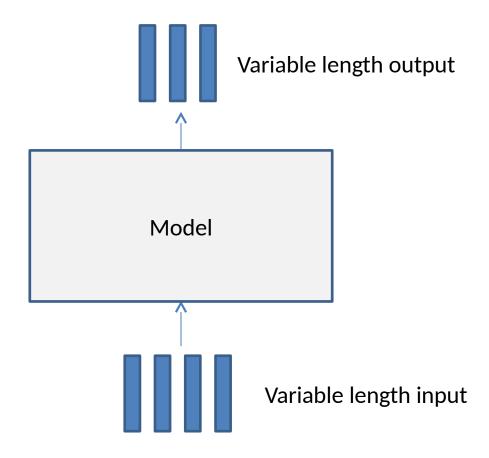
Sequnce(s)-to-Sequence Transformations in Text Processing

Narada Warakagoda

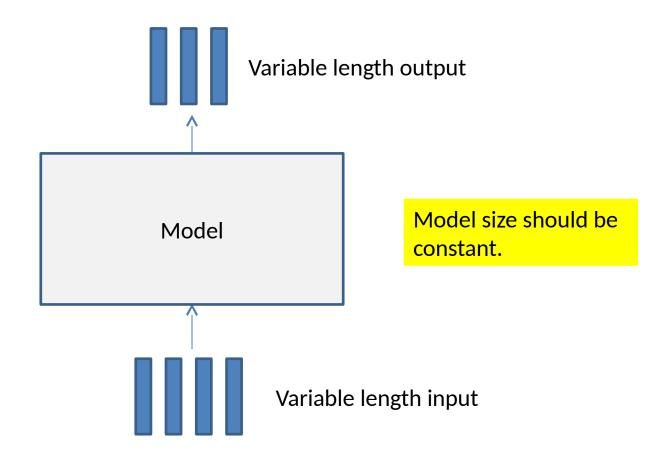
Seq2seq Transformation



Example Applications

- Summarization (extractive/abstractive)
- Machine translation
- Dialog systems /chatbots
- Text generation
- Question answering *

Seq2seq Transformation

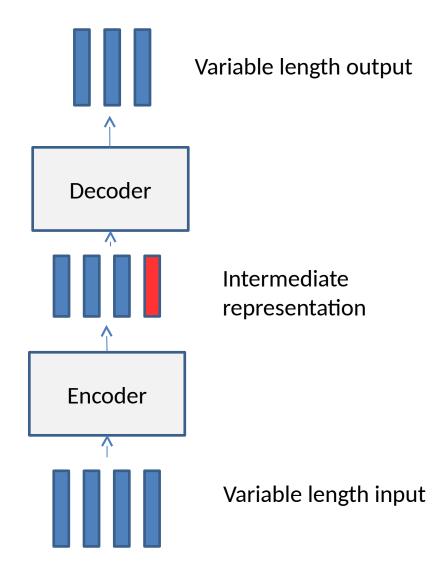


Solution: Apply a constant sized neural net module repeatedly on the data

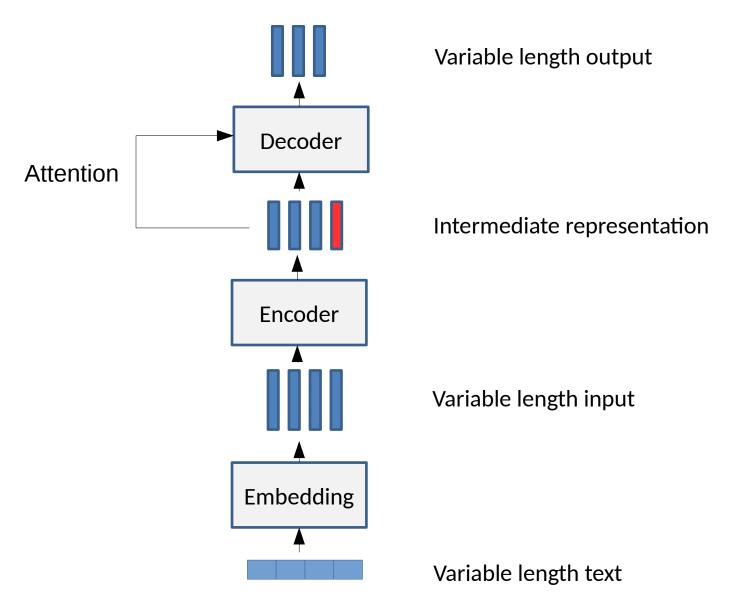
Possible Approaches

- Recurrent networks
 - Apply the NN module in a serial fashion
- Convolutions networks
 - Apply the NN modules in a hierarchical fashion
- Self-attention
 - Apply the NN module in a parallel fashion

Processing Pipeline



Processing Pipeline



Architecture Variants

Encoder	Decoder	Attention
Recurrent net	Recurrent net	No
Recurrent net	Recurrent net	Yes
Convolutional net	Convolutional net	No
Convolutional net	Recurrent net	Yes
Convolutional net	Convolutional net	Yes
Fully connected net with self-attention	Fully connected net with self-attention	Yes

