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Word Representations



Why Word Representations?

- Words are symbols

- Neural networks operate on numerical values



Naive way of Word Representation

One hot encoding
Use the word index in vector form
Example

- Consider a vocabulary of 5 words:
1 Man (1,0,0,0,0]

2 Woman [0,1,0,0,0]
3 Boy [0,0,1,0,0]
4 Girl [0,0,0,1,0]
5 House  [0,0,0,0,1]

Disadvantages

- Dimension of the representation vector would be very high for
natural vocabularies.

- All vectors are equally spread (vector similarity does not
represent semantic similarity)



Issue 1: High Dimension
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- Project one-hot encoded vectors to a lower dimensional space
(Reduce the dimension of the representation )

- Also known as embedding

- Linear projection = Multiplication by a matrix hyxg = X1xyWyyg



Issue 2 :Similar Words

- Force vector distance between similar words to be low

- How to quantify word similarity?



Quantifying Similarity

1. Ais "more similar” to B than C

2. Ais "more similar” to C than B



Quantifying Word Similarity
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Context Window

- Context of a word = Words occurring before and after within a
predefined window

- Words that have similar contexts, should be represented by
word vectors close to each other 7



Capturing Word Contexts
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Context Window

- Consider a word w; (call it the center word)

- Consider another word wy,; that lies within the context window
of size C. Then —C<j<Candj#0

- We want to use the probability of context words given the center
word P(wijlw;) for —-C<j< Candj#0

- If the total number of words in training database is T, then, try
to maximize the overall probability
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Putting All Pieces Together

- Scan training data and prepare training data pairs

- Eg: if data are (Wi, wa, ws, Wa, - - - wr), then assuming a context
window of 2, the training word pairs will be
{(W17 W2)7 (W17 W3)v (Wz, W1)7 (W27 W3)’ (WQ’ W")v e }

- In each word pair replace the first word with the corresponding
one-hot encoded vector and the second word with its index
{(%1,¥2), (X1, ¥3), (X2, Y1), (X2, ¥3), (X2, V4), - - - }, where y; is the index
of word w;.

- For clarity denote the i'" pair by (x;,y;) where x; is the input and y;
is the target. Let M be number of such pairs.

- Consider a neural network whose

- First layer performs a projection to the word vectors h from the
one-hot encoded vectors x.

- Second layer maps the word vectors to target one-hot vectors

- Train the network to maximize

—

M

L= H H P(Wyjlwe) = H P(yi|x;)

t=1 —C<j<C,j#0 i=1 9



Word2vec- System Architecture
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- Projection:
h,' = WTX,'

- Second layer:

- Softmax:
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- Word vector is the same as the corresponding row of the Weight

matrix 1



Second Layer
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- j'" component of z is given by

zi(j) = u’h; 2 =
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- Loss:
M
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- Log loss:
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Gradients and Back-Propagation

- Differentiate equation 4 wrt. z;(j) = 8%6')

- Differentiate equation 2

. - 0zi(
wrt u; = u
) . 07())
wrt. h; = an,
. . . oh;
- Differentiate equation Twrt W = W
. . . . OE
- By using the chain rule (i.e.) Back-propagation, we can find e
J
OE
and —
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Skip-gram
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- if data are (wq, Wy, W3, Wy, - - - wr), then assuming a context
window of 2, the training word pairs will be

{(W% WZ)v (WW’ W3)v (WZa W1)a (W2v W3)a (W27 W4)’ e }



Continuous Bag of Words (CBOW)
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- if data are (wq, Wy, W3, Wy, - - - wr), then assuming a context
window of 2, the training word pairs will be

{(W27 W1)v (W3> W1)7 (W1v WZ)? (W37 W2)7 (W‘H W2)’ e }



Word Vector Visualisation
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(Mikolov et al., NAACL HLT, 2013)



Problem of Efficient Training

- Typical vocabularies are very large ( couple of 100k)
- Word pairs make it even larger ( millions)
- The cost of calculating Softmax its derivatives is high

exp(zi(j))

