
Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Reinforcement Learning

Eilif Solberg

28.09.2018

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Outline

Introduction

Prediction - evaluating policy
Monte-Carlo - full lookahead
Temporal Di�erence - one step lookahead
TD(λ) - �intermediate� lookahead

Control - optimizing policy
Policy gradient - policy based control
Policy iteration and value iteration - value based control
Actor-critic - policy and value based control

Conclusion

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Section 1

Introduction

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Why reinforcement learning?

Promises of reinforcement learning (vs supervised learning)

� Less detailed instructions/annotations needed
� task rather than implementation

� Supervised learning is about imitating behaviour

� Reinforcement learning is about optimal behaviour

Reinforcement learning is not new - but still in its infancy

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Agent-environment interaction

Interactive play where at each 'iteration'

1. Agent do an action at according to its policy π

2. The environment responds with
� observation ot+1

� reward rt+1

The goal of the agent is maximize reward.

� maxπ Eπ[
∑

t
γtRt], γ ∈ (0, 1] is called the discount factor

What is the goal of the environment?

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Agent-environment interaction II

Figure: Illustration: By Megajuice [CC0], from Wikimedia Commons

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Agent policy and agent state

The agent should choose action based on the information available

at ∼ π(o0, a0, r1, o1, . . . , at−1, rt , ot) (1)

� Will assume that we have �enough� information.

Often tries to simplify

st = f (o0, a0, r1, o1, . . . , at−1, rt , ot) (2)

at ∼ π(st) (3)

Agent state is the information the agent uses to choose actions

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Environment state

� The information the environment uses to base its response on.

� Usually some unknown distribution

(ot+1, rt+1) ∼ P(o0, a0, r1, o1, . . . , at−1, rt , ot , at) (4)

We often assume

st = f (o0, a0, r1, o1, . . . , at−1, rt , ot) (5)

(ot+1, rt+1) ∼ P(st , at) (6)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Interplay revisited

st = f (o0, a0, r1, o1, . . . , at−1, rt , ot) (7)

at ∼ π(st) (8)

(ot+1, rt+1) ∼ P(st , at) (9)

We write π(a|s) for probability/density of choosing action a given
state s.

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Section 2

Prediction - evaluating policy

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Evaluation in supervised learning

For some loss function g

L =
1

N

N∑
i=1

g(f (Xi),Yi) (10)

In reinforcement learning we have no �xed dataset or loss!

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

State-value function

De�ne the return

Gt =
∞∑
k=0

γkRt+k+1 (11)

i.e. discounted future reward from time t and onwards.
We de�ne state-value function as

vπ(s) = Eπ[G0|S0 = s] (12)

� Tells us how good a state is

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Action-value function

Expected future reward from state s when taking action a

qπ(s, a) = Eπ[Gt |St = s,At = a] (13)

� Tells us how good it is to take an action from state s

What's the relation between vπ and qπ?

vπ(s) =

∫
π(a|s)qπ(s, a)da (14)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Subsection 1

Monte-Carlo - full lookahead

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Monte Carlo

Want to estimate e.g. state-value function

vπ(s) = Eπ[Gt |St = s] (15)

� Can we calculate this expectation?

� We can sample it!

Sample N episodes and then get estimates

V [s]← 1

N[s]
A[s] (16)

� N[s] is visit count and A[s] accumulated rewards

� Does this converge?

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Monte Carlo - incremental update

Incremental update after each episode:

N[st]← N[st] + 1 (17)

V [st]← V [st] +
1

N[st]
(Gt − V [st]) (18)

Later also updates of the form

V [st]← V [st] + α(Gt − V [st]) (19)

for α > 0

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Incremental average derivation

x̄n :=
1

n

n∑
i=1

xi (20)

=
1

n
((n − 1)(

1

n − 1

n−1∑
i=1

xi) + xn) (21)

=
1

n
((n − 1)x̄n−1) + xn) (22)

= x̄n−1 +
1

n
(xn − x̄n−1) (23)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Update with function approximation

vη(st) are our previous estimate with our function approximator
with parameters η. De�ne loss for each prediction

l(η) =
1

2

(
Gt − vη(st)

)2
(24)

� Gt are our �supervised� targets

Taking gradients

∇η l(η) = −(Gt − vη(st))∇ηvη(st) (25)

Update in steepest descent direction

η = η + α
(
Gt − vη(st)

)
∇ηvη(st) (26)

Note that ∇ηvη(st) is direction which increases value estimate

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Subsection 2

Temporal Di�erence - one step lookahead

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Temporal di�erence learning

Value estimates are not independent of each other!

� Assume you are in state st , estimated future reward is vπ(st)

� When we go one step ahead, estimate usually changes due to
� randomness in our action
� randomness in environment state transition and reward

� We should on average get the same expected future reward.

Bellman expectation equations:

vπ(st) = Eπ[Rt+1 + γvπ(St+1)] (27)

=

∫ ∫ ∫
π(a|st)p(r , s ′|st , a)(r + γvπ(s ′))ds ′drda (28)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Update equations

Assume value estimates stored in array

V [s] =
∑
a

∑
r

∑
s′

π(a|s)p(r , s ′|s, a)(r + γV [s ′]) (29)

We can iteratively update value estimates by

V [st]← V [st] + α((Rt+1 + γV [St+1])− V [st]) (30)

With function approximation, update function parameters η

η = η + α
(
(Rt+1 + vη′(St+1))− vη(st))

)
∇ηVη(st) (31)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Subsection 3

TD(λ) - �intermediate� lookahead

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

TD(λ)

� Monte Carlo: No bias, high variance

� Temporal di�erence learning: lower variance, some bias

TD(λ) - continuous spectrum of models between MC and TD,
λ ∈ (0, 1)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Section 3

Control - optimizing policy

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Control - optimizing policy

Find the optimal policy π

vπ(s) = maxπ′vπ′(s) (32)

� How can we improve a given policy π?