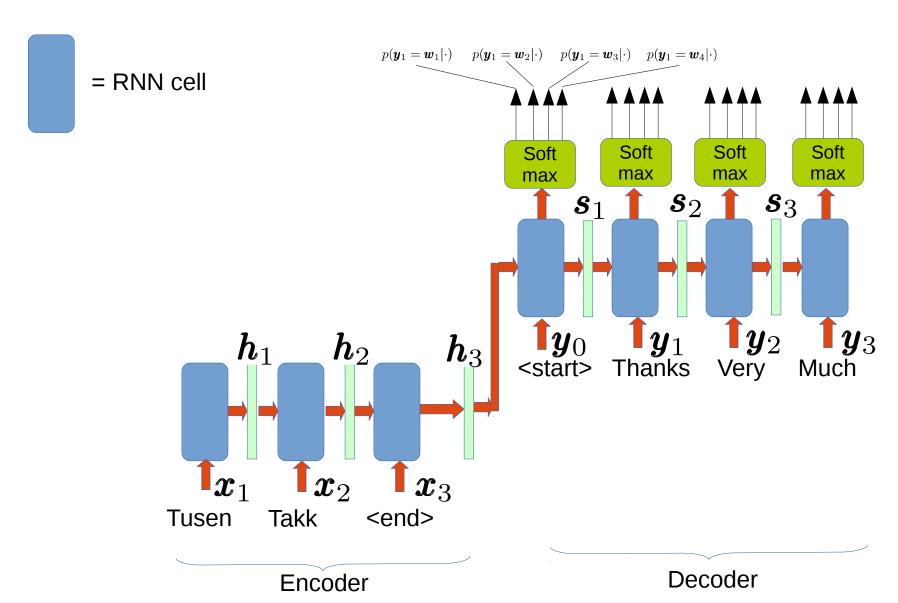
Possible Approaches

Recurrent networks

- Apply the NN module in a serial fashion
- Convolutions networks
 - Apply the NN modules in a hierarchical fashion
- Self-attention
 - Apply the NN module in a parallel fashion

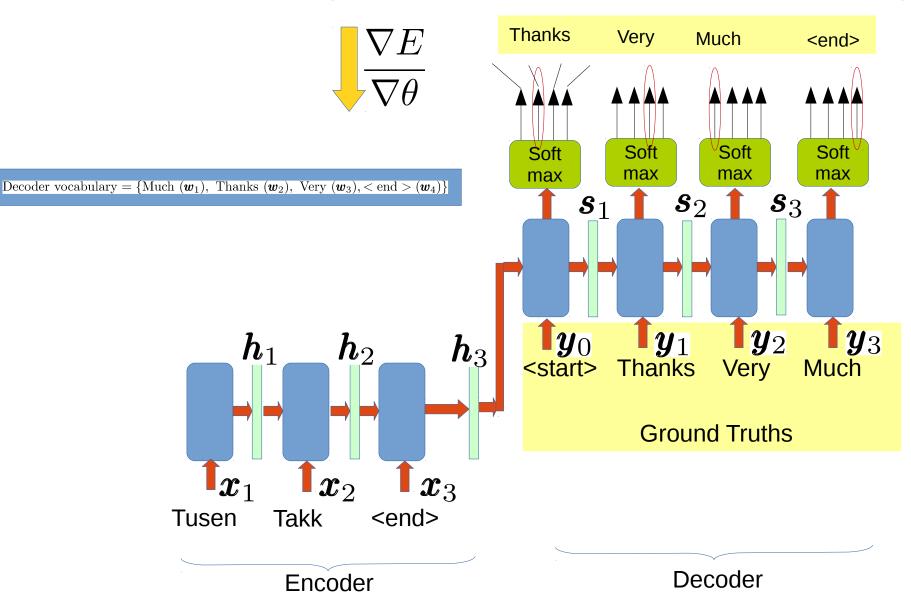
RNN-decoder with RNN-encoder

Decoder vocabulary = {Much (\boldsymbol{w}_1) , Thanks (\boldsymbol{w}_2) , Very (\boldsymbol{w}_3) , < end $> (\boldsymbol{w}_4)$ }



RNN-dec with RNN-enc, Training

 $E = \log L = \log \left[p(\mathbf{y}_1 = w_2 | \mathbf{X}) \cdot p(\mathbf{y}_2 = w_3 | w_2, \mathbf{X}) \cdot p(\mathbf{y}_3 = w_1 | w_2, w_3, \mathbf{X}) \cdot p(\mathbf{y}_4 = w_4 | w_2, w_3, w_1, \mathbf{X}) \right]$

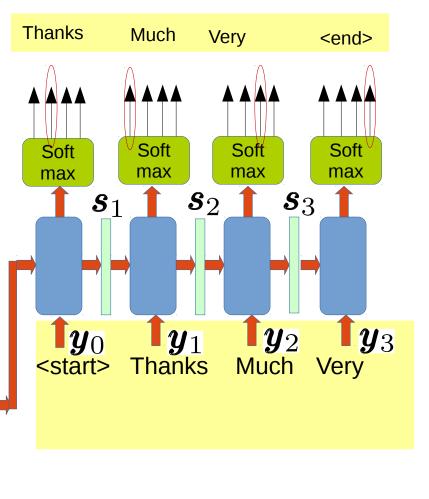


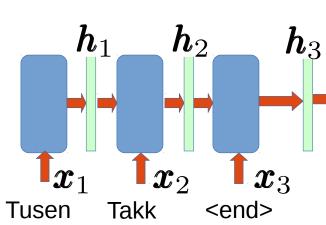
RNN-dec with RNN-enc, Decoding

Decoder vocabulary = {Much (\boldsymbol{w}_1) , Thanks (\boldsymbol{w}_2) , Very (\boldsymbol{w}_3) , < end > (\boldsymbol{w}_4) }

Greedy Decoding

 $y_1 = \operatorname{argmax}_{w \in \{w_1, w_2, w_3, w_4\}} p(y_1 = w | X)$





Encoder

Decoder

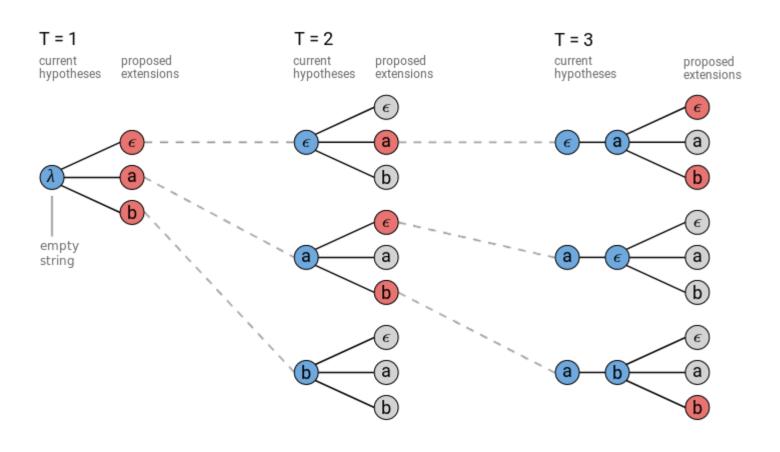
Decoding Approaches

Optimal decoding

Find $\mathbf{w} = \{w_1, w_2, w_3, w_4\}$ such that $p(w_1, w_2, w_3, w_4 | \mathbf{X})$ is maximum

