
Sequnce(s)-to-Sequence
Transformations in Text Processing

Narada Warakagoda

Seq2seq Transformation

Model

Variable length input

Variable length output

Example Applications

● Summarization
(extractive/abstractive)

● Machine translation
● Dialog systems /chatbots
● Text generation
● Question answering
●

●

Seq2seq Transformation

Model size should
be constant.

Model

Variable length input

Variable length output

Solution: Apply a constant sized neural net module repeatedly
on the data

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention
● Apply the NN module in a parallel fashion

Processing Pipeline

Decoder

Variable length input

Variable length output

Encoder

Intermediate
representation

Processing Pipeline

Intermediate
representation

Decoder

Variable length output

Variable length input

Encoder

Variable length text

Embedding

Attention

Architecture Variants

Encoder Decoder Attention

Recurrent net Recurrent net No

Recurrent net Recurrent net Yes

Convolutional
net

Convolutional
net

No

Convolutional
net

Recurrent net Yes

Convolutional
net

Convolutional
net

Yes

Fully connected
net with self-
attention

Fully connected
net with self-
attention

Yes

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention
● Apply the NN module in a parallel fashion

RNN-decoder with RNN-encoder

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

= RNN cell

RNN-dec with RNN-enc, Training

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

Ground Truths

Thanks Very Much <end>

RNN-dec with RNN-enc, Decoding

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Much Very

Encoder Decoder

Thanks Much Very <end>

Greedy Decoding

Decoding Approaches
● Optimal decoding

● Greedy decoding

● Easy

● Not optimal

● Beam search
● Closer to optimal decoder

● Choose top N candidates instead of the
best one at each step.

Beam Search Decoding

Beam Width = 3

Straight-forward Extensions
Current state Next state

Current Input

RNN Cell

Current state Next state

Current Input

LSTM Cell

Next control stateCurrent control
state

Current state Next state

Current Input

Next stateCurrent state

Current state Next state

Current Input

Next stateCurrent state

Bidirectional Cell Stacked Cell

RNN-decoder with RNN-encoder with Attention

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

= RNN cell

+

Context

Attention
● Context is given by

● Attention weights are dynamic

● Generally defined by with

where function f can be defined in several ways.

● Dot product

● Weighted dot product

● Use another MLP (eg: 2 layer)

Attention

+

RNN Cell

Example: Google Neural Machine Translation

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention
● Apply the NN module in a parallel fashion

Why Convolution

● Recurrent networks are serial
● Unable to be parallelized

● “Distance” between feature vector and
different inputs are not constant

● Convolutions networks
● Can be parallelized (faster)

● “Distance” between feature vector and
different inputs are constant

Long range dependency capture with conv nets

k

n
k

Conv net, Recurrent net with Attention

Gehring et.al. A Convolutional Encoder Model for Neural Machine Translation (2016)

CNN-a CNN-c

1z 3z2z 4z 1y 2y 3y 4y

,1ia ,2ia ,3ia ,4ia

ig

ic
ih

ih

id

1ih

i d i id W h g

Two conv nets with attention

Gehring et.al, Convolutional Sequence to Sequence Learning, 2017

W WW W

Wd Wd Wd Wd

1z 3z2z

1,2,3,4id i

1e 2e 3e

, 1,2,3,4 1,2,3i ja i j
1c 2c 3c 4c

1g 2g 3g 4g

, 1,2,3,4ih i

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention
● Apply the NN module in a parallel fashion

FCN with self-attention

Inputs

Previous
Words

Probability of
the next
words

Vasvani et.al, Attention is all you need, 2017

Scaled dot product attention

Query Keys Values

Multi-Head Attention

Encoder Self-attention

N=4, d-dimensional
vectors

N=4,
d-dimensional
vectors

 Self Attention

Decoder Self-attention

• Almost same as encoder self
attention

• But only leftward positions are
considered.

