Text Processing with Deep Learning

Basic concepts

Narada Warakagoda

Forsvarets Forskningsinstitutt (FFI)

- 1. Word Representations
- 2. Text Classification

Word Representations

- Words are symbols
- Neural networks operate on numerical values

Naive way of Word Representation

One hot encoding

Use the word index in vector form

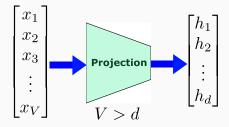
Example

- Consider a vocabulary of 5 words:
 - 1 Man [1,0,0,0,0]
 - 2 Woman [0,1,0,0,0]
 - 3 Boy [0,0,1,0,0]
 - 4 Girl [0,0,0,1,0]
 - 5 House [0,0,0,0,1]

Disadvantages

- Dimension of the representation vector would be very high for natural vocabularies.
- All vectors are equally spread (vector similarity does not represent semantic similarity)

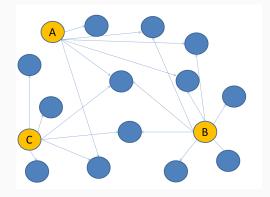
Issue 1: High Dimension



- Project one-hot encoded vectors to a lower dimensional space (Reduce the dimension of the representation)
- Also known as embedding
- Linear projection = Multiplication by a matrix $\mathbf{h}_{1 \times d} = \mathbf{x}_{1 \times V} \mathbf{W}_{V \times d}$

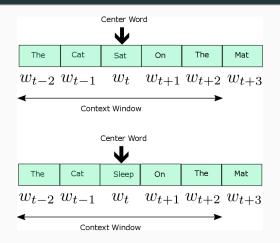
- Force vector distance between similar words to be low
- How to quantify word similarity?

Quantifying Similarity



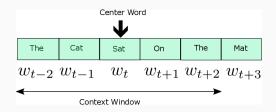
- 1. A is "more similar" to B than C
- 2. A is "more similar" to C than B

Quantifying Word Similarity



- Context of a word = Words occurring before and after within a predefined window
- Words that have similar contexts, should be represented by word vectors close to each other

Capturing Word Contexts



- Consider a word w_t (call it the center word)
- Consider another word w_{t+j} that lies within the context window of size C. Then $-C \le j \le C$ and $j \ne 0$
- We want to use the probability of context words given the center word $P(w_{t+j}|w_t)$ for $-C \le j \le C$ and $j \ne 0$
- If the total number of words in training database is *T*, then, try to maximize the overall probability

$$\prod_{t=1}^{T} \prod_{-C \leq j \leq C, j \neq 0} P(w_{t+j}|w_t)$$

Putting All Pieces Together

- Scan training data and prepare training data pairs
 - Eg: if data are $(w_1, w_2, w_3, w_4, \dots w_T)$, then assuming a context window of 2, the training word pairs will be $\{(w_1, w_2), (w_1, w_3), (w_2, w_1), (w_2, w_3), (w_2, w_4), \dots\}$
 - In each word pair replace the first word with the corresponding one-hot encoded vector and the second word with its index {(x₁, y₂), (x₁, y₃), (x₂, y₁), (x₂, y₃), (x₂, y₄), ...}, where y_i is the index of word w_i.
 - For clarity denote the *i*th pair by (**x**_{*i*}, *y*_{*i*}) where **x**_{*i*} is the input and *y*_{*i*} is the target. Let *M* be number of such pairs.
- Consider a neural network whose
 - First layer performs a projection to the word vectors **h** from the one-hot encoded vectors **x**.
 - $\cdot\,$ Second layer maps the word vectors to target one-hot vectors
- Train the network to maximize

$$L = \prod_{t=1}^{T} \prod_{-C \leq j \leq C, j \neq 0} P(w_{t+j}|w_t) = \prod_{i=1}^{M} P(\mathbf{y}_i|\mathbf{x}_i)$$

Word2vec- System Architecture



 $\mathbf{x}_i \in \mathbb{R}^{V \times 1}$, $\mathbf{h}_i \in \mathbb{R}^{d \times 1}$, $\mathbf{W} \in \mathbb{R}^{V \times d}$, $\mathbf{U} \in \mathbb{R}^{V \times d}$