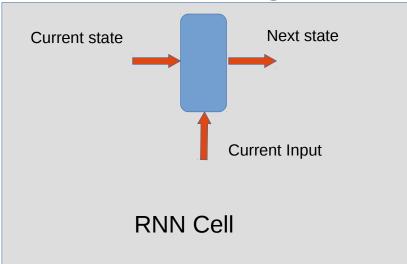
- Greedy decoding
 - Easy
 - Not optimal
- Beam search
 - Closer to optimal decoder
 - Choose top N candidates instead of the best one at each step.

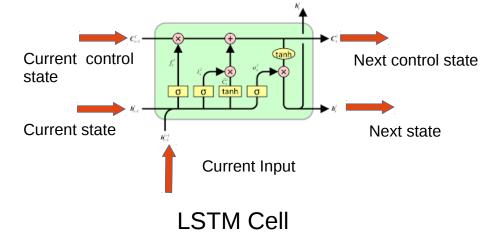
Beam Search Decoding

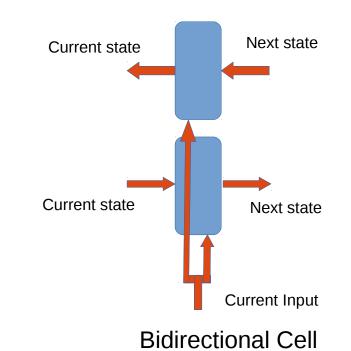


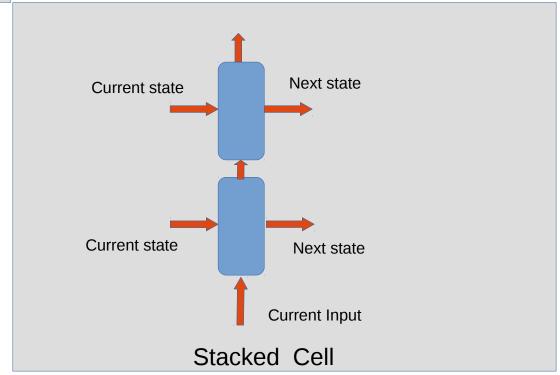
Beam Width = 3

Straight-forward Extensions



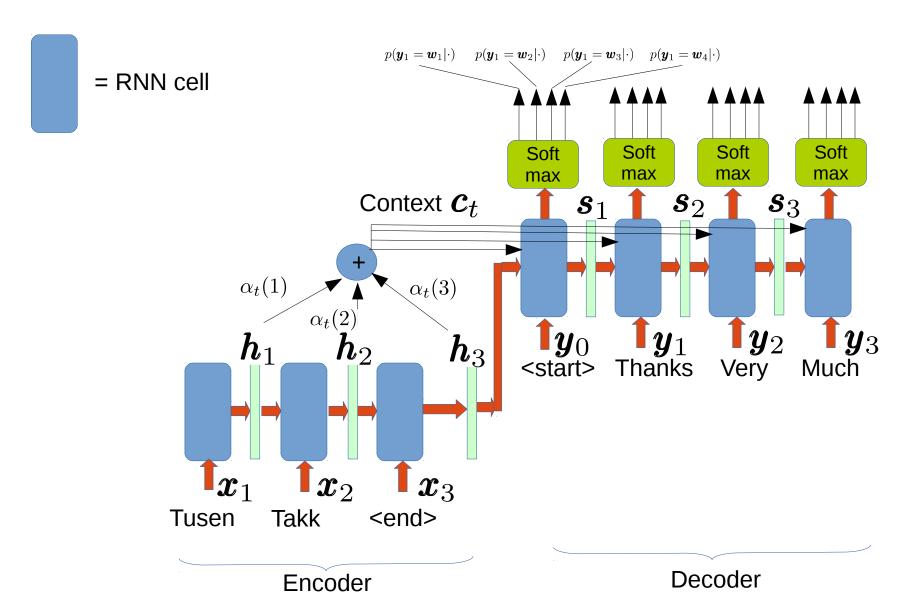






RNN-decoder with RNN-encoder with Attention

Decoder vocabulary = {Much (\boldsymbol{w}_1) , Thanks (\boldsymbol{w}_2) , Very (\boldsymbol{w}_3) , < end $> (\boldsymbol{w}_4)$ }



