t} = \sigma(U_{f}x^{t} + V_{f}s^{t-1} + W_{f}y^{t-1} + b_{f})$$

$$s^{t} = f^{t} \odot s^{t-1} + i^{t} \odot r^{t}$$

Forget gate



$$f^{t} = \sigma(U_{f}x^{t} + V_{f}s^{t-1} + W_{f}y^{t-1} + b_{f})$$

$$s^{t} = f^{t} \odot s^{t-1} + i^{t} \odot r^{t}$$

$$o^{t} = \sigma(U_{o}x^{t} + V_{o}s^{t-1} + W_{o}y^{t-1} + b_{o})$$

$$\bar{s}^{t} = o^{t} \odot g(s^{t})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• g is an activation function

LSTM in a slide

$$r^{t} = a(U_{r}x^{t} + V_{r}\bar{s}^{t-1} + W_{r}y^{t-1} + b_{r})$$

$$i^{t} = \sigma(U_{i}x^{t} + V_{i}\bar{s}^{t-1} + W_{i}y^{t-1} + b_{i})$$

$$f^{t} = \sigma(U_{f}x^{t} + V_{f}\bar{s}^{t-1} + W_{f}y^{t-1} + b_{f})$$

$$o^{t} = \sigma(U_{o}x^{t} + V_{o}\bar{s}^{t-1} + W_{o}y^{t-1} + b_{o})$$

$$s^{t} = f^{t} \odot s^{t-1} + i^{t} \odot r^{t}$$

$$\bar{s}^{t} = o^{t} \odot a(s^{t})$$

$$y^{t} = f(\bar{s}^{t})$$

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

Conclusion

$\mathsf{Depth} \text{ in } \mathsf{RNN}$

Multilayer perceptron

- Let *h* be a multilayer perceptron!
- If I layers, error propagation path will increase by factor I

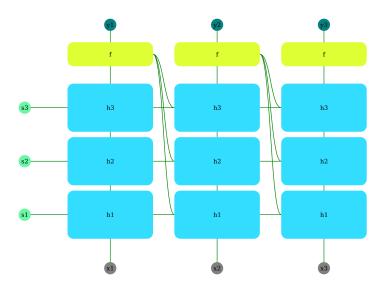
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Depth in RNN

Complexity of RNN

Conclusion

Stacking RNNs



・ロ・・聞・・ヨ・・ 日・ うへの

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

Conclusion

Complexity of RNN

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のへで

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Conclusion

What kind of complexity?

- Space: Memory usage
- Time: Number of serial steps
- Compute: FLOPs used

/anilla RNN

LSTM

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Conclusion

What kind of complexity?

- Space: Memory usage
- Time: Number of serial steps
- Compute: FLOPs used

Shall look at how these scales with sequence length

Table: RNN complexity as a function sequence length				
	Memory	Compute	Serial steps	
Inference	O(1)	0(T)	0(T)	
Training BPTT	0(T)	0(T)	0(T)	
Training BPTT h(x, y*)	O(1)	0(T)	O(1)	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Table: RNN complexity as a function sequence length				
	Memory	Compute	Serial steps	
Inference	0(1)	0(T)	0(T)	
Training BPTT	0(T)	O(T)	O(T)	
Training BPTT h(x, y*)	O(1)	0(T)	O(1)	

• Note that complexity for training depends on training algorithm!

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

During training we may use target values as input and thus

 $s_t = h(x^t, y^{t-1})$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Only feed output to next time step (not state)

•

parallelize training

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

Conclusion

Conclusion

◆□> <圖> < E> < E> E のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Extensions:

Next time!

Alternatives

- Convolutional neural networks
- Feedforward attentional networks