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Example Applications

● Summarization 
(extractive/abstractive)

● Machine translation
● Dialog systems /chatbots
● Text generation
● Question answering
●

●



Seq2seq Transformation

Model size should 
be constant.

Model

Variable length input

Variable length output

Solution: Apply a constant sized neural net module  repeatedly 
on the data 



Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention 
● Apply the NN module in a parallel fashion   
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Processing Pipeline 

Intermediate 
representation

Decoder

Variable length output

Variable length input

Encoder

Variable length text

Embedding

Attention



Architecture Variants

Encoder Decoder Attention

Recurrent net Recurrent net No

Recurrent net Recurrent net Yes

Convolutional 
net

Convolutional 
net

No

Convolutional 
net

Recurrent net Yes

Convolutional 
net

Convolutional 
net

Yes

Fully connected 
net with self-
attention

Fully connected 
net with self-
attention

Yes



Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention 
● Apply the NN module in a parallel fashion   



RNN-decoder with RNN-encoder
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RNN-dec with RNN-enc, Training
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RNN-dec with RNN-enc, Decoding
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Decoding Approaches
● Optimal decoding

 
● Greedy decoding

● Easy

● Not optimal   

● Beam search
● Closer to optimal decoder

● Choose top N candidates instead of the 
best one at each step.   



Beam Search Decoding

Beam Width = 3



Straight-forward Extensions
Current state Next state

Current Input

RNN Cell

Current state Next state

Current Input
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Next control stateCurrent  control 
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RNN-decoder with RNN-encoder with Attention
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Attention
● Context is given by

● Attention weights            are dynamic 

● Generally defined by                                    with  

where  function f can be defined in several ways.

● Dot product 

● Weighted dot product

● Use another MLP (eg: 2 layer) 

 

  



Attention

+

RNN Cell



Example:  Google Neural Machine Translation



Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention 
● Apply the NN module in a parallel fashion   



Why Convolution

● Recurrent networks are serial
● Unable to be parallelized

● “Distance” between feature vector and 
different inputs are not constant 

● Convolutions networks
● Can be parallelized (faster)

●  “Distance” between feature vector and 
different inputs are constant   



Long range dependency capture with conv nets
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Conv net, Recurrent net with Attention

Gehring et.al. A Convolutional Encoder Model for Neural Machine Translation (2016)
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Two conv nets with attention

Gehring et.al, Convolutional Sequence to Sequence Learning, 2017
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Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention 
● Apply the NN module in a parallel fashion   



FCN with self-attention

Inputs

Previous 
Words

Probability of 
the next 
words

Vasvani et.al, Attention is all you need, 2017



Scaled dot product attention

Query Keys Values



Multi-Head Attention



Encoder Self-attention

N=4, d-dimensional 
vectors

N=4,                  
d-dimensional 
vectors

 Self Attention



Decoder Self-attention

• Almost same as encoder self 
attention

• But only leftward positions are  
considered.



Encoder-decoder attention
Encoder states Decoder states

h1 h2 h3 N=4, d-dimensional 
vectors

Enc-Dec Attention



Overall Operation

Previous Words Next 
Word



Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●



Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●
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Why Reinforcement Learning
● Exposure bias

● In training ground truths are used. In testing, 
generated word in the previous step is used to 
generate the next word.

● Use generated words in training needs sampling : 
Non differentiable 

● Maximum Likelihood criterion is not directly relevant 
to evaluation metrics 
● BLEU (Machine translation)
● ROUGE (Summarization)
● Use BLEU/ROUGE in training: Non differentiable



Sequence Generation as  
Reinforcement Learning  

● Agent:  The Recurrent Net
● State:  Hidden layers, Attention weights etc.
● Action: Next Word
● Policy: Generate the next word (action) 

given the current hidden layers and 
attention weights (state)

● Reward: Score computed using the 
evaluation metric (eg: BLEU)



Maximum Likelihood  Training 
(Revisit)

Minimize the negative  log likelihood 



Reinforcement Learning 
Formulation

Minimize the expected negative reward,                          
using REINFORCE algorithm 



Reinforcement Learning Details  
● Expected reward  

● We need the gradient  

● Need to write this as an expectation, so that we 
can evaluate it using samples. Use the log 
derivative trick: 

 

● This is an expectation 

● Approximate this with sample mean

● In practice we use only one sample  



Reinforcement Learning Details  
● Gradient  

● This estimation has high variance. Use a 
baseline to combat this problem.  

● Baseline can be anything independent of   

●  It can for example be estimated as the reward 
for word sequence generated using argmax at 
each cell,



Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●



Maximum Likelihood Dialog Systems

How Are You?

I Am Fine

I Am<start>



Why Reinforcement Learning

● Maximum Likelihood criterion is not 
directly relevant to successful dialogs 
● Dull responses (“I don’t know”)
● Repetitive responses

● Need to integrate developer defined 
rewards relevant to longer term goals 
of the dialog



Dialog Generation as  
Reinforcement Learning  

● Agent:  The Recurrent Net
● State:  Previous dialog turns
● Action: Next dialog utterance
● Policy: Generate the next dialog utterance 

(action) given the previous dialog turns (state)
● Reward: Score computed based on relevant 

factors such as ease of answering, information 
flow, semantic coherence etc. 



Training Setup

Agent 1 Agent 2

DecoderDecoder

Encoder Encoder



Training Procedure   

● From the viewpoint of a given agent, the 
procedure is similar to that of sequence 
generation 
● REINFORCE algorithm

● Appropriate rewards must be calculated 
based on current and previous dialog turns.

● Can be initialized with maximum likelihood 
trained models.



Adversarial Learning    
● Use a discriminator as in GANs to calculate the reward

● Same training procedure based on REINFORCE for 
generator 

Discriminator

Human Dialog



Question Answering

● Slightly different from sequence-to-
sequence model.

Model

Variable length inputs

Fixed Length OutputSingle Word Answer/ 
Start-end points of the answer 

Passage/Document/ContextQuestion/Query



QA- Naive Approach
● Combine question and passage and use an RNN 

to classify it. 

● Will not work because relationship between the 
passage and question is not adequately 
captured. 

Model

Variable length input

Fixed Length OutputSingle Word Answer/ 
Start-end points of the answer 

Question and passage



QA- More Successful 
Approach 

● Use attention between the question 
and passage
● Bi-directional attention, co-

attention
● Temporal relationship modeling
● Classification or predict start and 

end-point of the answer within 
passage.



QA Example with Bi-directional 
Attention  

Bi-directional attention flow for machine comprehension  Seo M. et.al
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