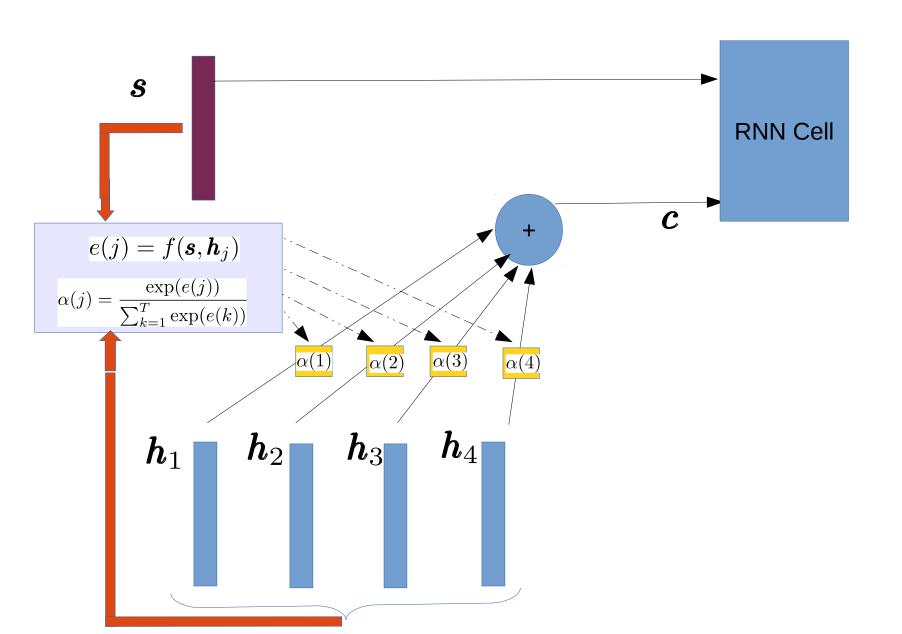
Attention

- Context is given by $c_t = \sum_{j=1}^{T_x} \alpha_t(j) h_j$
- Attention weights $\alpha_t(j)$ are dynamic
- Generally defined by $\alpha_t(j) = \frac{\exp(e_t(j))}{\sum_{k=1}^{T_x} \exp(e_t(k))}$ with $e_t(j) = f(\boldsymbol{s}_{t-1}, \boldsymbol{h}_j)$

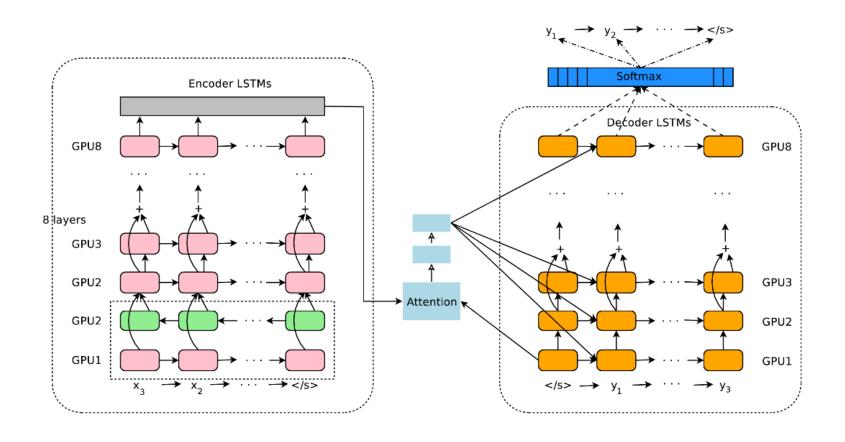
where function f can be defined in several ways.

- Dot product $e_t(j) = \mathbf{s}_{t-1}^T \cdot \mathbf{h}_j$
- Weighted dot product $e_t(j) = \mathbf{s}_{t-1}^T \cdot \mathbf{W} \cdot \mathbf{h}_j$
- Use another MLP (eg: 2 layer) $e_t(j) = \mathbf{v}^T \cdot \tanh(\mathbf{W} \cdot [\mathbf{h}_j; \mathbf{s}_{t-1}])$

Attention



Example: Google Neural Machine Translation



Possible Approaches

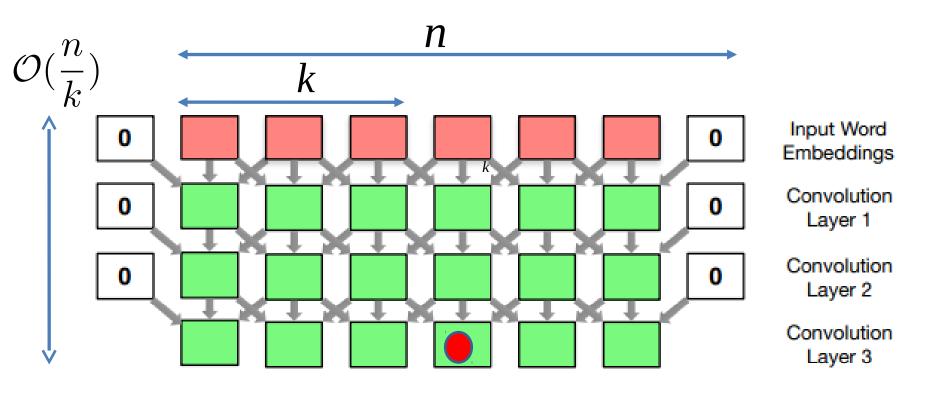
- Recurrent networks
 - Apply the NN module in a serial fashion
- Convolutions networks

- Apply the NN modules in a hierarchical fashion
- Self-attention
 - Apply the NN module in a parallel fashion

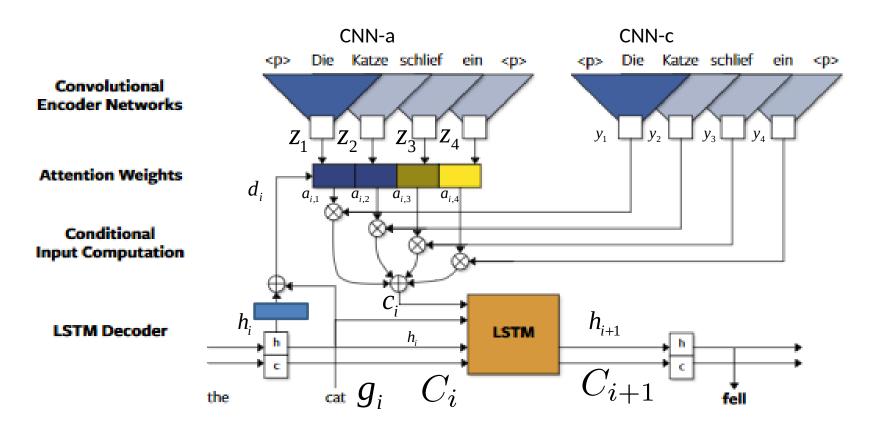
Why Convolution

- Recurrent networks are serial
 - Unable to be parallelized
 - "Distance" between feature vector and different inputs are not constant
- Convolutions networks
 - Can be parallelized (faster)
 - "Distance" between feature vector and different inputs are constant

