
Text Processing with Deep Learning
Basic concepts

Narada Warakagoda

Forsvarets Forskningsinstitutt (FFI)

Table of contents

1. Word Representations

2. Text Classification

1

Word Representations

Why Word Representations?

• Words are symbols
• Neural networks operate on numerical values

2

Naive way of Word Representation

One hot encoding
Use the word index in vector form

Example

• Consider a vocabulary of 5 words:
1 Man [1,0,0,0,0]
2 Woman [0,1,0,0,0]
3 Boy [0,0,1,0,0]
4 Girl [0,0,0,1,0]
5 House [0,0,0,0,1]

Disadvantages

• Dimension of the representation vector would be very high for
natural vocabularies.

• All vectors are equally spread (vector similarity does not
represent semantic similarity)

3

Issue 1: High Dimension

Projection

• Project one-hot encoded vectors to a lower dimensional space
(Reduce the dimension of the representation)

• Also known as embedding
• Linear projection = Multiplication by a matrix h1×d = x1×VWV×d

4

Issue 2 :Similar Words

• Force vector distance between similar words to be low
• How to quantify word similarity?

5

Quantifying Similarity

1. A is ”more similar” to B than C
2. A is ”more similar” to C than B

6

Quantifying Word Similarity

• Context of a word = Words occurring before and after within a
predefined window

• Words that have similar contexts, should be represented by
word vectors close to each other 7

Capturing Word Contexts

• Consider a word wt (call it the center word)
• Consider another word wt+j that lies within the context window
of size C. Then −C ≤ j ≤ C and j ̸= 0

• We want to use the probability of context words given the center
word P(wt+j|wt) for −C ≤ j ≤ C and j ̸= 0

• If the total number of words in training database is T, then, try
to maximize the overall probability

T∏
t=1

∏
−C≤j≤C,j̸=0

P(wt+j|wt)

8

Putting All Pieces Together

• Scan training data and prepare training data pairs
• Eg: if data are (w1,w2,w3,w4, · · ·wT), then assuming a context
window of 2, the training word pairs will be
{(w1,w2), (w1,w3), (w2,w1), (w2,w3), (w2,w4), · · · }

• In each word pair replace the first word with the corresponding
one-hot encoded vector and the second word with its index
{(x1, y2), (x1, y3), (x2, y1), (x2, y3), (x2, y4), · · · }, where yi is the index
of word wi.

• For clarity denote the ith pair by (xi, yi) where xi is the input and yi
is the target. Let M be number of such pairs.

• Consider a neural network whose
• First layer performs a projection to the word vectors h from the
one-hot encoded vectors x.

• Second layer maps the word vectors to target one-hot vectors
• Train the network to maximize

L =
T∏
t=1

∏
−C≤j≤C,j̸=0

P(wt+j|wt) =
M∏
i=1

P(yi|xi)
9

Word2vec- System Architecture

xi ∈ RV×1, hi ∈ Rd×1, W ∈ RV×d, U ∈ RV×d

• Projection:
hi = WTxi

• Second layer:
zi = Uhi

• Softmax:
P(yi = j|xi) =

exp(zi(j))∑
k exp(zi(k))

10

Projection

hi = WTxi (1)

where W =

vT1
vT2
...

vTV

V×d

Example:

hi =

 v1 v2 . . . vV

0

1
...

0

 =

 v2

• Word vector is the same as the corresponding row of the Weight
matrix 11

Second Layer

Assume U =

uT1
uT2
...

uTV

V×d

z =

z1
...

zj
...

zV

= Uh =

uT1
...

uTj
...

uTV

h1

h2
...

hd

• jth component of z is given by

zi(j) = uTj hi (2) 12

Softmax

P(yi = j|xi) =
exp(zi(j))∑V
k=1 exp(zi(k))

(3)

13

Loss Function

• Loss:

L =
M∏
i=1

P(yi|xi) =
M∏
i=1

exp(zi(yi))∑V
k=1 exp(zi(k))

• Log loss:

E = − log L =
M∑
i=1

[
− zi(yi) + log

V∑
k=1

exp(zi(k))
]

(4)

14

Gradients and Back-Propagation

• Differentiate equation 4 wrt. zi(j) ⇒ ∂E
∂zi(j)