� Do more of the good actions and less of the bad

� How do we measure the goodness of an action?

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Subsection 1

Policy gradient - policy based control

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Policy gradient

De�ned a parametrized family of policies πθ, θ ∈ Θ. Reduced
problem to

πθ∗ = argmaxθEπθ
(G0) (33)

� Recall that G0 is return, expected discounted reward

We know how to do parameter-optimization, right?

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Supervised learning training
Assume di�erentiable loss function l and f di�erentiable in θ.

min
θ

E (l(f (X ; θ),Y)) (34)

Find gradient with

∇θE (l(f (X ; θ),Y)) = ∇θ

∫ ∫
p(x , y)l(f (x ; θ), y)dxdy (35)

=

∫ ∫
∇θ(p(x , y)l(f (x ; θ), y))dxdy (36)

=

∫ ∫
p(x , y)∇θl(f (x ; θ), y)dxdy (37)

≈ 1

N

N∑
i=1

∇θl(f (xi ; θ), yi) (38)

� Can we do something similar in RL?

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

RL imitation

Let z denote an episode, i.e. z = (s0, a0, r1, s1, , aτ−1, rτ , sτ). $r(z)
=
∑τ

t=1
rt . Want to optimize

Eπθ
(G0) =

∫
p(z ; θ)r(z)dz (39)

Let's see if we can get the gradient

∇θEπθ
(G0) = ∇θ

∫
p(z ; θ)r(z)dz (40)

=

∫
∇θp(z ; θ)r(z)dz (41)

� Are we stuck?

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Log-derivative trick
For a variable of one parameter x

d

dx
log f (x) =

d

dx
f (x)

f (x)
(42)

For a policy of several variables θ this generalizes to

∇θ log f (θ) =
∇θf (θ)

f (θ)
(43)

and thus∫
∇θp(z ; θ)r(z)dr =

∫
p(z ; θ)∇θ log p(z ; θ)r(z)dr

and can be sampled with

∇θEπθ
(G0) ≈ 1

N

N∑
i=1

∇θ log p(zi ; θ)r(zi) (44)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Gradient
Remains to �gure out expression for ∇θ log p(z ; θ). Turns out that
it is

∇θ log p(z ; θ) =
τ−1∑
t=0

∇θ log πθ(at |st) (45)

and thus our full gradient estimate is

∇θEπθ
(G0) ≈ 1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)r (i)

)
(46)

and our update becomes

θ ← θ + α
1

N

N∑
i=1

τ (i)∑
t=1

(
∇θ log πθ(a

(i)
t |s

(i)
t)r (i)

)
(47)

Each action a
(i)
t contributes ∇θ log πθ(a

(i)
t |s

(i)
t)r (i)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Subsection 2

Policy iteration and value iteration - value based control

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Policy iteration - idea

We saw before that our value function was given by

vπ(s) =

∫
π(a|s)qπ(s, a)da

� Expected reward an average of between good and bad actions

� Why not just choose the best action?

π′(s) := argmaxaqπ(s, a) (48)

That this works, i.e. π′ ≥ π, is know as the policy improvement

theorem.

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Policy iteration - algorithm I

For i = 0, 1, 2, . . . repeat the following two steps

1. Policy evaluation Estimate the value function for policy πi .

2. Policy improvement De�ne a policy πi+1 by acting greedily

with respect to the value function estimated in the previous
step.

� Usually only crudely approximate each step

� Incomplete knowledge of environment �> need to ensure we
keep exploring

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

For i = 0, 1, 2, . . . repeat the following two steps

1. Policy evaluation Estimate the value function q̂πi

2. Policy improvement De�ne a policy πi+1 by acting ε-greedily
with respect to q̂πi

πi+1(a|s) =

{
1− ε+ ε/K for a =argmaxa′ q̂πi

(s, a′)

ε/K else

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Value iteration - idea

Bellman optimization equations

q∗(s, a) = E [Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a] (49)

=

∫ ∫
p(r , s ′|s, a)(r + γmax

a′
q∗(s

′, a′))ds ′dr (50)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Value iteration - algorithm (Q-learning)

Without function approximation

Q[s, a]← Q[s, a] + α((R + max
a′

Q[S ′, a′])− Q[s, a]) (51)

With function approximation we have the update

λ← λ+ α
(
(R + max

a′
qη(S ′, a′))− qη(s, a)

)
∇ηqη(s, a) (52)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Subsection 3

Actor-critic - policy and value based control

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Actor-critic

� Combine policy and value based control

� In policy gradient, scale the gradient by something �smarter�
than observed reward Gt .

� Critic which judges how good each action is

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Section 4

Conclusion

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion

Conclusion

� + Very general and powerful framework

� + Some great success stories in games and robotics

� - Computationally expensive

� - May need simulated environment to learn

� - May get undesirable solution to problem
� Think �Dilbert� (or worse!)

	Introduction
	Prediction - evaluating policy
	Monte-Carlo - full lookahead
	Temporal Difference - one step lookahead
	TD() - ``intermediate'' lookahead

	Control - optimizing policy
	Policy gradient - policy based control
	Policy iteration and value iteration - value based control
	Actor-critic - policy and value based control

	Conclusion