Long range dependency capture with conv nets



Conv net, Recurrent net with Attention



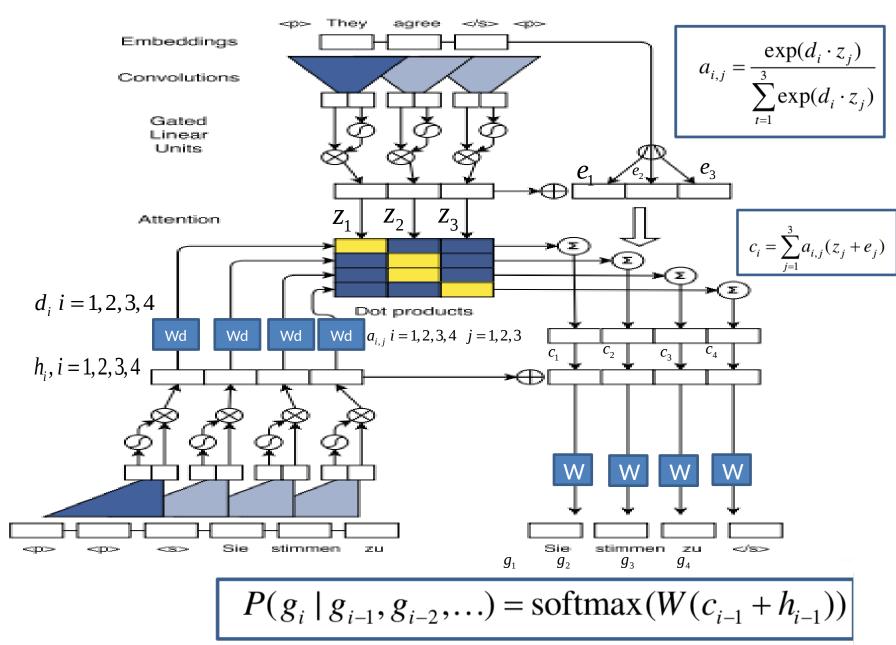
$$d_i = W_d h_i + g_i$$

$$a_{i,j} = \frac{\exp(d_i \cdot z_j)}{\sum_{t=1}^{4} \exp(d_i \cdot z_t)}$$

$$c_i = \sum_{j=1}^4 a_{i,j} y_j$$

$$h_{i+1}, C_{i+1} = LSTM(c_i, h_i, g_i, C_i)$$

Two conv nets with attention



Gehring et.al, Convolutional Sequence to Sequence Learning, 2017

Possible Approaches

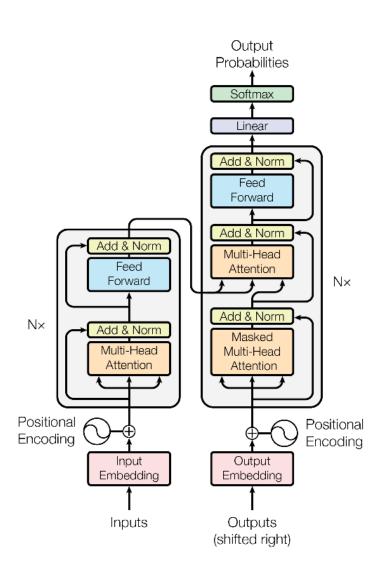
- Recurrent networks
 - Apply the NN module in a serial fashion
- Convolutions networks
 - Apply the NN modules in a hierarchical fashion
- Self-attention

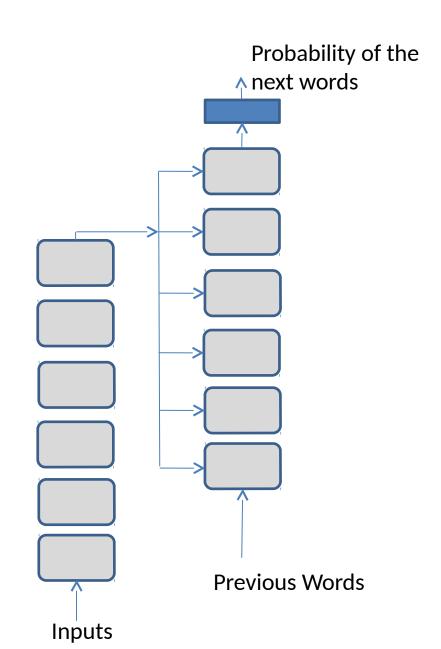
Apply the NN module in a parallel fashion

Why Self-attention

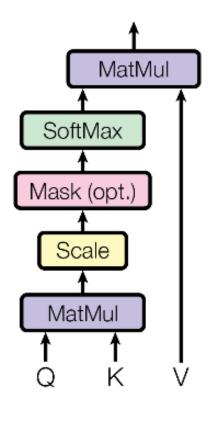
- Recurrent networks are serial
 - Unable to be parallelized
 - "Distance" between feature vector and different inputs are not constant
- Self-attention networks
 - Can be parallelized (faster)
 - "Distance" between feature vector and different inputs does not depend on the input length

FCN with self-attention





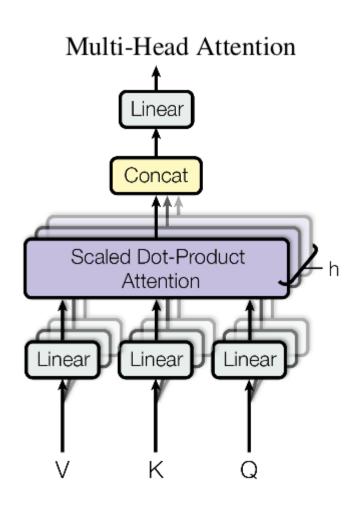
Scaled dot product attention



$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Query Keys Values

Multi-Head Attention



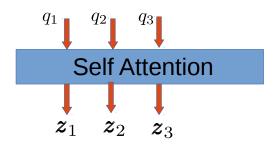
Encoder Self-attention

Encoder Self-Attention

$oldsymbol{q}_1$	\boldsymbol{q}_2	\boldsymbol{q}_3
$oldsymbol{k}_1$	\boldsymbol{k}_2	${m k}_3$
\boldsymbol{v}_1	$oldsymbol{v}_2$	$oldsymbol{v}_{ ext{ iny 2}}$