• Projection:

$$\mathbf{h}_i = \mathbf{W}^T \mathbf{x}_i$$

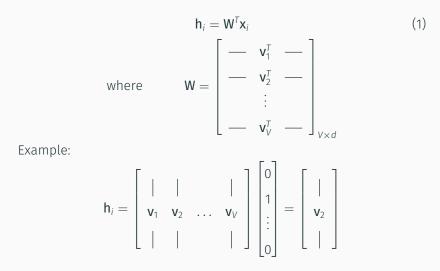
• Second layer:

 $z_i = Uh_i$

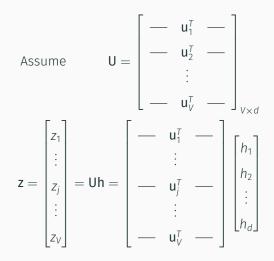
• Softmax:

$$P(y_i = j | \mathbf{x}_i) = \frac{\exp(z_i(j))}{\sum_k \exp(z_i(k))}$$

Projection



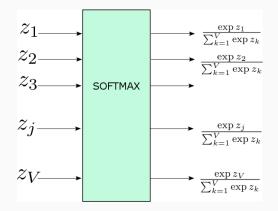
• Word vector is the same as the corresponding row of the Weight matrix



 $\cdot j^{\text{th}}$ component of **z** is given by

$$z_i(j) = \mathbf{u}_j^{\mathsf{T}} \mathbf{h}_i \tag{2}$$

Softmax



$$P(y_i = j | \mathbf{x}_i) = \frac{\exp(z_i(j))}{\sum_{k=1}^{V} \exp(z_i(k))}$$
(3)

13

• Loss:

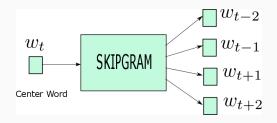
$$L = \prod_{i=1}^{M} P(y_i | \mathbf{x}_i) = \prod_{i=1}^{M} \frac{\exp(z_i(y_i))}{\sum_{k=1}^{V} \exp(z_i(k))}$$

• Log loss:

$$E = -\log L = \sum_{i=1}^{M} \left[-z_i(y_i) + \log \sum_{k=1}^{V} \exp(z_i(k)) \right]$$
(4)

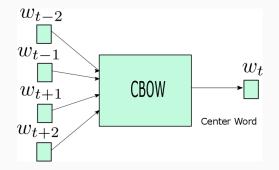
Gradients and Back-Propagation

- Differentiate equation 4 wrt. $z_i(j) \Rightarrow \frac{\partial E}{\partial z_i(j)}$
- Differentiate equation 2
 - wrt $\mathbf{u}_{j} \Rightarrow \frac{\partial z_{i}(j)}{\partial \mathbf{u}_{j}}$ • wrt. $\mathbf{h}_{i} \Rightarrow \frac{\partial z_{i}(j)}{\partial \mathbf{h}_{i}}$
- Differentiate equation 1 wrt W $\Rightarrow \frac{\partial h_i}{\partial W}$
- By using the chain rule (i.e.) Back-propagation, we can find $\frac{\partial E}{\partial \mathbf{u}_j}$ and $\frac{\partial E}{\partial W}$



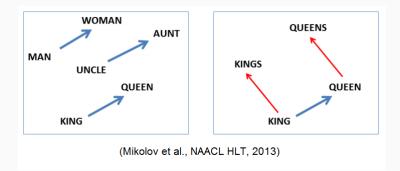
if data are (w₁, w₂, w₃, w₄, ... w_T), then assuming a context window of 2, the training word pairs will be {(w₁, w₂), (w₁, w₃), (w₂, w₁), (w₂, w₃), (w₂, w₄), ... }

Continuous Bag of Words (CBOW)



if data are (w₁, w₂, w₃, w₄, ... w_T), then assuming a context window of 2, the training word pairs will be {(w₂, w₁), (w₃, w₁), (w₁, w₂), (w₃, w₂), (w₄, w₂), ... }