• Differentiate equation 2

• wrt uj ⇒
∂zi (j)
∂uj

• wrt. hi ⇒
∂zi (j)
∂hi

• Differentiate equation 1 wrt W ⇒ ∂hi
∂W

• By using the chain rule (i.e.) Back-propagation, we can find ∂E
∂uj

and ∂E
∂W

15

Skip-gram

• if data are (w1,w2,w3,w4, · · ·wT), then assuming a context
window of 2, the training word pairs will be
{(w1,w2), (w1,w3), (w2,w1), (w2,w3), (w2,w4), · · · }

16

Continuous Bag of Words (CBOW)

• if data are (w1,w2,w3,w4, · · ·wT), then assuming a context
window of 2, the training word pairs will be
{(w2,w1), (w3,w1), (w1,w2), (w3,w2), (w4,w2), · · · }

17

Word Vector Visualisation

18

Problem of Efficient Training

• Typical vocabularies are very large (couple of 100k)
• Word pairs make it even larger (millions)
• The cost of calculating Softmax its derivatives is high

P(yi = j|xi) =
exp(zi(j))∑V
k=1 exp(zi(k))

• Solutions
• Hierarchical Softmax
• Noise Contrastive Estimation
• Negative sampling

19

Another view of Softmax

• Each output depends on all z

20

Hierarchical Softmax

σ (x) = 1
1+ exp (−x)

• Each output depends on only z in its path
• Exampl: P (y = 3|x) =

[
1− σ

(
uT1h

)]
σ
(
uT2h

)
• This works because sum of probabilities corresponding to all
paths is 1

21

Hierarchical Softmax-Challenges

• Designing a suitable tree is not trivial

22

Noise Contrastive Estimation (NCE)

• A sampling based approach (i.e. random approximation)
• Instead of using ALL alternative words, choose some random
words

• Then cast the estimation problem as a classification problem

23

Noise Contrastive Estimation

• Consider a garbage data set in addition to the genuine dataset.
• Consider a given input (one-hot encoded) vector x and draw:

• One genuine data sample {(x, yd)}, yd is the correct output class
drawn from the data distribution Pd(y|x)

• k garbage data samples {(x, yni)}, yni is randomly chosen output
class from a noise distribution Pn(y).

• Now we have {(x, yd), (x, yn1), (x, yn2), · · · , (x, ynk)}
• Now we consider classification of each sample to either noise or
data

24

Noise Contrastive Estimation

•

P (data|x, y) = P(y|data, x)P(data)
P(y|x) (5)

=
P(y|data, x)P(data)

P(y|data, x)P(data) + P(y|noise, x)P(noise) (6)

=
P(y|data, x) 1

1+ k

P(y|data, x) 1
1+ k + P(y|noise, x) k

1+ k

(7)

=
Pd(y|x)

Pd(y|x) + kPn(y)
(8)

• And

P (noise|x, y) = 1− Pd(y|x)
Pd(y|x) + kPn(y)

=
kPn(y)

Pd(y|x) + kPn(y)
(9)

25

Noise Contrastive Estimation Loss Function

• Loss

L = P
(
data|x, yd

) k∏
j=1

P
(
noise|x, ynj

)

• Log loss

E = log
[

Pd(yd|x)
Pd(yd|x) + kPn(yd)

]
+

k∑
j=1

log
[

kPn(ynj)
Pd(ynj |x) + kPn(ynj)

]

• We choose a noise distribution, so Pn(y) terms can be
calculated.

• How to compute Pd(y|x)?

26

Computation of Data Distribution

• Assume data distribution is computed by your network:

Pd (y|x) =
exp (z (y))∑V
j=1 exp (z (j))

=
exp (z (y))
Z (x)

• But now we are back to the original problem, how to calculate
Z(x)

• Solution: Consider it to be a parameter and try to learn it on
data. In practice, the learned Z(x) is close to 1.

• Therefore:
Pd (y|x) = exp (z (y))

27

Final NCE Loss function

• NCE loss function

ENCE = log
[

exp
(
z
(
yd
))

exp
(
z
(
yd
))

+ kPn(yd)

]
+

k∑
j=1

log

 kPn(ynj)

exp
(
z
(
ynj
))

+ kPn(ynj)

(10)

• To learn the parameters, find ∂ENCE
∂z (l) and back-propagate through

the network.