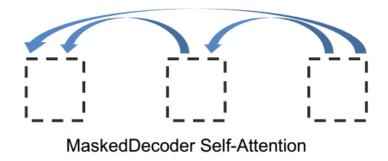
$$\alpha_{1,1} = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_1^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)} \qquad \alpha_{1,2} = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_2^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)} \qquad \alpha_{1,3} = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_3^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)}$$

$$z_1 = \alpha_{1,1} v_1 + \alpha_{1,2} v_2 + \alpha_{1,3} v_3
 z_2 = \alpha_{2,1} v_1 + \alpha_{2,2} v_2 + \alpha_{2,3} v_3
 z_3 = \alpha_{3,1} v_1 + \alpha_{3,2} v_2 + \alpha_{3,3} v_3$$

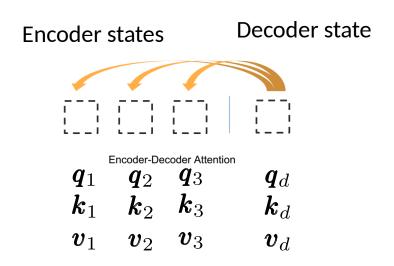


Decoder Self-attention

- Almost same as encoder self attention
- But only leftward positions are considered.

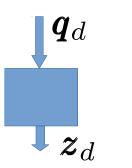


Encoder-decoder attention

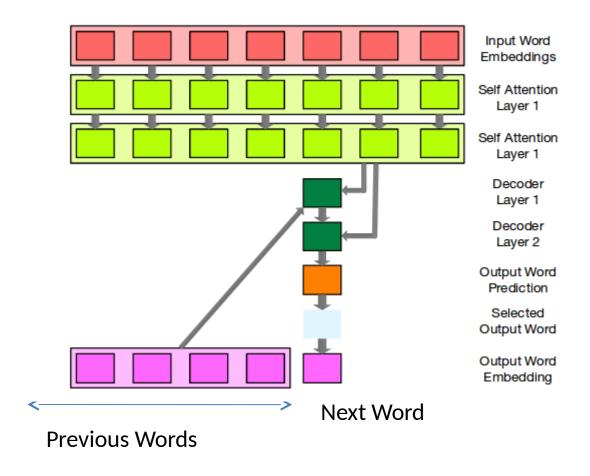


$$\alpha_{1,1} = \frac{\exp(\boldsymbol{q}_d \boldsymbol{k}_1^T)}{\sum_j \exp(\boldsymbol{q}_d \boldsymbol{k}_j^T)} \qquad \alpha_{1,2} = \frac{\exp(\boldsymbol{q}_d \boldsymbol{k}_2^T)}{\sum_j \exp(\boldsymbol{q}_d \boldsymbol{k}_j^T)} \qquad \alpha_{1,3} = \frac{\exp(\boldsymbol{q}_d \boldsymbol{k}_3^T)}{\sum_j \exp(\boldsymbol{q}_d \boldsymbol{k}_j^T)}$$

$$\mathbf{z}_d = \alpha_{1,1} \mathbf{v}_1 + \alpha_{1,2} \mathbf{v}_2 + \alpha_{1,3} \mathbf{v}_3$$



Overall Operation



Reinforcement Learning

- Machine Translation/Summarization
- Dialog Systems

•

Reinforcement Learning

Machine Translation/Summarization

Dialog Systems

•

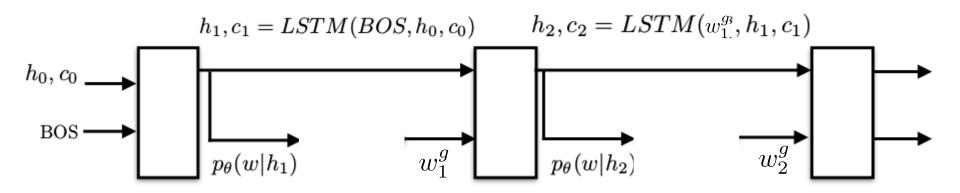
Why Reinforcement Learning

- Exposure bias
 - In training ground truths are used. In testing, generated word in the previous step is used to generate the next word.
 - Use generated words in training needs sampling: Non differentiable
- Maximum Likelihood criterion is not directly relevant to evaluation metrics
 - BLEU (Machine translation)
 - ROUGE (Summarization)
 - Use BLEU/ROUGE in training: Non differentiable

Sequence Generation as Reinforcement Learning

- Agent: The Recurrent Net
- State: Hidden layers, Attention weights etc.
- Action: Next Word
- Policy: Generate the next word (action) given the current hidden layers and attention weights (state)
- Reward: Score computed using the evaluation metric (eg: BLEU)

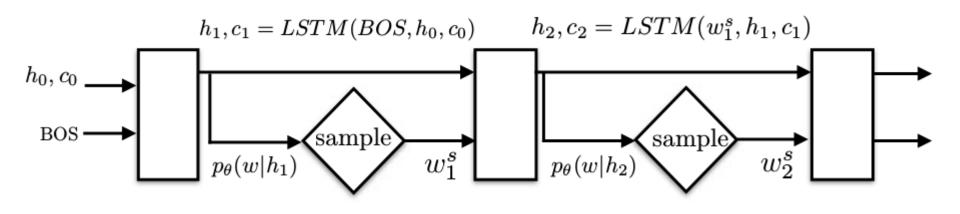
Maximum Likelihood Training (Revisit)



