Introduction

Prediction - evaluating policy Control - optimizing policy
0000000000 0000000000000 0

Reinforcement Learning

Eilif Solberg

28.09.2018

Conclusion

Outline

Introduction

Prediction - evaluating policy
Monte-Carlo - full lookahead
Temporal Difference - one step lookahead
TD()) - “intermediate” lookahead

Control - optimizing policy
Policy gradient - policy based control
Policy iteration and value iteration - value based control
Actor-critic - policy and value based control

Conclusion

Section 1

Introduction

Introduction

Why reinforcement learning?

Promises of reinforcement learning (vs supervised learning)
e Less detailed instructions/annotations needed
e task rather than implementation

e Supervised learning is about imitating behaviour
e Reinforcement learning is about optimal behaviour

Reinforcement learning is not new - but still in its infancy

Introduction

Agent-environment interaction

Interactive play where at each ’iteration’

1. Agent do an action a; according to its policy 7
2. The environment responds with

e observation oy
e reward ryyq

The goal of the agent is maximize reward.
o maxy Ex[> ;v R:], v € (0,1] is called the discount factor
What is the goal of the environment?

Prediction - evaluating policy Control - optimizing policy Conclusion
0000000000000 0

Introduction
0000000000

Agent-environment interaction |l

Enwronment

REIWar
fnterpreter

L)

Action

Sta te

Agent

Figure: lllustration: By Megajuice [CCO], from Wikimedia Commons

Introduction

Agent policy and agent state

The agent should choose action based on the information available

atN7T(00a307r17017'"aatflvrtaot) (1)

o Will assume that we have “enough” information.

Often tries to simplify

st = f(0g,a0,M,01,...,8r-1,rt, Ot) (2)
dg ~ W(St) (3)

Agent state is the information the agent uses to choose actions

Introduction

Environment state

e The information the environment uses to base its response on.

e Usually some unknown distribution
(Ot+17 rt-‘r].) ~ P(O(J) 30; r].) 017 ey at—lv rl'7 Ol’) al’) (4)
We often assume

st:f(oo,ao7r1,01,...,at_l,rt,ot) (5)
(0t+17 ft+1) ~ P(shat) (6)

Introduction

Interplay revisited

SI‘:f(007aO7r17017'"7at—1)rtaot) (7)
dg ~ 7T(St) (8)
(0t41, rew1) ~ P(st, ar) (9)

We write 7(a|s) for probability/density of choosing action a given
state s.

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
0000000000 0000000000000 0

Section 2

Prediction - evaluating policy

Introduction Prediction - evaluating policy Control - optimizing policy
0000000000 0000000000000 0

Evaluation in supervised learning

For some loss function g

In reinforcement learning we have no fixed dataset or loss!

Conclusion

(10)

Prediction - evaluating policy

State-value function

Define the return
Gt = ZWthJrkH (11)
k=0

i.e. discounted future reward from time t and onwards.
We define state-value function as

Vﬂ(S) = EW[GO‘SO = S] (12)

e Tells us how good a state is

Prediction - evaluating policy

Action-value function

Expected future reward from state s when taking action a

gr(s,a) = Ex[G|St = s, A = 4]

e Tells us how good it is to take an action from state s

What's the relation between v, and ¢,?

va(s) = / 7(]5)qx (5, 2)da

(13)

(14)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
9000000000 0000000000000 0

Subsection 1

Monte-Carlo - full lookahead

Prediction - evaluating policy
00000

Monte Carlo

Want to estimate e.g. state-value function

Vﬂ—(S) = Eﬂ-[Gt‘St = 5]
e Can we calculate this expectation?

e We can sample it!
Sample N episodes and then get estimates
1

V[s] N[s]

Als]

e NJs] is visit count and A[s] accumulated rewards

e Does this converge?

(16)

Prediction - evaluating policy
00e00

Monte Carlo - incremental update

Incremental update after each episode:
N[St] — N[St] +1

V[st] < V[s:] + t — V[st])

(€
Later also updates of the form
V[st] < V[st] + (Gt — Vst])

fora>0

Introduction

Control - optimizing policy

Prediction - evaluating policy
0000000000000 0

000@000000

Incremental average derivation

_ 1
Xn :;ZX,‘
i=1
= (=D) +)
= (= DRe-1) +)

Conclusion

(21)

(22)

(23)

Prediction - evaluating policy
0000e

Update with function approximation

vy(st) are our previous estimate with our function approximator
with parameters 7). Define loss for each prediction

1

1) = 5 (Ge = vi(st))” (24)

e Gy are our “supervised” targets

Taking gradients

Vinl(n) = —(Ge — vy(st)) Viyvn(st) (25)
Update in steepest descent direction
n=n-+a(Gr — vy(st)) Vyvy(se) (26)

Note that V, v, (s;) is direction which increases value estimate

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
0000080000 0000000000000 0

Subsection 2

Temporal Difference - one step lookahead

Prediction - evaluating policy
(o] le}

Temporal difference learning

Value estimates are not independent of each other!

e Assume you are in state s;, estimated future reward is v (s;)

e When we go one step ahead, estimate usually changes due to

e randomness in our action
e randomness in environment state transition and reward

e We should on average get the same expected future reward.
Bellman expectation equations:
Vr(se) = Ex[Rer1 + v (Se41)] (27)

/// (alse)p(r,s'|st, a)(r +yvx(s"))ds'drda (28)

Prediction - evaluating policy
[e]e]]

Update equations

Assume value estimates stored in array
V[s] = ZZZ (r,s'|s,a)(r +vV[s']) (29)

We can iteratively update value estimates by
Vist] < Vist] + a((Re1 +7VI[Seal) — VIs]) (30)
With function approximation, update function parameters n

n =0+ a((Res1 + vy (Se41)) = v(st))) Vi Vig(st) (31)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
0000000080 0000000000000 0

Subsection 3

TD(A) - “intermediate” lookahead

Prediction - evaluating policy
oe

TD(\)

e Monte Carlo: No bias, high variance

e Temporal difference learning: lower variance, some bias

TD()) - continuous spectrum of models between MC and TD,
Ae(0,1)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
0000000000 0000000000000 0

Section 3

Control - optimizing policy

Control - optimizing policy

Control - optimizing policy

Find the optimal policy «

v (S) = maxg vy (s)

e How can we improve a given policy 77

e Do more of the good actions and less of the bad

¢ How do we measure the goodness of an action?