Word Vector Visualisation



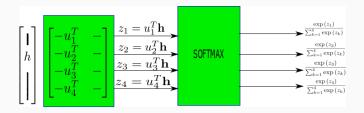
Problem of Efficient Training

- Typical vocabularies are very large (couple of 100k)
- Word pairs make it even larger (millions)
- The cost of calculating Softmax its derivatives is high

$$P(y_i = j | \mathbf{x}_i) = \frac{\exp(z_i(j))}{\sum_{k=1}^{V} \exp(z_i(k))}$$

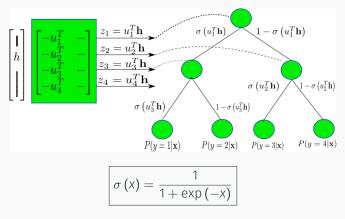
- Solutions
 - Hierarchical Softmax
 - Noise Contrastive Estimation
 - Negative sampling

Another view of Softmax



• Each output depends on all z

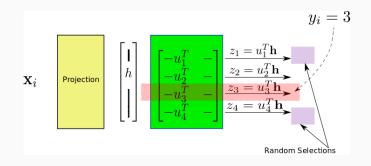
Hierarchical Softmax



- Each output depends on only z in its path
- Exampl: $P(y = 3|x) = [1 \sigma(u_1^T h)] \sigma(u_2^T h)$
- This works because sum of probabilities corresponding to all paths is 1

 \cdot Designing a suitable tree is not trivial

Noise Contrastive Estimation (NCE)



- A sampling based approach (i.e. random approximation)
- Instead of using ALL alternative words, choose some random words
- Then cast the estimation problem as a classification problem

Noise Contrastive Estimation

- Consider a garbage data set in addition to the genuine dataset.
- Consider a given input (one-hot encoded) vector **x** and draw:
 - One genuine data sample { (\mathbf{x}, y^d) }, y^d is the correct output class drawn from the data distribution $P_d(y|\mathbf{x})$
 - *k* garbage data samples $\{(\mathbf{x}, y_i^n)\}, y_i^n$ is randomly chosen output class from a noise distribution $P_n(y)$.
- Now we have $\{(\mathbf{x}, y^d), (\mathbf{x}, y_1^n), (\mathbf{x}, y_2^n), \cdots, (\mathbf{x}, y_k^n)\}$
- Now we consider classification of each sample to either noise or data

$$(\mathbf{x}, y_i) \longrightarrow P(\text{data}|\mathbf{x}, y_i)$$

$$P(\text{data}|\mathbf{x}, y) = \frac{P(y|\text{data}, \mathbf{x})P(\text{data})}{P(y|\mathbf{x})}$$
(5)
$$= \frac{P(y|\text{data}, \mathbf{x})P(\text{data})}{P(y|\text{data}, \mathbf{x})P(\text{data}) + P(y|\text{noise}, \mathbf{x})P(\text{noise})}$$
(6)
$$= \frac{P(y|\text{data}, \mathbf{x})\frac{1}{1+k}}{P(y|\text{data}, \mathbf{x})\frac{1}{1+k} + P(y|\text{noise}, \mathbf{x})\frac{k}{1+k}}$$
(7)
$$= \frac{P_d(y|\mathbf{x})}{P_d(y|\mathbf{x}) + kP_n(y)}$$
(8)

• And

٠

$$P(\text{noise}|\mathbf{x}, y) = 1 - \frac{P_d(y|\mathbf{x})}{P_d(y|\mathbf{x}) + kP_n(y)} = \frac{kP_n(y)}{P_d(y|\mathbf{x}) + kP_n(y)}$$
(9)

Noise Contrastive Estimation Loss Function

• Loss

$$L = P\left(\mathsf{data}|\mathbf{x}, y^d\right) \prod_{j=1}^k P\left(\mathsf{noise}|\mathbf{x}, y_j^n\right)$$

• Log loss

$$E = \log\left[\frac{P_d(y^d|\mathbf{x})}{P_d(y^d|\mathbf{x}) + kP_n(y^d)}\right] + \sum_{j=1}^k \log\left[\frac{kP_n(y^n_j)}{P_d(y^n_j|\mathbf{x}) + kP_n(y^n_j)}\right]$$

- We choose a noise distribution, so $P_n(y)$ terms can be calculated.
- How to compute $P_d(y|\mathbf{x})$?