Log Likelihood =
$$\sum_{t=1}^{T} \log p_{\theta}(w_t^g | h_t)$$

Minimize the negative log likelihood

Reinforcement Learning Formulation



Reward
$$= r(w^s) = r(w_1^s, w_2^s, \dots, w_T^s)$$

Minimize the expected negative reward, $L(\theta) = -\mathbb{E}_{w^s \sim p_{\theta}}[r(w^s)]$ using REINFORCE algorithm

Reinforcement Learning Details

- Expected reward $L(\theta) = -\sum_{w} p_{\theta}(w)r(w)$
- We need the gradient $\nabla_{\theta}L(\theta) = -\sum_{w}r(w)\nabla_{\theta}p_{\theta}(w)$
- Need to write this as an expectation, so that we can evaluate it using samples. Use the log derivative trick:

$$\nabla_{\theta} L(\theta) = -\sum_{w} r(w) p_{\theta}(w) \nabla_{\theta} \log p_{\theta}(w)$$

- This is an expectation $\nabla_{\theta} L(\theta) = -\mathbb{E}_{w^s \sim p_{\theta}} \left[r(w^s) \nabla_{\theta} \log p_{\theta}(w^s) \right]$
- Approximate this with sample mean

$$\nabla_{\theta} L(\theta) \approx -\frac{1}{N} \sum_{s=1}^{N} r(w^s) \nabla_{\theta} \log p_{\theta}(w^s)$$

• In practice we use only one sample

$$\nabla_{\theta} L(\theta) \approx -r(w^s) \nabla_{\theta} \log p_{\theta}(w^s)$$

Reinforcement Learning Details

Gradient

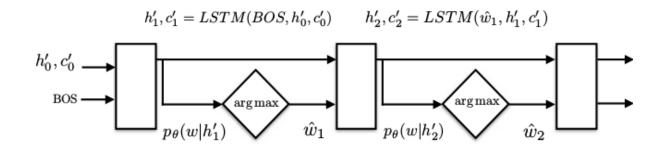
$$\nabla_{\theta} L(\theta) \approx -r(w^s) \nabla_{\theta} \log p_{\theta}(w^s)$$

This estimation has high variance. Use a baseline to combat this problem.

$$\nabla_{\theta} L(\theta) \approx -(r(w^s) - b) \nabla_{\theta} \log p_{\theta}(w^s)$$

- Baseline can be anything independent of w^s
- It can for example be estimated as the reward for word sequence generated using argmax at each cell.

$$b = r(\hat{w}_1, \hat{w}_2, \hat{w}_3, \cdots, \hat{w}_T)$$

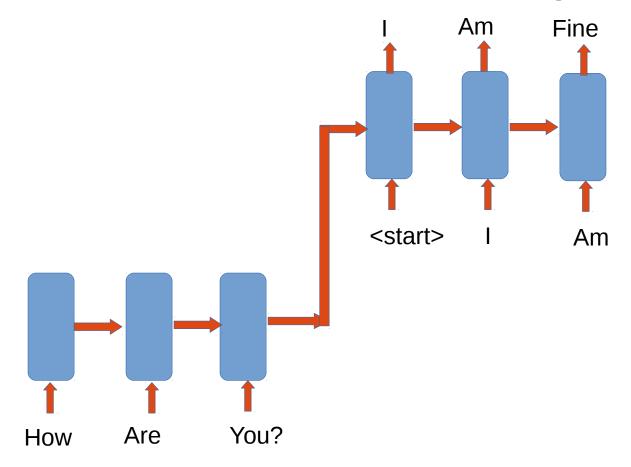


Reinforcement Learning

- Machine Translation/Summarization
- Dialog Systems

•

Maximum Likelihood Dialog Systems



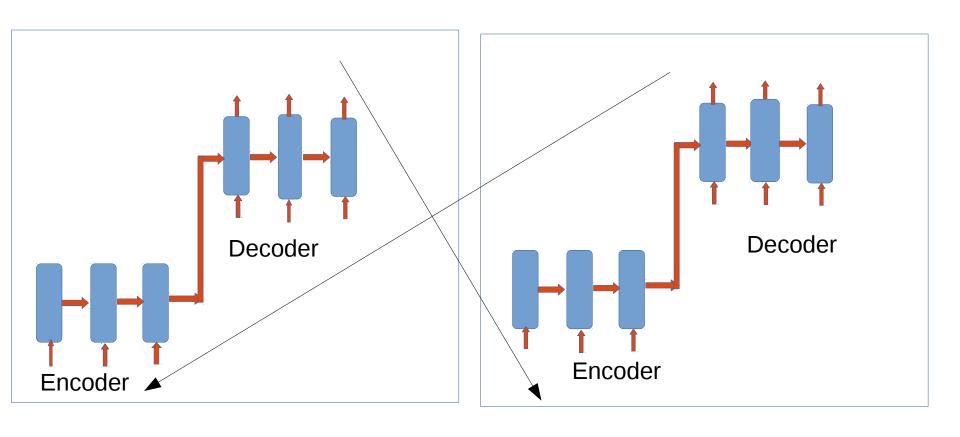
Why Reinforcement Learning

- Maximum Likelihood criterion is not directly relevant to successful dialogs
 - Dull responses ("I don't know")
 - Repetitive responses
- Need to integrate developer defined rewards relevant to longer term goals of the dialog

Dialog Generation as Reinforcement Learning

- Agent: The Recurrent Net
- State: Previous dialog turns
- Action: Next dialog utterance
- Policy: Generate the next dialog utterance (action) given the previous dialog turns (state)
- **Reward:** Score computed based on relevant factors such as ease of answering, information flow, semantic coherence etc.