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
0000000000 90000000000000

Subsection 1

Policy gradient - policy based control

Control - optimizing policy
0e0000

Policy gradient

Defined a parametrized family of policies 7y, 0 € ©. Reduced
problem to

mo+ = argmaxpE,,(Go) (33)

e Recall that Gy is return, expected discounted reward

We know how to do parameter-optimization, right?

Control - optimizing policy
00e000

Supervised learning training

Assume differentiable loss function / and f differentiable in 4.

min E(I(f(X;6).Y)) (34)

Find gradient with
VoE(I(F(X:6),Y)) —ve//p(x,y)/(f(X:9),y)dxdy (35)
= [[Vatete it Cci).)by (36)
_ / / p(x, y)Vol(f(x:0), y)dxdy — (37)

N
~ V(i)) (38)
i=1

e Can we do something similar in RL?

Control - optimizing policy
000e00

RL imitation

Let z denote an episode, i.e. z = (sp, a0, r1,51,,ar—1,r,57). 9r(z)
= > {4 rr. Want to optimize

Er(Go) = [plai0)(z)dz (39)

Let's see if we can get the gradient
VoEr,(Go) = Vo / p(z;0)r(2)dz (40)
_ / Vop(z: 0)r(z) dz (41)

e Are we stuck?

Control - optimizing policy
0000e0

Log-derivative trick
For a variable of one parameter x

d (%)
o log f(x) =)
For a policy of several variables 6 this generalizes to
_ Vof(0)
Voglogf(6) = £0)

and thus

/Vgp(z;@)r(z)dr— /p(z;H)Vg log p(z; 0)r(z)dr

and can be sampled with

VoEr,(Go) ~ Zve log p(z;; 0)r(zi)

(42)

(43)

(44)

Control - optimizing policy
00000e

Gradient
Remains to figure out expression for Vg log p(z;6). Turns out that
itis
T—1

Vo log p(z;) ZVQ log mg(a¢|st) (45)
t=0

and thus our full gradient estimate is

)

N
VQEM Go 1 ZZ (V@ |Og7T9 at)]st) .)> (46)

l:l t=1
and our update becomes

N7

00+ O‘% >0 (Ve log W@(agi)|5§i))r(i)) (47)

i=1 t=1

Each action agi) contributes Vy log ﬂg(agi)|st(i))r(i)

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
0000000000 0000008000000 0

Subsection 2

Policy iteration and value iteration - value based control

Control - optimizing policy
000000

Policy iteration - idea

We saw before that our value function was given by

va(s) = / 7(]5)qx (5, 2)da

e Expected reward an average of between good and bad actions

e Why not just choose the best action?
7'(s) := argmax,q.(s, a) (48)

That this works, i.e. ©’ > 7, is know as the policy improvement
theorem.

Control - optimizing policy
00@e000

Policy iteration - algorithm |

For i =0,1,2,... repeat the following two steps

1. Policy evaluation Estimate the value function for policy ;.

2. Policy improvement Define a policy 711 by acting greedily
with respect to the value function estimated in the previous
step.

e Usually only crudely approximate each step

e Incomplete knowledge of environment —> need to ensure we
keep exploring

Control - optimizing policy
000000

For i =0,1,2,... repeat the following two steps
1. Policy evaluation Estimate the value function §y;

2. Policy improvement Define a policy ;11 by acting e-greedily
with respect to g,

1—e+e/K fora=argmaxygr(s,a)
e/K else

miv1(als) = {

Control - optimizing policy
0000e0

Value iteration - idea

Bellman optimization equations

G(s,a) = E[Req1 + 7y max G«(St+1,8)[St = 5, A = a]

://p(r,s'\s, a)(r +ymaxgqs(s’,a"))ds'dr
a/

(49)

(50)

Control - optimizing policy
00000e

Value iteration - algorithm (Q-learning)

Without function approximation
Qls,al + Qls.a] + a((R + max Q[S", #]) — Qs. a])
a
With function approximation we have the update

A A+ a((R+maxq,(S', ") — q(s,a)) Vyay(s, a)
a

Introduction Prediction - evaluating policy Control - optimizing policy Conclusion
0000000000 O00000000000e0

Subsection 3

Actor-critic - policy and value based control

Control - optimizing policy
oce

Actor-critic

e Combine policy and value based control

e In policy gradient, scale the gradient by something “smarter”
than observed reward G;.

e Critic which judges how good each action is

Section 4

Conclusion

Conclusion

+ Very general and powerful framework

+ Some great success stories in games and robotics
- Computationally expensive

- May need simulated environment to learn

- May get undesirable solution to problem
e Think "Dilbert” (or worse!)

Conclusion

	Introduction
	Prediction - evaluating policy
	Monte-Carlo - full lookahead
	Temporal Difference - one step lookahead
	TD() - ``intermediate'' lookahead

	Control - optimizing policy
	Policy gradient - policy based control
	Policy iteration and value iteration - value based control
	Actor-critic - policy and value based control

	Conclusion