Plyi=jx)= ———————
V=0 = S o)

- Solutions

- Hierarchical Softmax
- Noise Contrastive Estimation
- Negative sampling

19



Another view of Softmax

exp (1)
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Sy exp ()

- Each output depends on all z
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Hierarchical Softmax

Ply=1[x) Ply=2%x) P=3x) Plyr=4x)

1

7 () = 14 exp (—x)

- Each output depends on only z in its path

- Exampl: P(y =3|x) = [1— o (u]h)] o (uh)

- This works because sum of probabilities corresponding to all
paths is 1

21



Hierarchical Softmax-Challenges

- Designing a suitable tree is not trivial

22



Noise Contrastive Estimation (NCE)

Xz Projection

Random Selections

- A sampling based approach (i.e. random approximation)

- Instead of using ALL alternative words, choose some random
words

- Then cast the estimation problem as a classification problem

23



Noise Contrastive Estimation

- Consider a garbage data set in addition to the genuine dataset.
- Consider a given input (one-hot encoded) vector x and draw:
- One genuine data sample {(x,y%)}, y* is the correct output class
drawn from the data distribution Pg(y|x)
- k garbage data samples {(x,y!)}, y is randomly chosen output
class from a noise distribution Pn(y).
: NOW we have {(vad)7 (X7y?)a (X7yg)7 e >(Xayg)}
- Now we consider classification of each sample to either noise or
data

jdata,xv yi)

P(noise[x, y;)

(X7 yZ)_'
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Noise Contrastive Estimation

P(y|data, x)P(data)

P (data|x,y) = PUN) (5)
_ P(y|data, x)P(data)
~ P(y|data,x)P(data) + P(y|noise, x)P(noise)
1
~ P(y|data, x) TR o
P(yldata,x)ﬁ + P(y\noise,x)HLl?
___ Pl @®
Pa(yIX) + kPa(y)
- And
P (noise|x,y) = 1— Pa(y[x) _ RPn(y) (9)

Pa(yIX) + RPa(y) — Pqa(yIX) + RPs(y)
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Noise Contrastive Estimation Loss Function

- Loss
k

L=p (datalx, yd) H P (no]seb@yf)

- Log loss

Pa(y9]X) } RkPn(y1)
E=1lo + lo
g{ Pa(y9|x) + RPs(y9) Z 8 a(y}'1x) + RPa(y7")
- We choose a noise distribution, so P,(y) terms can be

calculated.

- How to compute P4(y|x)?
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Computation of Data Distribution

- Assume data distribution is computed by your network:

exp(z(y)) _ exp(z(y))

YL exp (2())) Z(x)

- But now we are back to the original problem, how to calculate
Z(x)

- Solution: Consider it to be a parameter and try to learn it on
data. In practice, the learned Z(x) is close to 1.

Pa (v[X) =

- Therefore:
Pa (v[X) = exp (z(y))
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Final NCE Loss function

+ NCE loss function

exp (z (y° ! RPa(y}")
Ence = log [ pd( 4 l)?I)D |+ _log il
exp (Z (y )) + RPp(y9) = exp (z (yj”)) + fer(yf)
(10)
- To learn the parameters, find ZEIZIC)E and back-propagate through

the network.
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What we achieve through NCE?

- Faster than softmax.
- It can be shown that

OEnce  OEsortmax
20 00

when kR — oo where 6 is a parameter of the network.
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Negative Sample Loss

- Yet another approximation

- Assume RP, (y) =1, for any y. That means a uniform noise
distribution and k = |

- Substitute this in NCE loss function (equation 10)

exp (2(v7)) ‘ 1
Enec = log l +) log (1)
I ES] RO e ey
- Using sigmoid o (x) = e = we can write this as

o=t (/)] + sl (6)]
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Global Vectors for Word Prediction (GloVe) Algorithm

- Two types of word embedding algorithms:

- Word counting based
- Prediction based (Skip-gram, CBOW)

- GloVe tries to combine best of both worlds

31



GLOVE Algorithm

- It tries to optimize

v . 2
J= Z]C(X,/) <WIT\7VI + b,’ + b/ = lOgX,‘})
ij=1
where
- w/ and W; are word vectors of i*" and j"" words
- Xj is word co- occurrence count of i and j™ words
- f(Xj) is a weighting function.
- b; and b, are biases.
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Beyond Word Vectors

- Word2vec (Skip-gram, CBOW) and GloVe algorithms:
- are based on shallow models.
- do not result in universal embeddings (i.e. do not learn higher
level abstractions)
- operate on word level
- Unsupervised learning

- Newer directions

- Character level embedding

- Sentence level embedding

- Universal embedding (incorporate higher level information)
- Supervised learning with syntactic/semantic supervision

- Examples: Fasttext, Skip-thoughts, ELMo, CoVe

33



FastText

- Character level embedding system
- Represent words as character N-grams
- Example: 3-gram of word <where>

- <wh, whe, her, ere re>

- Generate embedding vectors for N-grams and represent word
with weighted sum of N-gram vectors

34



Skip-thought vectors

- Sentence level embedding (i.e. Each sentence is represented by
a fixed length vector

- Word order is taken into account. eg: ‘Rosenborg beat Brann’ vs
'‘Brann beat Rosenborg’

- Need semantically related sentences.

- Tries to predict the next and previous sentences from the
current sentence

Next Sentence

Sentence Vector

Current Sentence

35



ELmo-Embedding from Language Models

- Embedding at word level, but the order is taken into account

- Better handling Polysemy (i.e. same word having different
meanings in different contexts)

- Tries to predict the next word given the previous words, in both
forward and backward directions

- Sentence: | like deep learning very much
- Forward: Given [ like deep predict learning
- Backward: Given much very predict learning

- Uses a stacked bidirectional LSTM

36



ELmo Architecture

i

Cascal on Tuesday _PADDING_

= LSTM_1

=
B
]

- For each word x, the embedded vector is a weighted sum of all
the corresponding LSTM outputs, Z]L o Sihj. Here h;is a

concatenation of the forward and backward LSTMs, h; = [h{, hﬂ
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CoVe- Contextualized Word vectors

- CoVe uses a encoder-decoder architecture for language
translation

- CoVe is supervised (i.e. need labeled database
- Embeded vectors are simply the hidden states of the decoder

German Sentence

h(A) h@ h© hD t t t

il i s el il i

B C o =aosx <hos=> " ¥ Z

English Sentence
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Text Classification




Text Classification Big Picture

- Main challenge: Map a variable length input to a fixed length
output
- Different applications (eg: classification of E-mail, SMS, Web
contents in tagging, CRM, marketing, sentiment analysis.
- Sentence classification
- Document classification

Class Probabilities (Fixed Length)

1

Classifier

L T T T T 1]

Text String (Variable Length)
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- Convolutional Neural Networks (CNN):

- Seem less natural
- But possible with a trick to have a fixed length output irrespective
of the input size

- Recurrent Neural Networks (RNN):

- Naturally suitable for variable length inputs
- Often used with attention

40



CNN based Sentence Classification

{ activation function

convolution

7
po

3 region sizes: (2,3,4)
2 filters for each region

Sentence matrix
Tx5

size
totally 6 filters

2feature
maps for
each
region size

like
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movie

much
!

softmax function

3%

regularization

in this layer
6 univariate 2 classes
vectors
concatenated

together to form a
single feature
vector

\
o

— Always 3 vectors

41



RNN for sentence classification

- Use many-to-one configuration

Hidden

Input

X1

1

Softmax

e

h,

h- h;
I I
X2 X3

X4
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RNN with Attention
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Hierarchical Attention Network

sentence
attention

sentence
encoder

word
attention

word
encoder
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