Training Setup



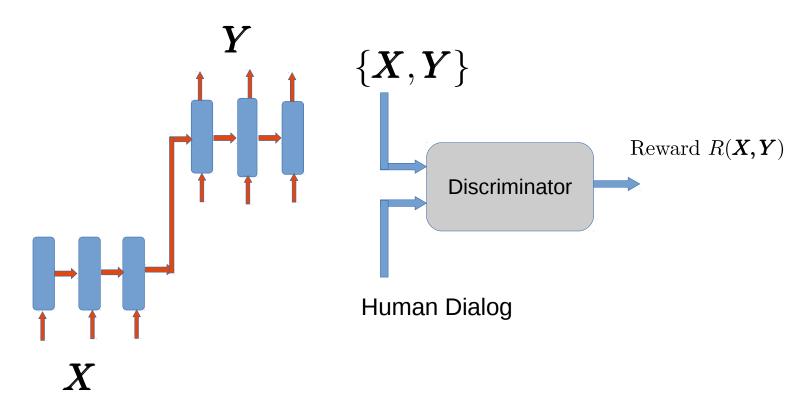
Agent 1 Agent 2

Training Procedure

- From the viewpoint of a given agent, the procedure is similar to that of sequence generation
 - REINFORCE algorithm
- Appropriate rewards must be calculated based on current and previous dialog turns.
- Can be initialized with maximum likelihood trained models.

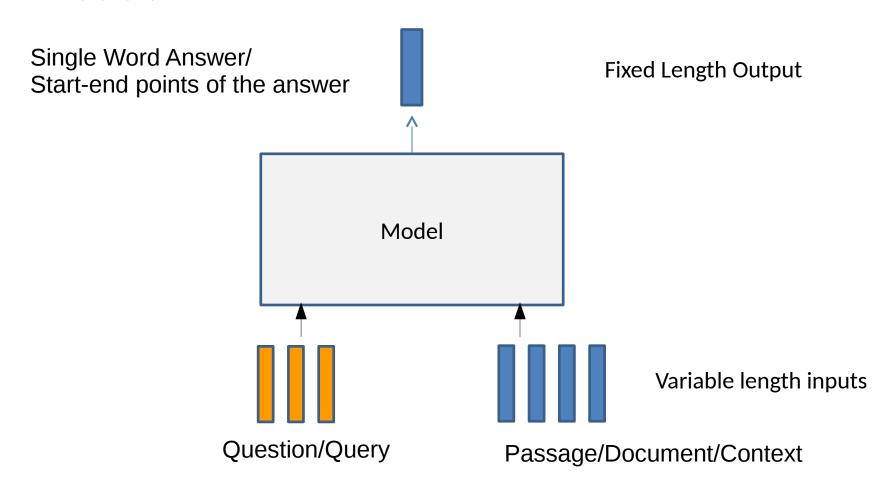
Adversarial Learning

- Use a discriminator as in GANs to calculate the reward
- Same training procedure based on REINFORCE for generator



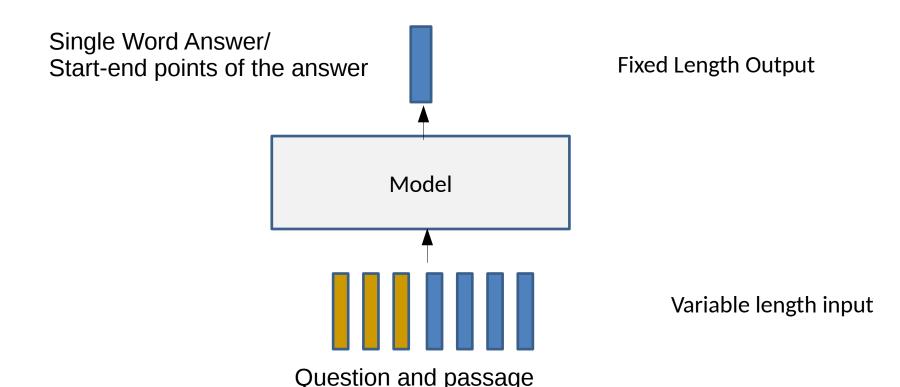
Question Answering

• Slightly different from sequence-to-sequence model.



QA- Naive Approach

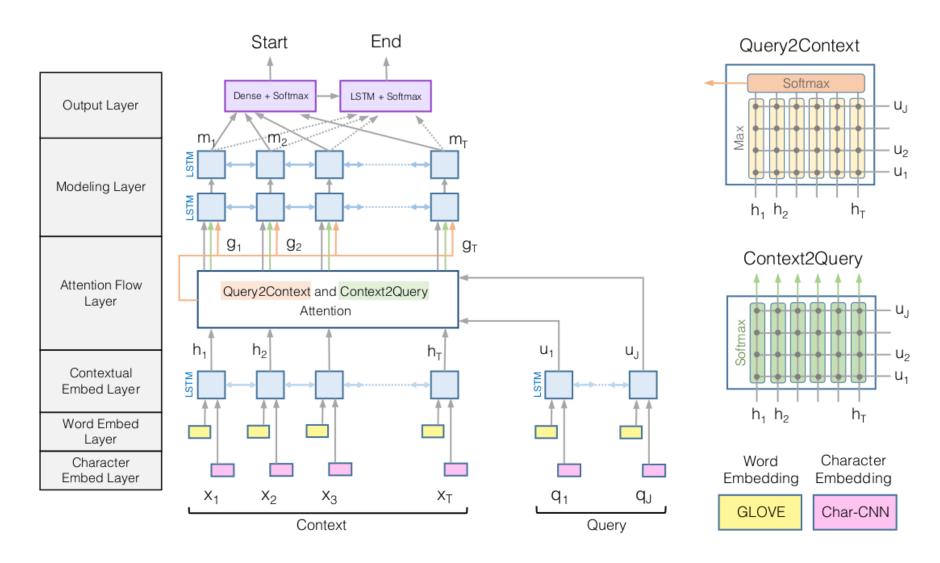
- Combine question and passage and use an RNN to classify it.
- Will not work because relationship between the passage and question is not adequately captured.



QA- More Successful Approach

- Use attention between the question and passage
 - Bi-directional attention, co-attention
- Temporal relationship modeling
- Classification or predict start and end-point of the answer within passage.

QA Example with Bi-directional Attention



Bi-directional attention flow for machine comprehension Seo M. et.al