Encoder-decoder attention
Encoder states Decoder states

h1 h2 h3 N=4, d-dimensional
vectors

Enc-Dec Attention

Overall Operation

Previous Words Next
Word

Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●

Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●

Why Reinforcement Learning
● Exposure bias

● In training ground truths are used. In testing,
generated word in the previous step is used to
generate the next word.

● Use generated words in training needs sampling :
Non differentiable

● Maximum Likelihood criterion is not directly relevant
to evaluation metrics
● BLEU (Machine translation)
● ROUGE (Summarization)
● Use BLEU/ROUGE in training: Non differentiable

Sequence Generation as
Reinforcement Learning

● Agent: The Recurrent Net
● State: Hidden layers, Attention weights etc.
● Action: Next Word
● Policy: Generate the next word (action)

given the current hidden layers and
attention weights (state)

● Reward: Score computed using the
evaluation metric (eg: BLEU)

Maximum Likelihood Training
(Revisit)

Minimize the negative log likelihood

Reinforcement Learning
Formulation

Minimize the expected negative reward,
using REINFORCE algorithm

Reinforcement Learning Details
● Expected reward

● We need the gradient

● Need to write this as an expectation, so that we
can evaluate it using samples. Use the log
derivative trick:

● This is an expectation

● Approximate this with sample mean

● In practice we use only one sample

Reinforcement Learning Details
● Gradient

● This estimation has high variance. Use a
baseline to combat this problem.

● Baseline can be anything independent of

● It can for example be estimated as the reward
for word sequence generated using argmax at
each cell,

Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●

Maximum Likelihood Dialog Systems

How Are You?

I Am Fine

I Am<start>

Why Reinforcement Learning

● Maximum Likelihood criterion is not
directly relevant to successful dialogs
● Dull responses (“I don’t know”)
● Repetitive responses

● Need to integrate developer defined
rewards relevant to longer term goals
of the dialog

Dialog Generation as
Reinforcement Learning

● Agent: The Recurrent Net
● State: Previous dialog turns
● Action: Next dialog utterance
● Policy: Generate the next dialog utterance

(action) given the previous dialog turns (state)
● Reward: Score computed based on relevant

factors such as ease of answering, information
flow, semantic coherence etc.

Training Setup

Agent 1 Agent 2

DecoderDecoder

Encoder Encoder

Training Procedure

● From the viewpoint of a given agent, the
procedure is similar to that of sequence
generation
● REINFORCE algorithm

● Appropriate rewards must be calculated
based on current and previous dialog turns.

● Can be initialized with maximum likelihood
trained models.

Adversarial Learning
● Use a discriminator as in GANs to calculate the reward

● Same training procedure based on REINFORCE for
generator

Discriminator

Human Dialog

Question Answering

● Slightly different from sequence-to-
sequence model.

Model

Variable length inputs

Fixed Length OutputSingle Word Answer/
Start-end points of the answer

Passage/Document/ContextQuestion/Query

QA- Naive Approach
● Combine question and passage and use an RNN

to classify it.

● Will not work because relationship between the
passage and question is not adequately
captured.

Model

Variable length input

Fixed Length OutputSingle Word Answer/
Start-end points of the answer

Question and passage

QA- More Successful
Approach

● Use attention between the question
and passage
● Bi-directional attention, co-

attention
● Temporal relationship modeling
● Classification or predict start and

end-point of the answer within
passage.

QA Example with Bi-directional
Attention

Bi-directional attention flow for machine comprehension Seo M. et.al

	Slide 1
	Slide 2
	Slide 3
	Seq2seq modeling
	Slide 5
	Main approach
	Slide 7
	Development
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Long range dependency capture with conv nets
	Conv net, Recurrent net with Attention
	Slide 24
	Slide 25
	FCN with self-attention
	Scaled dot product attention
	Multi-Head Attention
	Encoder Self-attention
	Decoder Self-attention
	Encoder-decoder attention
	Overall Operation
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