28

What we achieve through NCE?

• Faster than softmax.
• It can be shown that

∂ENCE
∂θ

→ ∂ESOFTMAX
∂θ

when k→ ∞ where θ is a parameter of the network.

29

Negative Sample Loss

• Yet another approximation
• Assume kPn (y) = 1, for any y. That means a uniform noise
distribution and k = 1

V

• Substitute this in NCE loss function (equation 10)

ENEG = log
[

exp
(
z
(
yd
))

exp
(
z
(
yd
))

+ 1

]
+

k∑
j=1

log

 1
exp

(
z
(
ynj
))

+ 1

 (11)

• Using sigmoid σ (x) = 1
1+ exp (−x) we can write this as

ENEG = log
[
σ
(
z
(
yd
))]

+
k∑
j=1

log
[
σ
(
−z

(
yj
)n)] (12)

30

Global Vectors for Word Prediction (GloVe) Algorithm

• Two types of word embedding algorithms:
• Word counting based
• Prediction based (Skip-gram, CBOW)

• GloVe tries to combine best of both worlds

31

GLOVE Algorithm

• It tries to optimize

J =
V∑

i,j=1

f
(
xij
) (

wT
i w̃j + bi + b̃j − log Xij

)2
where

• wT
i and w̃j are word vectors of ith and jth words

• Xij is word co- occurrence count of ith and jth words
• f(Xij) is a weighting function.
• bi and b̃j are biases.

32

Beyond Word Vectors

• Word2vec (Skip-gram, CBOW) and GloVe algorithms:
• are based on shallow models.
• do not result in universal embeddings (i.e. do not learn higher
level abstractions)

• operate on word level
• Unsupervised learning

• Newer directions
• Character level embedding
• Sentence level embedding
• Universal embedding (incorporate higher level information)
• Supervised learning with syntactic/semantic supervision

• Examples: Fasttext, Skip-thoughts, ELMo, CoVe

33

FastText

• Character level embedding system
• Represent words as character N-grams

• Example: 3-gram of word <where>
• <wh, whe, her, ere re>

• Generate embedding vectors for N-grams and represent word
with weighted sum of N-gram vectors

34

Skip-thought vectors

• Sentence level embedding (i.e. Each sentence is represented by
a fixed length vector

• Word order is taken into account. eg: ’Rosenborg beat Brann’ vs
’Brann beat Rosenborg’

• Need semantically related sentences.
• Tries to predict the next and previous sentences from the
current sentence

35

ELmo-Embedding from Language Models

• Embedding at word level, but the order is taken into account
• Better handling Polysemy (i.e. same word having different
meanings in different contexts)

• Tries to predict the next word given the previous words, in both
forward and backward directions

• Sentence: I like deep learning very much
• Forward: Given I like deep predict learning
• Backward: Given much very predict learning

• Uses a stacked bidirectional LSTM

36

ELmo Architecture

• For each word x, the embedded vector is a weighted sum of all
the corresponding LSTM outputs,

∑L
j=0 sjhj. Here hj is a

concatenation of the forward and backward LSTMs, hj =
[
hfj ,h

b
j

]
37

CoVe- Contextualized Word vectors

• CoVe uses a encoder-decoder architecture for language
translation

• CoVe is supervised (i.e. need labeled database
• Embeded vectors are simply the hidden states of the decoder

38

Text Classification

Text Classification Big Picture

• Main challenge: Map a variable length input to a fixed length
output

• Different applications (eg: classification of E-mail, SMS, Web
contents in tagging, CRM, marketing, sentiment analysis.

• Sentence classification
• Document classification

39

Basic Tools

• Convolutional Neural Networks (CNN):
• Seem less natural
• But possible with a trick to have a fixed length output irrespective
of the input size

• Recurrent Neural Networks (RNN):
• Naturally suitable for variable length inputs
• Often used with attention

40

CNN based Sentence Classification

41

RNN for sentence classification

• Use many-to-one configuration

42

RNN with Attention

43

Hierarchical Attention Network

44

	Word Representations
	Text Classification