• Assume data distribution is computed by your network:

$$P_d(\mathbf{y}|\mathbf{x}) = \frac{\exp(z(\mathbf{y}))}{\sum_{j=1}^{V} \exp(z(j))} = \frac{\exp(z(\mathbf{y}))}{Z(\mathbf{x})}$$

- But now we are back to the original problem, how to calculate $Z(\mathbf{x})$
- Solution: Consider it to be a parameter and try to learn it on data. In practice, the learned $Z(\mathbf{x})$ is close to 1.
- Therefore:

$$P_d\left(y|\mathbf{x}\right) = \exp\left(z\left(y\right)\right)$$

• NCE loss function

$$E_{NCE} = \log\left[\frac{\exp\left(z\left(y^{d}\right)\right)}{\exp\left(z\left(y^{d}\right)\right) + kP_{n}(y^{d})}\right] + \sum_{j=1}^{k}\log\left[\frac{kP_{n}(y_{j}^{n})}{\exp\left(z\left(y_{j}^{n}\right)\right) + kP_{n}(y_{j}^{n})}\right]$$
(10)

• To learn the parameters, find $\frac{\partial E_{NCE}}{\partial z(l)}$ and back-propagate through the network.

- Faster than softmax.
- It can be shown that

$$\frac{\partial E_{\text{NCE}}}{\partial \theta} \rightarrow \frac{\partial E_{\text{SOFTMAX}}}{\partial \theta}$$

when $k \to \infty$ where θ is a parameter of the network.

Negative Sample Loss

- Yet another approximation
- Assume $kP_n(y) = 1$, for any y. That means a uniform noise distribution and $k = \frac{1}{V}$
- Substitute this in NCE loss function (equation 10)

$$E_{NEG} = \log\left[\frac{\exp\left(z\left(y^{d}\right)\right)}{\exp\left(z\left(y^{d}\right)\right) + 1}\right] + \sum_{j=1}^{k}\log\left[\frac{1}{\exp\left(z\left(y_{j}^{n}\right)\right) + 1}\right]$$
(11)

• Using sigmoid
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$
 we can write this as

$$E_{NEG} = \log\left[\sigma\left(z\left(y^{d}\right)\right)\right] + \sum_{j=1}^{k}\log\left[\sigma\left(-z\left(y_{j}\right)^{n}\right)\right]$$
(12)

Global Vectors for Word Prediction (GloVe) Algorithm

- Two types of word embedding algorithms:
 - Word counting based
 - Prediction based (Skip-gram, CBOW)
- \cdot GloVe tries to combine best of both worlds

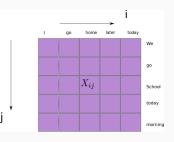
GLOVE Algorithm

It tries to optimize

$$J = \sum_{i,j=1}^{V} f(\mathbf{x}_{ij}) \left(\mathbf{w}_{i}^{\mathsf{T}} \tilde{\mathbf{w}}_{j} + b_{i} + \tilde{b}_{j} - \log X_{ij} \right)^{2}$$

where

- $\mathbf{w}_i^{\mathsf{T}}$ and $\mathbf{\tilde{w}}_j$ are word vectors of i^{th} and j^{th} words
- X_{ij} is word co- occurrence count of i^{th} and j^{th} words
- $f(X_{ij})$ is a weighting function.
- b_i and \tilde{b}_j are biases.



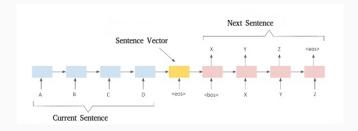
Beyond Word Vectors

- Word2vec (Skip-gram, CBOW) and GloVe algorithms:
 - \cdot are based on shallow models.
 - do not result in universal embeddings (i.e. do not learn higher level abstractions)
 - operate on word level
 - Unsupervised learning
- Newer directions
 - Character level embedding
 - Sentence level embedding
 - Universal embedding (incorporate higher level information)
 - Supervised learning with syntactic/semantic supervision
- Examples: Fasttext, Skip-thoughts, ELMo, CoVe

- Character level embedding system
- Represent words as character N-grams
 - Example: 3-gram of word <where>
 - <wh, whe, her, ere re>
- Generate embedding vectors for N-grams and represent word with weighted sum of N-gram vectors

Skip-thought vectors

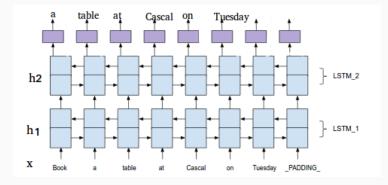
- Sentence level embedding (i.e. Each sentence is represented by a fixed length vector
- Word order is taken into account. eg: 'Rosenborg **beat** Brann' vs 'Brann **beat** Rosenborg'
- Need semantically related sentences.
- Tries to predict the next and previous sentences from the current sentence



ELmo-Embedding from Language Models

- $\cdot\,$ Embedding at word level, but the order is taken into account
- Better handling *Polysemy* (i.e. same word having different meanings in different contexts)
- Tries to predict the next word given the previous words, in both forward and backward directions
 - Sentence: I like deep learning very much
 - Forward: Given I like deep predict learning
 - Backward: Given much very predict learning
- Uses a stacked bidirectional LSTM

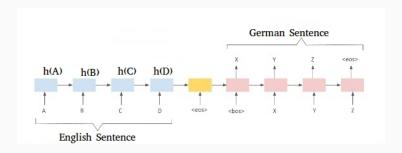
ELmo Architecture



• For each word **x**, the embedded vector is a weighted sum of all the corresponding LSTM outputs, $\sum_{j=0}^{L} s_j \mathbf{h}_j$. Here \mathbf{h}_j is a concatenation of the forward and backward LSTMs, $\mathbf{h}_j = \begin{bmatrix} \mathbf{h}_j^f, \mathbf{h}_j^b \end{bmatrix}$

CoVe- Contextualized Word vectors

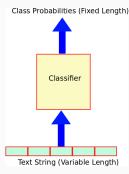
- CoVe uses a encoder-decoder architecture for language translation
- CoVe is supervised (i.e. need labeled database
- Embeded vectors are simply the hidden states of the decoder



Text Classification

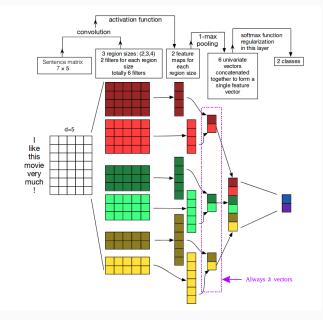
Text Classification Big Picture

- Main challenge: Map a variable length input to a fixed length output
- Different applications (eg: classification of E-mail, SMS, Web contents in tagging, CRM, marketing, sentiment analysis.
 - Sentence classification
 - Document classification



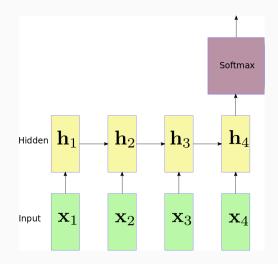
- Convolutional Neural Networks (CNN):
 - Seem less natural
 - But possible with a trick to have a fixed length output irrespective of the input size
- Recurrent Neural Networks (RNN):
 - Naturally suitable for variable length inputs
 - Often used with attention

CNN based Sentence Classification

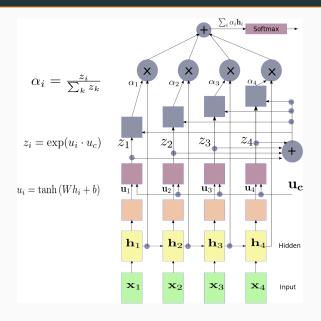


RNN for sentence classification

• Use many-to-one configuration



RNN with Attention



Hierarchical Attention Network

